Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
FASEB J ; 34(6): 7941-7957, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32293069

RESUMEN

Acute renal depletion of sorting nexin 1 (SNX1) in mice results in blunted natriuretic response and hypertension due to impaired dopamine D5 receptor (D5 R) activity. We elucidated the molecular mechanisms for these phenotypes in Snx1-/- mice. These mice had increased renal expressions of angiotensin II type 1 receptor (AT1 R), NADPH oxidase (NOX) subunits, D5 R, and NaCl cotransporter. Basal reactive oxygen species (ROS), NOX activity, and blood pressure (BP) were also higher in Snx1-/- mice, which were normalized by apocynin, a drug that prevents NOX assembly. Renal proximal tubule (RPT) cells from hypertensive (HT) Euro-American males had deficient SNX1 activity, impaired D5 R endocytosis, and increased ROS compared with cells from normotensive (NT) Euro-American males. siRNA-mediated depletion of SNX1 in RPT cells from NT subjects led to a blunting of D5 R agonist-induced increase in cAMP production and decrease in Na+ transport, effects that were normalized by over-expression of SNX1. Among HT African-Americans, three of the 12 single nucleotide polymorphisms interrogated for the SNX1 gene were associated with a decrease in systolic BP in response to hydrochlorothiazide (HCTZ). The results illustrate a new paradigm for the development of hypertension and imply that the trafficking protein SNX1 may be a crucial determinant for hypertension and response to antihypertensive therapy.


Asunto(s)
Hipertensión/metabolismo , Estrés Oxidativo/fisiología , Nexinas de Clasificación/metabolismo , Animales , Presión Sanguínea/fisiología , Línea Celular , Femenino , Humanos , Riñón/metabolismo , Túbulos Renales Proximales/metabolismo , Masculino , Ratones , NADPH Oxidasas/metabolismo , Oxidación-Reducción , Transporte de Proteínas/fisiología , ARN Interferente Pequeño/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Receptor de Angiotensina Tipo 1/metabolismo
2.
Tumour Biol ; 37(5): 6619-25, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26643894

RESUMEN

As a potential tumor suppressor, the detailed clinical application value of sorting nexin 1 (SNX1) has not been elucidated in colorectal cancer (CRC). The aim of the present study was to evaluate the expression of SNX1 in CRC tissues and to determine its correlation with clinicopathologic characteristics and its impact on patient's prognosis. We detected the expression of SNX1 mRNA in 72 CRC patients and SNX1 protein in 237 CRC patients by real-time polymerase chain reaction (RT-PCR) and immunohistochemical staining, respectively. Relationship between the expression of SNX1 and various clinicopathological features in these patients was evaluated. Both the mRNA and protein expression of SNX1 were remarkably decreased in CRC tissues compared with paired non-cancerous tissues, and the down-regulation of SNX1 protein was strongly associated with poor differentiation and poor overall survival (OS) rate of CRC patients. Ectopic SNX1 expression repressed CRC cell growth and promoted tumor sensitivity to most commonly used chemotherapeutic drugs (oxaliplatin and 5-Fluorouracil). In conclusion, overexpression of SNX1 may serve as a new therapeutic strategy for CRC.


Asunto(s)
Neoplasias Colorrectales/genética , Neoplasias Colorrectales/mortalidad , Resistencia a Antineoplásicos/genética , Regulación Neoplásica de la Expresión Génica , Nexinas de Clasificación/genética , Adulto , Anciano , Antineoplásicos/farmacología , Biomarcadores de Tumor , Línea Celular Tumoral , Proliferación Celular , Neoplasias Colorrectales/patología , Regulación hacia Abajo , Femenino , Fluorouracilo/farmacología , Humanos , Estimación de Kaplan-Meier , Metástasis Linfática , Masculino , Persona de Mediana Edad , Clasificación del Tumor , Estadificación de Neoplasias , Pronóstico , Carga Tumoral
3.
Tumour Virus Res ; 18: 200287, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38909779

RESUMEN

High risk human papillomavirus (HPV) infection is responsible for 99 % of cervical cancers and 5 % of all human cancers worldwide. HPV infection requires the viral genome (vDNA) to gain access to nuclei of basal keratinocytes of epithelium. After virion endocytosis, the minor capsid protein L2 dictates the subcellular retrograde trafficking and nuclear localization of the vDNA during mitosis. Prior work identified a cell-permeable peptide termed SNX1.3, derived from the BAR domain of sorting nexin 1 (SNX1), that potently blocks the retrograde and nuclear trafficking of EGFR in triple negative breast cancer cells. Given the importance of EGFR and retrograde trafficking pathways in HPV16 infection, we set forth to study the effects of SNX1.3 within this context. SNX1.3 inhibited HPV16 infection by both delaying virion endocytosis, as well as potently blocking virion retrograde trafficking and Golgi localization. SNX1.3 had no effect on cell proliferation, nor did it affect post-Golgi trafficking of HPV16. Looking more directly at L2 function, SNX1.3 was found to impair membrane spanning of the minor capsid protein. Future work will focus on mechanistic studies of SNX1.3 inhibition, and the role of EGFR signaling and SNX1-mediated endosomal tubulation, cargo sorting, and retrograde trafficking in HPV infection.

4.
bioRxiv ; 2024 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-38826391

RESUMEN

High risk human papillomavirus (HPV) infection is responsible for 99% of cervical cancers and 5% of all human cancers worldwide. HPV infection requires the viral genome (vDNA) to gain access to nuclei of basal keratinocytes of epithelium. After virion endocytosis, the minor capsid protein L2 dictates the subcellular retrograde trafficking and nuclear localization of the vDNA during mitosis. Prior work identified a cell-permeable peptide termed SNX1.3, derived from the BAR domain of sorting nexin 1 (SNX1), that potently blocks the retrograde and nuclear trafficking of EGFR in triple negative breast cancer cells. Given the importance of EGFR and retrograde trafficking pathways in HPV16 infection, we set forth to study the effects of SNX1.3 within this context. SNX1.3 inhibited HPV16 infection by both delaying virion endocytosis, as well as potently blocking virion retrograde trafficking and Golgi localization. SNX1.3 had no effect on cell proliferation, nor did it affect post-Golgi trafficking of HPV16. Looking more directly at L2 function, SNX1.3 was found to impair membrane spanning of the minor capsid protein. Future work will focus on mechanistic studies of SNX1.3 inhibition, and the role of EGFR signaling and SNX1- mediated endosomal tubulation, cargo sorting, and retrograde trafficking in HPV infection.

5.
Front Plant Sci ; 13: 883363, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35574108

RESUMEN

The transition from cell division to differentiation in primary roots is dependent on precise gradients of phytohormones, including auxin, cytokinins and brassinosteroids. The reorganization of microtubules also plays a key role in determining whether a cell will enter another round of mitosis or begin to rapidly elongate as the first step in terminal differentiation. In the last few years, progress has been made to establish connections between signaling pathways at distinct locations within the root. This review focuses on the different factors that influence whether a root cell remains in the division zone or transitions to elongation and differentiation using Arabidopsis thaliana as a model system. We highlight the role of the microtubule-associated protein CLASP as an intermediary between sustaining hormone signaling and controlling microtubule organization. We discuss new, innovative tools and methods, such as hormone sensors and computer modeling, that are allowing researchers to more accurately visualize the belowground growth dynamics of plants.

6.
Cancer Drug Resist ; 2(3): 539-549, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-35582586

RESUMEN

The drug gefitinib, a specific inhibitor of EGFR tyrosine kinase, has been shown to suppress the activation of EGFR signaling for survival and cell proliferation in non-small cell lung cancer cell lines. For many years, EGFR endocytosis has served as a model for investigating ligand-induced, receptor-mediated endocytosis. On EGF stimulation, EGFR is internalized and transported via clathrin-coated vesicles to early endosomes, and EGFR then recruits and phosphorylates signaling molecules, leading to the activation of downstream signaling such as MAPK/PI3K/AKT pathways-an important mechanism for regulating cell growth. Once delivered to the lysosomes, EGFR is degraded to terminate intracellular EGFR signaling via endocytosis; this process is known as receptor downregulation. Therefore, the endocytosis of EGFR is closely related with attenuation of intracellular EGFR signaling. Alternatively, EGFR is returned to cell surface from early endosomes for the continued signaling. Previous reports revealed that a competent EGF-induced endocytosis of EGFR followed by its rapid downregulation efficiently proceeds in the gefitinib-sensitive NSCLC cell lines. In contrast, gefitinib-resistant cell lines showed that EGFR endocytosis is impaired and the internalized EGFR is aggregated in the early endosomes, which is associated with the overexpressed sorting nexin 1 (SNX1), initially identified as a protein that interacts with EGFR. Thus dysregulated EGFR endocytosis is implicated in gefitinib resistance, as it leads to uncontrolled signal transduction. At present, the therapeutic relevance of EGFR endocytosis with regard to drug resistance in lung cancer has not been clarified. This review focused on the mechanism for EGFR endocytosis associated with SNX1 trafficking in gefitinib-resistant lung cancer cells.

7.
PeerJ ; 6: e4829, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29868263

RESUMEN

Sorting nexin-1 (SNX1) is an important functional protein in cell endocytosis, efflux, protein sorting, cell signal transduction, etc; however, the expression, the role and clinical relevance of SNX1 have not been investigated in gastric cancer (GC). In this study, we first performed a bioinformatics investigation using the data obtained from The Cancer Genome Atlas (TCGA) database. The result showed that SNX1 mRNA levels were significantly lower in GC tissues than in paracancerous tissues. In a study of 150 cases of GC, including 60 cases with paired paracancerous and cancer tissues and 90 cases with detailed follow-up information, SNX1 expression was analyzed by immunohistochemistry. Our study on paired paracancerous and cancer tissues showed that SNX1 protein expression remarkably decreased in GC tissues (50/60, 83.33%). A study on 90 patients with detailed follow-up information showed that tumors with higher SNX1 protein level were correlated with better clinicopathologic stages (p = 0.0285), nodal status (p = 0.0286), smaller tumor sizes (p = 0.0294) and a better survival rate in patients with GC (p = 0.0245). Univariate analysis of the 90 patients with GC showed that low-level SNX1 was significantly correlated with decreased overall survival of GC patients (p = 0.008), and associated with a relatively higher cumulative hazard of death. Exogenous expression of SNX1 inhibited the growth, migration, invasion and promoted the apoptosis and enhanced the sensitivity of GC cells to the chemotherapeutic drug 5-Fluorouracil (5-Fu) in vitro, while knockdown of SNX1 by short hairpin RNA (shRNA) significantly promoted the growth, migration, invasion and reduced the apoptosis and the sensitivity of GC cells to 5-Fu. SNX1 also showed to influence the levels of epithelial-mesenchymal transition markers including Vimentin, Snail, and E-cadherin in GC cells in vitro. Taken together, we propose here that SNX1 serves as a tumor suppressor and prognostic marker that reduces tumor cell malignancy for GC.

8.
Curr Biol ; 28(17): 2718-2729.e5, 2018 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-30146155

RESUMEN

The capacity for sustained cell division within the plant meristem is a critical determinant of organ structure and performance. This capacity is diminished in mutants lacking the microtubule-associated protein CLASP and when brassinosteroid signaling is increased. Here, we discovered that CLASP is both targeted by and promotes activity of the brassinosteroid pathway in Arabidopsis root apical meristems. We show that enhanced brassinosteroid signaling reduces CLASP transcript and protein levels, dramatically shifts microtubule organization, and reduces the number of cells in the meristem. In turn, CLASP, which tethers sorting nexin 1 vesicles to microtubules, sustains brassinosteroid signaling by fostering retrieval of endocytosed BRI1 receptors to the plasma membrane. clasp-1 null mutants have dampened brassinosteroid (BR)-mediated transcriptional activity and responses. Global transcript profiling confirmed the collapse of cell-cycle activity in clasp-1 and identified CLASP-mediated hormone crosstalk. Together, these findings reveal an unprecedented form of negative feedback supporting meristem homeostasis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Brasinoesteroides/metabolismo , Proliferación Celular/fisiología , Meristema/fisiología , Proteínas Asociadas a Microtúbulos/metabolismo , Raíces de Plantas/fisiología , Proteínas de Arabidopsis/genética , Brefeldino A/farmacología , Clonación Molecular , Dinitrobencenos/farmacología , Regulación hacia Abajo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/fisiología , Proteínas Asociadas a Microtúbulos/genética , Microtúbulos , Transducción de Señal , Sulfanilamidas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA