Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Am Nat ; 202(5): 721-732, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37963116

RESUMEN

AbstractHost shifts represent the advancement of a novel niche and often lead to speciation in symbionts. However, its mechanisms are not well understood. Here, we focused on the alga Pseudocladophora conchopheria growing on the shells of intertidal snails. Previous surveys have shown that the alga has host specificity-only attaching to the shell of Lunella correensis-but we discovered that the alga attaches to the shells of multiple sympatric snails. A genome-wide single-nucleotide polymorphism analysis (MIG-seq) was performed to determine whether host-associated speciation occurred in the algae. As a result, there was no gene flow or limited gene flow among the algae from different hosts, and some algae were genetically differentiated among hosts. In addition, the demographic estimate revealed that speciation with gene flow occurred between the algae from different hosts. Therefore, these results support the idea that host-shift speciation gradually proceeded with gene flow in the algae, providing insight into the early evolution of host shifts.


Asunto(s)
Chlorophyta , Flujo Génico , Especiación Genética , Exoesqueleto , Chlorophyta/genética , Polimorfismo de Nucleótido Simple
2.
Mol Ecol ; 32(12): 3118-3132, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36932922

RESUMEN

Speciation is a central topic in evolutionary biology. However, how genomic divergence originates and accumulates in the face of gene flow during ecological adaptation remains poorly understood. Closely related species that have adapted to distinct environments but inhabit some overlapping ranges provide an ideal system to evaluate this issue. Here, we combine population genomics and species distribution models (SDMs) to examine genomic divergences between two sister plant species, Medicago ruthenica and M. archiducis-nicolai, that occur in northern China and the northeast Qinghai-Tibet Plateau, respectively, with overlapping distributions in the border of the two regions. M. ruthenica and M. archiducis-nicolai are well-delimited based on population genomic data, although hybrids exist in sympatric sampling locations. Coalescent simulations and SDMs suggest that the two species diverged from each other in the Quaternary but have been in continuous contact with gene flow occurring between the two species since then. We also discovered positive selection signatures associated with genes both outside and within genomic islands in both species that are probably involved in adaptations to arid and high-altitude environments. Our findings provide insights into how natural selection and climatic changes in the Quaternary initiated and maintained interspecific divergence of these two sister species.


Asunto(s)
Evolución Biológica , Medicago , Tibet , China , Genómica , Filogenia
3.
Mol Phylogenet Evol ; 182: 107733, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36801373

RESUMEN

The processes leading to divergence and speciation can differ broadly among taxa with different life histories. We examine these processes in a small clade of ducks with historically uncertain relationships and species limits. The green-winged teal (Anas crecca) complex is a Holarctic species of dabbling duck currently categorized as three subspecies (Anas crecca crecca, A. c. nimia, and A. c. carolinensis) with a close relative, the yellow-billed teal (Anas flavirostris) from South America. A. c. crecca and A. c. carolinensis are seasonal migrants, while the other taxa are sedentary. We examined divergence and speciation patterns in this group, determining their phylogenetic relationships and the presence and levels of gene flow among lineages using both mitochondrial and genome-wide nuclear DNA obtained from 1,393 ultraconserved element (UCE) loci. Phylogenetic relationships using nuclear DNA among these taxa showed A. c. crecca, A. c. nimia, and A. c. carolinensis clustering together to form one polytomous clade, with A. flavirostris sister to this clade. This relationship can be summarized as (crecca, nimia, carolinensis)(flavirostris). However, whole mitogenomes revealed a different phylogeny: (crecca, nimia)(carolinensis, flavirostris). The best demographic model for key pairwise comparisons supported divergence with gene flow as the probable speciation mechanism in all three contrasts (crecca-nimia, crecca-carolinensis, and carolinensis-flavirostris). Given prior work, gene flow was expected among the Holarctic taxa, but gene flow between North American carolinensis and South American flavirostris (M âˆ¼0.1-0.4 individuals/generation), albeit low, was not expected. Three geographically oriented modes of divergence are likely involved in the diversification of this complex: heteropatric (crecca-nimia), parapatric (crecca-carolinensis), and (mostly) allopatric (carolinensis-flavirostris). Our study shows that ultraconserved elements are a powerful tool for simultaneously studying systematics and population genomics in systems with historically uncertain relationships and species limits.


Asunto(s)
Patos , Flujo Génico , Humanos , Animales , Patos/genética , Filogenia , Metagenómica , ADN Mitocondrial/genética
4.
Am Nat ; 198(3): 333-346, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34403320

RESUMEN

AbstractStudents of speciation debate the role of performance trade-offs across different environments early in speciation. We tested for early performance trade-offs with a host shift experiment using a member of the Enchenopa binotata species complex of treehoppers (Hemiptera: Membracidae). In this clade of plant-feeding insects, different species live on different host plants and exhibit strong behavioral and physiological host specialization. After five generations, the experimental host shifts resulted either in no adaptation or in adaptation without specialization. The latter result was more likely in sympatry; in allopatry, populations on novel host plants were more likely to become extinct. We conclude that in the early stages of speciation, adaptation to novel host plants does not necessarily bring about performance trade-offs on ancestral environments. Adaptation may be facilitated rather than hindered by gene flow, which prevents extinction. Additional causes of specialization and assortative mating may be required if colonization of novel environments is to result in speciation.


Asunto(s)
Adaptación Fisiológica , Hemípteros , Animales , Insectos , Plantas , Simpatría
5.
Mol Ecol ; 30(21): 5517-5529, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34403554

RESUMEN

Geographically connected species pairs with weakly differentiated genomes could either represent cases of genomic homogenization in progress or of incipient parapatric speciation. Discriminating between these processes is difficult because intermediate stages of either may produce weakly differentiated genomes that diverge at few locations. We used coalescent modelling applied to a genome-wide sample of SNPs to discriminate between speciation with gene flow and genomic homogenization in two phenotypically distinct but genomically weakly diverged species of elevationally replacing Ramphocelus tanagers, forming a hybrid zone in the Andean foothills. We found overwhelming support for a model of genomic homogenization following secondary contact. Simulating under this model suggested that our species pair was differentiated (FST  = 0.30) at secondary contact but that most of the genome has rapidly homogenized during 254 Ky of high gene flow towards the present (FST  = 0.02). Despite extensive genome-wide homogenization, plumage remains distinctive with a narrower than expected geographic cline width, indicating divergent selection on colour. We found two SNPs significantly associated with plumage colour, which retain moderately high FST . We conclude that the majority of the genome has fused, but that divergent selection on select loci probably maintains the geographically structured colour differences between these incipient species.


Asunto(s)
Especiación Genética , Passeriformes , Animales , Flujo Génico , Genoma , Genómica , Passeriformes/genética
6.
Mol Ecol ; 30(5): 1223-1236, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33342039

RESUMEN

Investigating historical gene flow in species complexes can indicate how environmental and reproductive barriers shape genome divergence during speciation. The processes influencing species diversification under environmental change remain one of the central focal points of evolutionary biology, particularly for marine organisms with high dispersal potential. We investigated genome-wide divergence, introgression patterns and inferred demographic history between species pairs of all six extant rock lobster species (Jasus spp.), which have a long larval duration of up to two years and have populated continental shelf and seamount habitats around the globe at approximately 40o S. Genetic differentiation patterns reflected geographic isolation and the environment (i.e. habitat structure). Eastern Pacific species (J. caveorum and J. frontalis) were geographically more distant and genetically more differentiated from the remaining four species. Species associated with continental shelf habitats shared a common ancestry, but are geographically distant from one another. Similarly, species associated with island/seamount habitats in the Atlantic and Indian Oceans shared a common ancestry, but are also geographically distant. Benthic temperature was the environmental variable that explained most of the genetic differentiation (FST ), while controlling for the effects of geographic distance. Eastern Pacific species retained a signal of strict isolation following ancient migration, whereas species pairs from Australia and Africa, and seamounts in the Indian and Atlantic oceans, included events of introgression after secondary contact. Our results reveal important effects of habitat and demographic processes on the recent divergence of species within the genus Jasus, providing one of the first empirical studies of genome-wide drivers of diversification that incorporates all extant species in a marine genus with long pelagic larval duration.


Asunto(s)
Filogenia , África , Océano Atlántico , Australia , Océano Índico , Islas
7.
J Plant Res ; 134(5): 933-946, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34155542

RESUMEN

To understand genetic diversity in focal species, it is important to consider the possibility of speciation with gene flow, especially in species with porous genomes such as oaks. We studied genetic diversity and structure in three oaks, Quercus mongolica var. mongolicoides (QM), Q. mongolica var. crispula (QC) and Q. serrata (QS), growing in the Tokai region, central Japan. QM is semi-endemic to the region while the others are common taxa. We also conducted demographic modeling to infer their population size change and migration histories using an approximate Bayesian computation (ABC) approach. The three taxa showed distinct genetic structures but there was genetic admixture among the taxa, especially between QM and QC. ABC analysis of population size change revealed that the population size of QM was stable during and after the last glacial period, while QC and QS showed population expansion after the last glacial maximum. ABC analysis of population divergence and migration revealed that continuous gene flow between QM and QC after their divergence was supported, while between QM and QS, and between QC and QS, secondary contact after sufficient isolation was supported. These historical migration patterns among the three taxa indicate that QM and QC are currently in the early stage or gray zone of speciation, whereas speciation of the other two taxon pairs is considered to have almost been established. Observed gene flow patterns and strength between QM and QC, and between QM and QS, were explained by both flowering patterns and historical distributions, but those between QC and QS were not.


Asunto(s)
Quercus , Teorema de Bayes , Flujo Génico , Especiación Genética , Variación Genética , Japón , Filogenia , Densidad de Población , Quercus/genética
8.
Mol Ecol ; 29(18): 3526-3542, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32745340

RESUMEN

Determining how genetic diversity is structured between populations that span the divergence continuum from populations to biological species is key to understanding the generation and maintenance of biodiversity. We investigated genetic divergence and gene flow in eight lineages of birds with a trans-Beringian distribution, where Asian and North American populations have likely been split and reunited through multiple Pleistocene glacial cycles. Our study transects the speciation process, including eight pairwise comparisons in three orders (ducks, shorebirds and passerines) at population, subspecies and species levels. Using ultraconserved elements (UCEs), we found that these lineages represent conditions from slightly differentiated populations to full biological species. Although allopatric speciation is considered the predominant mode of divergence in birds, all of our best divergence models included gene flow, supporting speciation with gene flow as the predominant mode in Beringia. In our eight lineages, three were best described by a split-migration model (divergence with gene flow), three best fit a secondary contact scenario (isolation followed by gene flow), and two showed support for both models. The lineages were not evenly distributed across a divergence space defined by gene flow (M) and differentiation (FST ), instead forming two discontinuous groups: one with relatively shallow divergence, no fixed single nucleotide polymorphisms (SNPs), and high rates of gene flow between populations; and the second with relatively deeply divergent lineages, multiple fixed SNPs, and low gene flow. Our results highlight the important role that gene flow plays in avian divergence in Beringia.


Asunto(s)
Flujo Génico , Especiación Genética , Biodiversidad , Flujo Genético , Filogenia , Análisis de Secuencia de ADN
9.
Ann Bot ; 125(3): 495-507, 2020 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-31730195

RESUMEN

BACKGROUND AND AIMS: Inferring the evolutionary relationships of species and their boundaries is critical in order to understand patterns of diversification and their historical drivers. Despite Abies (Pinaceae) being the second most diverse group of conifers, the evolutionary history of Circum-Mediterranean firs (CMFs) remains under debate. METHODS: We used restriction site-associated DNA sequencing (RAD-seq) on all proposed CMF taxa to investigate their phylogenetic relationships and taxonomic status. KEY RESULTS: Based on thousands of genome-wide single nucleotide polymorphisms (SNPs), we present here the first formal test of species delimitation, and the first fully resolved, complete species tree for CMFs. We discovered that all previously recognized taxa in the Mediterranean should be treated as independent species, with the exception of Abies tazaotana and Abies marocana. An unexpectedly early pulse of speciation in the Oligocene-Miocene boundary is here documented for the group, pre-dating previous hypotheses by millions of years, revealing a complex evolutionary history encompassing both ancient and recent gene flow between distant lineages. CONCLUSIONS: Our phylogenomic results contribute to shed light on conifers' diversification. Our efforts to resolve the CMF phylogenetic relationships help refine their taxonomy and our knowledge of their evolution.


Asunto(s)
Abies , Secuencia de Bases , Flujo Génico , Filogenia , Análisis de Secuencia de ADN
10.
Proc Natl Acad Sci U S A ; 114(27): 7061-7066, 2017 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-28634295

RESUMEN

The interplay of divergent selection and gene flow is key to understanding how populations adapt to local environments and how new species form. Here, we use DNA polymorphism data and genome-wide variation in recombination rate to jointly infer the strength and timing of selection, as well as the baseline level of gene flow under various demographic scenarios. We model how divergent selection leads to a genome-wide negative correlation between recombination rate and genetic differentiation among populations. Our theory shows that the selection density (i.e., the selection coefficient per base pair) is a key parameter underlying this relationship. We then develop a procedure for parameter estimation that accounts for the confounding effect of background selection. Applying this method to two datasets from Mimulus guttatus, we infer a strong signal of adaptive divergence in the face of gene flow between populations growing on and off phytotoxic serpentine soils. However, the genome-wide intensity of this selection is not exceptional compared with what M. guttatus populations may typically experience when adapting to local conditions. We also find that selection against genome-wide introgression from the selfing sister species M. nasutus has acted to maintain a barrier between these two species over at least the last 250 ky. Our study provides a theoretical framework for linking genome-wide patterns of divergence and recombination with the underlying evolutionary mechanisms that drive this differentiation.


Asunto(s)
Flujo Génico , Genética de Población , Mimulus/genética , Polimorfismo Genético , Evolución Biológica , California , Especiación Genética , Genómica , Geografía , Modelos Genéticos , Filogenia , Recombinación Genética , Aislamiento Reproductivo , Selección Genética , Especificidad de la Especie
11.
Mol Phylogenet Evol ; 139: 106564, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31330265

RESUMEN

New World thrushes in the genus Catharus are small, insectivorous or omnivorous birds that have been used to explore several important questions in avian evolution, including the evolution of seasonal migration and plumage variation. Within Catharus, members of a clade of obligate long-distance migrants (C. fuscescens, C. minimus, and C. bicknelli) have also been used in the development of heteropatric speciation theory, a divergence process in which migratory lineages (which might occur in allopatry or sympatry during portions of their annual cycle) diverge despite low levels of gene flow. However, research on Catharus relationships has thus far been restricted to the use of small genetic datasets, which provide limited resolution of both phylogenetic and demographic histories. We used a large, multi-locus dataset from loci containing ultraconserved elements (UCEs) to study the demographic histories of the migratory C. fuscescens-minimus-bicknelli clade and to resolve the phylogeny of the migratory species of Catharus. Our dataset included more than 2000 loci and over 1700 variable genotyped sites, and analyses supported our prediction of divergence with gene flow in the fully migratory clade, with significant gene flow among all three species. Our phylogeny of the genus differs from past work in its placement of C. ustulatus, and further analyses suggest historic gene flow throughout the genus, producing genetically reticulate (or network) phylogenies. This raises questions about trait origins and suggests that seasonal migration and the resulting migratory condition of heteropatry is likely to promote hybridization not only during pairwise divergence and speciation, but also among non-sisters.


Asunto(s)
Flujo Génico , Pájaros Cantores/genética , Migración Animal , Animales , ADN Mitocondrial/clasificación , ADN Mitocondrial/genética , Especiación Genética , Hibridación Genética , Filogenia , Estaciones del Año , Pájaros Cantores/clasificación
12.
Am Nat ; 191(1): 1-20, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29244561

RESUMEN

The large body of theory on speciation with gene flow has brought to light fundamental differences in the effects of two types of mating rules on speciation: preference/trait rules, in which divergence in both (female) preferences and (male) mating traits is necessary for assortment, and matching rules, in which individuals mate with like individuals on the basis of the presence of traits or alleles that they have in common. These rules can emerge from a variety of behavioral or other mechanisms in ways that are not always obvious. We discuss the theoretical properties of both types of rules and explain why speciation is generally thought to be more likely under matching rather than preference/trait rules. We furthermore discuss whether specific assortative mating mechanisms fall under a preference/trait or matching rule, present empirical evidence for these mechanisms, and propose empirical tests that could distinguish between them. The synthesis of the theoretical literature on these assortative mating rules with empirical studies of the mechanisms by which they act can provide important insights into the occurrence of speciation with gene flow. Finally, by providing a clear framework we hope to inspire greater alignment in the ways that both theoreticians and empiricists study mating rules and how these rules affect speciation through maintaining or eroding barriers to gene flow among closely related species or populations.


Asunto(s)
Flujo Génico , Especiación Genética , Preferencia en el Apareamiento Animal , Fenotipo , Animales , Evolución Biológica , Modelos Genéticos
13.
Proc Biol Sci ; 285(1871)2018 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-29367400

RESUMEN

Theory suggests that speciation with gene flow is most likely when both sexual and ecological selection are divergent or disruptive. Divergent sexual and natural selection on the visual system have been demonstrated before in sympatric, morphologically similar sister species of Lake Victoria cichlids, but this does not explain the subtle morphological differences between them. To investigate the significance of natural selection on morphology during speciation, we here ask whether the prevalence of disruptive ecological selection differs between sympatric sister species that are at different stages of speciation. Some of our species pairs do (Pundamilia) and others do not (Neochromis) differ distinctively in sexually selected male nuptial coloration. We find that (i) evidence for disruptive selection, and for evolutionary response to it, is prevalent in traits that are differentiated between sister species; (ii) prevalence of both predicts the extent of genetic differentiation; and (iii) genetic differentiation is weaker in species pairs with conserved male nuptial coloration. Our results speak to the existence of two different mechanisms of speciation with gene flow: speciation mainly by sexual selection tightly followed by ecological character displacement in some cases and speciation mainly by divergent ecological selection in others.


Asunto(s)
Cíclidos/genética , Especiación Genética , Selección Genética , Simpatría/genética , Animales , Evolución Biológica , Flujo Génico , Masculino , Pigmentación/genética , Tanzanía
14.
Proc Biol Sci ; 284(1849)2017 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-28202807

RESUMEN

The genetic architecture of mate preferences is likely to affect significant evolutionary processes, including speciation and hybridization. Here, we investigate laboratory hybrids between a pair of sympatric Lake Victoria cichlid fish species that appear to have recently evolved from a hybrid population between similar predecessor species. The species demonstrate strong assortative mating in the laboratory, associated with divergent male breeding coloration (red dorsum versus blue). We show in a common garden experiment, using DNA-based paternity testing, that the strong female mate preferences among males of the two species are fully recovered in a large fraction of their F2 hybrid generation. Individual hybrid females often demonstrated consistent preferences in multiple mate choice trials (more than or equal to five) across a year or more. This result suggests that female mate preference is influenced by relatively few major genes or genomic regions. These preferences were not changed by experience of a successful spawning event with a male of the non-preferred species in a no-choice single-male trial. We found no evidence for imprinting in the F2 hybrids, although the F1 hybrid females may have been imprinted on their mothers. We discuss this nearly Mendelian inheritance of consistent innate mate preferences in the context of speciation theory.


Asunto(s)
Cíclidos/genética , Hibridación Genética , Preferencia en el Apareamiento Animal , Simpatría , Animales , Evolución Biológica , Cíclidos/fisiología , Femenino , Lagos , Masculino
15.
Mol Ecol ; 26(14): 3760-3774, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28370617

RESUMEN

Reproductive isolation can be initiated by changes in one or a few key traits that prevent random mating among individuals in a population. During the early stages of speciation, when isolation is often incomplete, there will be a heterogeneous pattern of differentiation across regions of the genome between diverging populations, with loci controlling these key traits appearing the most distinct as a result of strong diversifying selection. In this study, we used Illumina-sequenced ddRAD tags to identify genomewide patterns of differentiation in three recently diverged island populations of the Monarcha castaneiventris flycatcher of the Solomon Islands. Populations of this species have diverged in plumage colour, and these differences in plumage colour, in turn, are used in conspecific recognition and likely important in reproductive isolation. Previous candidate gene sequencing identified point mutations in MC1R and ASIP, both known pigmentation genes, to be associated with the difference in plumage colour between islands. Here, we show that background levels of genomic differentiation based on over 70,000 SNPs are extremely low between populations of distinct plumage colour, with no loci reaching the level of differentiation found in either candidate gene. Further, we found that a phylogenetic analysis based on these SNPs produced a taxonomy wherein the two melanic populations appear to have evolved convergently, rather than from a single common ancestor, in contrast to their original classification as a single subspecies. Finally, we found evidence that the pattern of low genomic differentiation is the result of both incomplete lineage sorting and gene flow between populations.


Asunto(s)
Evolución Biológica , Genética de Población , Passeriformes/genética , Animales , Plumas , Genoma , Islas , Melanesia , Filogenia , Pigmentación , Polimorfismo de Nucleótido Simple
16.
Mol Ecol ; 26(5): 1386-1400, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28100029

RESUMEN

Dry forest bird communities in South America are often fragmented by intervening mountains and rainforests, generating high local endemism. The historical assembly of dry forest communities likely results from dynamic processes linked to numerous population histories among codistributed species. Nevertheless, species may diversify in the same way through time if landscape and environmental features, or species ecologies, similarly structure populations. Here we tested whether six co-distributed taxon pairs that occur in the dry forests of the Tumbes and Marañón Valley of northwestern South America show concordant patterns and modes of diversification. We employed a genome reduction technique, double-digest restriction site-associated DNA sequencing, and obtained 4407-7186 genomewide SNPs. We estimated demographic history in each taxon pair and inferred that all pairs had the same best-fit demographic model: isolation with asymmetric gene flow from the Tumbes into the Marañón Valley, suggesting a common diversification mode. Overall, we also observed congruence in effective population size (Ne ) patterns where ancestral Ne were 2.9-11.0× larger than present-day Marañón Valley populations and 0.3-2.0× larger than Tumbesian populations. Present-day Marañón Valley Ne was smaller than Tumbes. In contrast, we found simultaneous population isolation due to a single event to be unlikely as taxon pairs diverged over an extended period of time (0.1-2.9 Ma) with multiple nonoverlapping divergence periods. Our results show that even when populations of codistributed species asynchronously diverge, the mode of their differentiation can remain conserved over millions of years. Divergence by allopatric isolation due to barrier formation does not explain the mode of differentiation between these two bird assemblages; rather, migration of individuals occurred before and after geographic isolation.


Asunto(s)
Aves/clasificación , Bosques , Flujo Génico , Animales , Variación Genética , Filogenia , Filogeografía , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN , América del Sur
17.
Mol Ecol ; 26(13): 3330-3342, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28370658

RESUMEN

The importance of sympatric speciation - the evolution of reproductive isolation between codistributed conspecific individuals - in generating biodiversity is highly controversial. Allochrony, or differences in breeding time (phenology) between conspecific individuals, has the potential to lead to reproductive isolation and therefore speciation. We critically review the literature to test the importance of allochronic speciation over the three timescales over which allochrony can occur - over the day, between seasons or between years - and explore what is known about genomic mechanisms underlying allochrony in the diverse taxa in which it is found. We found that allochrony can be a key contributor to reproductive isolation, especially if populations have little overlap in breeding time and therefore little potential for gene flow, and may sometimes be the initial or key driver of speciation. Shifts in phenology can be caused by several factors, including a new ecological opportunity, environmental change, or reinforcement. The underlying genomic basis of allochrony has been studied mostly in insects, highlighting the need for genomic studies in other taxa; nonetheless, results to date indicate that several cases of allochrony involve changes in circadian genes. This review provides the first comprehensive discussion of the role of allochrony in speciation and demonstrates that allochrony as a contributor to divergence may be more widespread than previously thought. Understanding genomic changes and adaptations allowing organisms to breed at new times may be key in the light of phenological changes required under climate change.


Asunto(s)
Especiación Genética , Simpatría , Factores de Tiempo , Animales , Biodiversidad , Cruzamiento , Relojes Circadianos/genética , Cambio Climático , Flujo Génico , Aislamiento Reproductivo , Estaciones del Año
18.
Mol Ecol ; 26(15): 3926-3942, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28500772

RESUMEN

Speciation with gene flow may require adaptive divergence of multiple traits to generate strong ecologically based reproductive isolation. Extensive negative pleiotropy or physical linkage of genes in the wrong phase affecting these diverging traits may therefore hinder speciation, while genetic independence or "modularity" among phenotypic traits may reduce constraints and facilitate divergence. Here, we test whether the genetics underlying two components of diapause life history, initial diapause intensity and diapause termination timing, constrain differentiation between sympatric hawthorn and apple-infesting host races of the fly Rhagoletis pomonella through analysis of 10,256 SNPs measured via genotyping-by-sequencing (GBS). Loci genetically associated with diapause termination timing were mainly observed for SNPs mapping to chromosomes 1-3 in the genome, most notably for SNPs displaying higher levels of linkage disequilibrium (LD), likely due to inversions. In contrast, selection on initial diapause intensity affected loci on all five major chromosomes of the genome, specifically those showing low levels of LD. This lack of overlap in genetically associated loci suggests that the two diapause phenotypes are largely modular. On chromosome 2, however, intermediate level LD loci and a subgroup of high LD loci displayed significant negative relationships between initial diapause intensity and diapause termination time. These gene regions on chromosome 2 therefore affected both traits, while most regions were largely independent. Moreover, loci associated with both measured traits also tended to exhibit highly divergent allele frequencies between the host races. Thus, the presence of nonoverlapping genetic modules likely facilitates simultaneous, adaptive divergence for the measured life-history components.


Asunto(s)
Diapausa , Flujo Génico , Especiación Genética , Desequilibrio de Ligamiento , Tephritidae/genética , Animales , Mapeo Cromosómico , Genoma de los Insectos , Genotipo , Polimorfismo de Nucleótido Simple
19.
Mol Phylogenet Evol ; 100: 170-182, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27083861

RESUMEN

Integration of molecular methods, ecological modeling, and statistical hypothesis testing are increasing our understanding of differentiation within species and phylogenetic relationships among species by revealing environmental connections to evolutionary processes. Within mammals, novel diversity is being discovered and characterized as more complete geographic sampling is coupled with newer multi-disciplinary approaches. North American red squirrels exemplify a forest obligate genus whose species are monitored as indicators of forest ecosystem condition, yet phylogenetic relationships reflecting evolutionary history within this genus remain tentative. Through testing of competing systematic and niche-based divergence hypotheses, we recognize three species, Tamiasciurus douglasii, T. hudsonicus, and T. fremonti. Our data provide evidence of regional differences in evolutionary dynamics and continental gradients of complexity that are important both for future management and for investigating multiple pathways that can lead to the formation of new species.


Asunto(s)
Sciuridae/clasificación , Animales , Evolución Biológica , Citocromos b/genética , ADN/química , ADN/aislamiento & purificación , ADN/metabolismo , Ecosistema , Bosques , Variación Genética , América del Norte , Filogenia , Sciuridae/genética , Análisis de Secuencia de ADN
20.
Ecol Lett ; 18(8): 817-825, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26077935

RESUMEN

Theory predicts that speciation-with-gene-flow is more likely when the consequences of selection for population divergence transitions from mainly direct effects of selection acting on individual genes to a collective property of all selected genes in the genome. Thus, understanding the direct impacts of ecologically based selection, as well as the indirect effects due to correlations among loci, is critical to understanding speciation. Here, we measure the genome-wide impacts of host-associated selection between hawthorn and apple host races of Rhagoletis pomonella (Diptera: Tephritidae), a model for contemporary speciation-with-gene-flow. Allele frequency shifts of 32 455 SNPs induced in a selection experiment based on host phenology were genome wide and highly concordant with genetic divergence between co-occurring apple and hawthorn flies in nature. This striking genome-wide similarity between experimental and natural populations of R. pomonella underscores the importance of ecological selection at early stages of divergence and calls for further integration of studies of eco-evolutionary dynamics and genome divergence.


Asunto(s)
Flujo Génico , Frecuencia de los Genes , Especiación Genética , Tephritidae/genética , Animales , Mapeo Cromosómico , Crataegus , Genoma de los Insectos , Desequilibrio de Ligamiento , Malus , Repeticiones de Microsatélite , Polimorfismo de Nucleótido Simple , Estaciones del Año , Análisis de Secuencia de ADN , Simpatría , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA