Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 174
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Annu Rev Phys Chem ; 75(1): 437-456, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38941526

RESUMEN

Quantum information promises dramatic advances in computing last seen in the digital revolution, but quantum hardware is fragile, noisy, and resource intensive. Chemistry has a role in developing new materials for quantum information that are robust to noise, scalable, and operable in ambient conditions. While molecular structure is the foundation for understanding mechanism and reactivity, molecular structure/quantum function relationships remain mostly undiscovered. Using singlet fission as a specific example of a multielectron process capable of producing long-lived spin-entangled electronic states at high temperatures, I describe how to exploit molecular structure and symmetry to gain quantum function and how some principles learned from singlet fission apply more broadly to quantum science.

2.
Proc Natl Acad Sci U S A ; 119(4)2022 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-35042814

RESUMEN

We unravel the interplay of topological properties and the layered (anti)ferromagnetic ordering in EuSn2P2, using spin and chemical selective electron and X-ray spectroscopies supported by first-principle calculations. We reveal the presence of in-plane long-range ferromagnetic order triggering topological invariants and resulting in the multiple protection of topological Dirac states. We provide clear evidence that layer-dependent spin-momentum locking coexists with ferromagnetism in this material, a cohabitation that promotes EuSn2P2 as a prime candidate axion insulator for topological antiferromagnetic spintronics applications.

3.
Proc Natl Acad Sci U S A ; 119(27): e2115939119, 2022 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-35763578

RESUMEN

Positive magnetoresistance (PMR) and negative magnetoresistance (NMR) describe two opposite responses of resistance induced by a magnetic field. Materials with giant PMR are usually distinct from those with giant NMR due to different physical natures. Here, we report the unusual photomagnetoresistance in the van der Waals heterojunctions of WSe2/quasi-two-dimensional electron gas, showing the coexistence of giant PMR and giant NMR. The PMR and NMR reach 1,007.5% at -9 T and -93.5% at 2.2 T in a single device, respectively. The magnetoresistance spans over two orders of magnitude on inversion of field direction, implying a giant unidirectional magnetoresistance (UMR). By adjusting the thickness of the WSe2 layer, we achieve the maxima of PMR and NMR, which are 4,900,000% and -99.8%, respectively. The unique magnetooptical transport shows the unity of giant UMR, PMR, and NMR, referred to as giant bipolar unidirectional photomagnetoresistance. These features originate from strong out-of-plane spin splitting, magnetic field-enhanced recombination of photocarriers, and the Zeeman effect through our experimental and theoretical investigations. This work offers directions for high-performance light-tunable spintronic devices.NMR).

4.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35115404

RESUMEN

A critical spintronics challenge is to develop molecular wires that render efficiently spin-polarized currents. Interplanar torsional twisting, driven by chiral binucleating ligands in highly conjugated molecular wires, gives rise to large near-infrared rotational strengths. The large scalar product of the electric and magnetic dipole transition moments ([Formula: see text]), which are evident in the low-energy absorptive manifolds of these wires, makes possible enhanced chirality-induced spin selectivity-derived spin polarization. Magnetic-conductive atomic force microscopy experiments and spin-Hall devices demonstrate that these designs point the way to achieve high spin selectivity and large-magnitude spin currents in chiral materials.

5.
Nano Lett ; 24(20): 6148-6157, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38728265

RESUMEN

Magnetic field mediated magnetic catalysts provide a powerful pathway for accelerating their sluggish kinetics toward the oxygen evolution reaction (OER) but remain great challenges in acidic media. The key obstacle comes from the production of an ordered magnetic domain catalyst in the harsh acidic OER. In this work, we form an induced local magnetic moment in the metallic Ir catalyst via the significant 3d-5d hybridization by introducing cobalt dopants. Interestingly, CoIr nanoclusters (NCs) exhibit an excellent magnetic field enhanced acidic OER activity, with the lowest overpotential of 220 mV at 10 mA cm-2 and s long-term stability of 120 h under a constant magnetic field (vs 260 mV/20 h without a magnetic field). The turnover frequency reaches 7.4 s-1 at 1.5 V (vs RHE), which is 3.0 times higher than that without magnetization. Density functional theory results show that CoIr NCs have a pronounced spin polarization intensity, which is preferable for OER enhancement.

6.
J Comput Chem ; 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39175165

RESUMEN

We present an optimization strategy for atom-specific spin-polarization constants within the spin-polarized GFN2-xTB framework, aiming to enhance the accuracy of molecular simulations. We compare a sequential and global optimization of spin parameters for hydrogen, carbon, nitrogen, oxygen, and fluorine. Sensitivity analysis using Sobol indices guides the identification of the most influential parameters for a given reference dataset, allowing for a nuanced understanding of their impact on diverse molecular properties. In the case of the W4-11 dataset, substantial error reduction was achieved, demonstrating the potential of the optimization. Transferability of the optimized spin-polarization constants over different properties, however, is limited, as we demonstrate by applying the optimized parameters on a set of singlet-triplet gaps in carbenes. Further studies on ionization potentials and electron affinities highlight some inherent limitations of current extended tight-binding methods that can not be resolved by simple parameter optimization. We conclude that the significantly improved accuracy strongly encourages the present re-optimization of the spin-polarization constants, whereas the limited transferability motivates a property-specific optimization strategy.

7.
Small ; : e2401987, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38805737

RESUMEN

Alternative strategies to design sustainable-element-based electrocatalysts enhancing oxygen evolution reaction (OER) kinetics are demanded to develop affordable yet high-performance water-electrolyzers for green hydrogen production. Here, it is demonstrated that the spontaneous-spin-polarized 2D π-d conjugated framework comprising abundant elements of nickel and iron with a ratio of Ni:Fe = 1:4 with benzenehexathiol linker (BHT) can improve OER kinetics by its unique electronic property. Among the bimetallic NiFex:y-BHTs with various ratios with Ni:Fe = x:y, the NiFe1:4-BHT exhibits the highest OER activity. The NiFe1:4-BHT shows a specific current density of 140 A g-1 at the overpotential of 350 mV. This performance is one of the best activities among state-of-the-art non-precious OER electrocatalysts and even comparable to that of the platinum-group-metals of RuO2 and IrO2. The density functional theory calculations uncover that introducing Ni into the homometallic Fe-BHT (e.g., Ni:Fe = 0:1) can emerge a spontaneous-spin-polarized state. Thus, this material can achieve improved OER kinetics with spin-polarization which previously required external magnetic fields. This work shows that a rational design of 2D π-d conjugated frameworks can be a powerful strategy to synthesize promising electrocatalysts with abundant elements for a wide spectrum of next-generation energy devices.

8.
Small ; 20(14): e2307809, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37988684

RESUMEN

Multi-shelled hollow metal-organic frameworks (MH-MOFs) are highly promising as electrode materials due to their impressive surface area and efficient mass transfer capabilities. However, the fabrication of MH-MOFs has remained a formidable challenge. In this study, two types of double-shelled open hollow Prussian blue analogues, one with divalent iron (DHPBA-Fe(II)) and the other with trivalent iron (DHPBA-Fe(III)), through an innovative inner-outer growth strategy are successfully developed. The growth mechanism is found to involve lattice matching growth and ligand exchange processes. Subsequently, DHPBA-Fe(II) and DHPBA-Fe(III) are employed as cathodes in aqueous Zn-ion batteries. Significantly, DHPBA-Fe(II) demonstrated exceptional performance, exhibiting a capacity of 92.5 mAh g-1 at 1 A g-1, and maintaining remarkable stability over an astounding 10 000 cycles. This research is poised to catalyze further exploration into the fabrication techniques of MH-MOFs and offer fresh insights into the intricate interplay between electronic structure and battery performance.

9.
Small ; 20(12): e2307278, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37943060

RESUMEN

Cobalt (Co) is an efficient oxygen reduction reaction (ORR) catalyst but suffers from issues of easy deactivation and instability. Here, it shows that ZrO2 can stabilize Co through interface electron coupling and enables highly efficient 4e- ORR catalysis. Porous carbon nanofibers loaded with dispersed Co-nanodots (≈10 nm, 9.63 wt%) and ZrO2 nanoparticles are synthesized as the catalyst. The electron transfer from the metallic Co to ZrO2 causes interface-oriented electron enrichment that promotes the activation and conversion of O2, improving the efficiency of 4e- transfer. Moreover, the simulation results show that ZrO2 acts like an electron reservoir to store electrons from Co and slowly release them to the interface, solving the easy deactivation problem of Co. The catalyst exhibits a high half-wave potential (E1/2) of 0.84 V, which only decreases by 3.6 mV after 10 000 cycles, showing great stability. Particularly, the enhanced spin polarization of Co in a magnetic field reinforces the interface electron coupling that increases the E1/2 to 0.864 V and decreases the energy barrier of ORR from 0.81 to 0.63 eV, confirming that the proposed strategy is effective for constructing efficient and stable ORR catalysts.

10.
Chemistry ; 30(28): e202400166, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38530333

RESUMEN

Spin-polarized donor radicals based on tetrathiafulvalene (TTF) derivatives and nitronyl nitroxide (NN) radicals in which one-electron oxidation involves the HOMO instead of the SOMO are well known for exhibiting magnetoresistance. In particular, BTBN consists of one dibromo-TTF and one NN radical, which are linked by a phenyl coupler group. One of the key factors driving magnetoresistance is the presence of intramolecular ferromagnetic (FM) coupling between the oxidized π-donor (TTF+⋅, D unit) and NN (R unit). Here, a theoretical study is carried out to assess suitable candidates with enhanced FM coupling with respect BTBN, which is thus used as a reference. The study is conducted via in silico chemical modification of the substituents of the BTBN basic functional units (D and R radicals, C coupler) to benefit from the spin polarization mechanism to boost the intramolecular FM coupling, aiming to distort the BTBN radical arrangement within the molecular crystal as little as possible, in the event the material can be synthesized. NICSiso(1) and Wiberg's Bond Order are analyzed to further assist in identifying promising potential candidates, since the decrease in aromaticity is expected to enhance the diradical character and give rise to a larger magnetic coupling value. The most favorable diradical building block to replace the BTBN moiety results from using a hydroxyl-ethylene (-(H)C=C(OH)-) as a coupler preserving BTBN original radicals, namely, NN and TTF+⋅ units. This study aims at illustrating the feasibility of improving the intramolecular FM interaction between radical moieties, which is fully realized, as a first step towards the synthesis of new materials with (possibly) enhanced magnetoresistance properties.

11.
Chemistry ; 30(44): e202401084, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-38819870

RESUMEN

The link of an antenna dye with an electron spin converter, in this case naphthalenediimide and C60, produces a system with a rich photophysics including the detection of more than one triplet state on the long timescale (tens of µs). Beside the use of optical spectroscopies in the ns and in the fs time scale, we used time-resolved Electron Paramagnetic Resonance (TREPR) to study the system evolution following photoexcitation. TREPR keeps track of the formation path of the triplet states through specific spin polarization patterns observed in the spectra. The flexibility of the linker and solvent polarity play a role in favouring either electron transfer or energy transfer processes.

12.
Chemphyschem ; 25(4): e202300726, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38059760

RESUMEN

As a promising strategy to improve photocatalytic efficiency, spin polarization has attracted enormous attention in recent years, which could be involved in various steps of photoreaction. The Pauli repulsion principle and the spin selection rule dictate that the behavior of two electrons in a spatial eigenstate is based on their spin states, and this fact opens up a new avenue for manipulating photocatalytic efficiency. In this review, recent advances in modulating the photocatalytic activity with spin polarization are systematically summarized. Fundamental insights into the influence of spin-polarization effects on photon absorption, carrier separation, and migration, and the behaviors of reaction-related substances from the photon uptake to reactant desorption are highlighted and discussed in detail, and various photocatalytic applications for environmental purification and energy conversion are presented. This review is expected to deliver a timely overview of the recent developments in spin-polarization-modulated photocatalysis for environmental purification and energy conversion in terms of their practical applications.

13.
Chemphyschem ; 25(7): e202300942, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38270388

RESUMEN

It is well known that magnetic field is one of the effective tools to improve the activity of hydrogen evolution reaction (HER), but considering the inconvenient application of an external magnetic field, it is essential to find a ferromagnetic material with high HER activity itself. Fortunately, recent study has shown that the two-dimmention (2D) Fe2Sn monolayer is a stable ferromagnetic topological Weyl semimetal material with high Tc of 433 K. Here, we report the Fe2Sn monolayer can be used as an alternative HER catalyst compared with expensive platinum (Pt). Our first-principles results show that the Gibbs free energy (ΔGH*) value of the spin polarized Fe2Sn monolayer is -0.06 eV, much better than that without considering spin polarization (-1.23 eV). Moreover, the kinetic analysis demonstrates that the HER occurs on the Fe2Sn monolayer according to the Volmer-Tafel mechanism with low energy barriers. Hence, our findings provide obvious evidence for spin-polarization-improved HER activity, paving a new way to design high-performance HER catalysts.

14.
Nanotechnology ; 35(15)2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38154127

RESUMEN

Optically active point defects in semiconductors have received great attention in the field of solid-state quantum technologies. Hexagonal boron nitride, with an ultra-wide band gapEg= 6 eV, containing a negatively charged boron vacancy (VB-) with unique spin, optical, and coherent properties presents a new two-dimensional platform for the implementation of quantum technologies. This work establishes the value ofVB-spin polarization under optical pumping withλext= 532 nm laser using high-frequency (νmw= 94 GHz) electron paramagnetic resonance (EPR) spectroscopy. In optimal conditions polarization was found to beP≈ 38.4%. Our study reveals that Rabi oscillations induced on polarized spin states persist for up to 30-40µs, which is nearly two orders of magnitude longer than what was previously reported. Analysis of the coherent electron-nuclear interaction through the observed electron spin echo envelope modulation made it possible to detect signals from remote nitrogen and boron nuclei, and to establish a corresponding quadrupole coupling constantCq= 180 kHz related to nuclear quadrupole moment of14N. These results have fundamental importance for understanding the spin properties of boron vacancy.

15.
Nano Lett ; 23(16): 7358-7363, 2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37535707

RESUMEN

Real Chern insulators have attracted great interest, but so far, their material realization is limited to nonmagnetic crystals and systems without spin-orbit coupling. Here, we reveal the magnetic real Chern insulator (MRCI) state in a recently synthesized metal-organic framework material Co3(HITP)2. Its ground state with in-plane ferromagnetic ordering hosts a nontrivial real Chern number, enabled by the C2zT symmetry and robustness against spin-orbit coupling. Distinct from previous nonmagnetic examples, the topological corner zero modes of MRCIs are spin-polarized. Furthermore, under small tensile strains, the material undergoes a topological phase transition from the MRCI to a magnetic double-Weyl semimetal phase, via a pseudospin-1 critical state. Similar physics can also be found in closely related materials Mn3(HITP)2 and Fe3(HITP)2, which also exist. Possible experimental detections and implications of an emerging magnetic flat band in the system are discussed.

16.
Nano Lett ; 23(4): 1467-1473, 2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36753635

RESUMEN

We report spin-polarized transient absorption for colloidal CdSe nanoplatelets as functions of thickness (2-6 monolayer thickness) and core/shell motif. Using electro-optical modulation of co- and cross-polarization pump-probe combinations, we sensitively observe spin-polarized transitions. Core-only nanoplatelets exhibit few-picosecond spin lifetimes that weakly increase with layer thickness. The spectral content of differenced spin-polarized signals indicate biexciton binding energies that decrease with increasing thickness and smaller values than previously reported. Shell growth of CdS with controlled thicknesses, which partially delocalize the electron from the hole, significantly increases the spin lifetime to ∼49 ps at room temperature. Implementation of ZnS shells, which do not alter delocalization but do alter surface termination, increased spin lifetimes up to ∼100 ps, bolstering the interpretation that surface termination heavily influences spin coherence, likely due to passivation of dangling bonds. Spin precession in magnetic fields both confirms long coherence lifetime at room temperature and yields the excitonic g factor.

17.
Nano Lett ; 23(1): 34-41, 2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36535029

RESUMEN

2D materials offer the ability to expose their electronic structure to manipulations by a proximity effect. This could be harnessed to craft properties of 2D interfaces and van der Waals heterostructures in devices and quantum materials. We explore the possibility to create an artificial spin polarized electrode from graphene through proximity interaction with a ferromagnetic insulator to be used in a magnetic tunnel junction (MTJ). Ferromagnetic insulator/graphene artificial electrodes were fabricated and integrated in MTJs based on spin analyzers. Evidence of the emergence of spin polarization in proximitized graphene layers was observed through the occurrence of tunnel magnetoresistance. We deduced a spin dependent splitting of graphene's Dirac band structure (∼15 meV) induced by the proximity effect, potentially leading to full spin polarization and opening the way to gating. The extracted spin signals illustrate the potential of 2D quantum materials based on proximity effects to craft spintronics functionalities, from vertical MTJs memory cells to logic circuits.

18.
Nano Lett ; 23(5): 1938-1945, 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36802631

RESUMEN

Symmetry-broken-induced spin splitting plays a key role for selective circularly polarized light absorption and spin carrier transport. Asymmetrical chiral perovskite is rising as the most promising material for direct semiconductor-based circularly polarized light detection. However, the increase of asymmetry factor and extension of response region remain to be a challenge. Herein, we fabricated a two-dimensional tin-lead mixed chiral perovskite with tunable absorption in the visible region. Theoretical simulation indicates that the mixing of the tin and lead in chiral perovskite breaks the symmetry of the pure ones, resulting in pure spin splitting. We then fabricated a chiral circularly polarized light detector based on this tin-lead mixed perovskite. A high asymmetry factor for the photocurrent of 0.44 is achieved, which is 144% higher than pure lead 2D perovskite, and it is the highest value reported for the pure chiral 2D perovskite-based circularly polarized light detector using a simple device structure.

19.
Nano Lett ; 23(19): 9042-9049, 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37737823

RESUMEN

Electron spin polarization is identified as a promising avenue for enhancing the oxygen evolution reaction (OER), which is the bottleneck that limits the energy efficiency of water-splitting. Here, we report that both ferrimagnetic (f-Fe3O4) and superparamagnetic iron oxide (s-Fe3O4) catalysts can exhibit external magnetic field (Hext)-induced OER enhancement, and the activity is proportional to their intrinsic magnetic moment. Additionally, the chirality-induced spin selectivity (CISS) effect was utilized in synergy with Hext to get a maximum enhancement of up to 89% improvement in current density (at 1.8 V vs RHE) with a low onset potential of 270 mV in s-Fe3O4 catalysts. Spin polarization and the resultant spin selectivity suppress the production of H2O2 and promote the formation of ground state triplet O2 during the OER. Furthermore, the design of chiral s-Fe3O4 with synergistic spin potential effect demonstrates a high spin polarization of ∼42%, as measured using conductive atomic force microscopy (c-AFM).

20.
Int J Mol Sci ; 25(5)2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38474269

RESUMEN

The present study focuses on the spin-dependent vibrational properties of HKUST-1, a metal-organic framework with potential applications in gas storage and separation. Employing density functional theory (DFT), we explore the consequences of spin couplings in the copper paddle wheels (as the secondary building units of HKUST-1) on the material's vibrational properties. By systematically screening the impact of the spin state on the phonon bands and densities of states in the various frequency regions, we identify asymmetric -COO- stretching vibrations as being most affected by different types of magnetic couplings. Notably, we also show that the DFT-derived insights can be quantitatively reproduced employing suitably parametrized, state-of-the-art machine-learned classical potentials with root-mean-square deviations from the DFT results between 3 cm-1 and 7 cm-1. This demonstrates the potential of machine-learned classical force fields for predicting the spin-dependent properties of complex materials, even when explicitly considering spins only for the generation of the reference data used in the force-field parametrization process.


Asunto(s)
Estructuras Metalorgánicas , Teoría Funcional de la Densidad , Fonones , Algoritmos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA