Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
EMBO J ; 41(4): e106523, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-34935159

RESUMEN

Excitatory synapses of principal hippocampal neurons are frequently located on dendritic spines. The dynamic strengthening or weakening of individual inputs results in structural and molecular diversity of dendritic spines. Active spines with large calcium ion (Ca2+ ) transients are frequently invaded by a single protrusion from the endoplasmic reticulum (ER), which is dynamically transported into spines via the actin-based motor myosin V. An increase in synaptic strength correlates with stable anchoring of the ER, followed by the formation of an organelle referred to as the spine apparatus. Here, we show that myosin V binds the Ca2+ sensor caldendrin, a brain-specific homolog of the well-known myosin V interactor calmodulin. While calmodulin is an essential activator of myosin V motor function, we found that caldendrin acts as an inhibitor of processive myosin V movement. In mouse and rat hippocampal neurons, caldendrin regulates spine apparatus localization to a subset of dendritic spines through a myosin V-dependent pathway. We propose that caldendrin transforms myosin into a stationary F-actin tether that enables the localization of ER tubules and formation of the spine apparatus in dendritic spines.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Espinas Dendríticas/metabolismo , Retículo Endoplásmico/metabolismo , Miosina Tipo V/metabolismo , Actinas/metabolismo , Animales , Proteínas de Unión al Calcio/genética , Calmodulina/metabolismo , Retículo Endoplásmico Liso/metabolismo , Células HEK293 , Hipocampo/citología , Hipocampo/metabolismo , Humanos , Espectrometría de Masas , Ratones Noqueados , Miosina Tipo V/genética , Dominios y Motivos de Interacción de Proteínas , Ratas Wistar
2.
Proc Natl Acad Sci U S A ; 119(42): e2203750119, 2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-36215465

RESUMEN

The spine apparatus is a specialized compartment of the neuronal smooth endoplasmic reticulum (ER) located in a subset of dendritic spines. It consists of stacks of ER cisterns that are interconnected by an unknown dense matrix and are continuous with each other and with the ER of the dendritic shaft. While this organelle was first observed over 60 y ago, its molecular organization remains a mystery. Here, we performed in vivo proximity proteomics to gain some insight into its molecular components. To do so, we used the only known spine apparatus-specific protein, synaptopodin, to target a biotinylating enzyme to this organelle. We validated the specific localization in dendritic spines of a small subset of proteins identified by this approach, and we further showed their colocalization with synaptopodin when expressed in nonneuronal cells. One such protein is Pdlim7, an actin binding protein not previously identified in spines. Pdlim7, which we found to interact with synaptopodin through multiple domains, also colocalizes with synaptopodin on the cisternal organelle, a peculiar stack of ER cisterns resembling the spine apparatus and found at axon initial segments of a subset of neurons. Moreover, Pdlim7 has an expression pattern similar to that of synaptopodin in the brain, highlighting a functional partnership between the two proteins. The components of the spine apparatus identified in this work will help elucidate mechanisms in the biogenesis and maintenance of this enigmatic structure with implications for the function of dendritic spines in physiology and disease.


Asunto(s)
Espinas Dendríticas , Proteómica , Espinas Dendríticas/metabolismo , Retículo Endoplásmico/metabolismo , Hipocampo/metabolismo , Proteínas de Microfilamentos/metabolismo
3.
J Neurosci ; 42(9): 1666-1678, 2022 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-35046120

RESUMEN

Dendritic spines, actin-rich protrusions forming the postsynaptic sites of excitatory synapses, undergo activity-dependent molecular and structural remodeling. Activation of Group 1 metabotropic glutamate receptors (mGluR1 and mGluR5) by synaptic or pharmacological stimulation, induces LTD, but whether this is accompanied with spine elimination remains unresolved. A subset of telencephalic mushroom spines contains the spine apparatus (SA), an enigmatic organelle composed of stacks of smooth endoplasmic reticulum, whose formation depends on the expression of the actin-bundling protein Synaptopodin. Allocation of Synaptopodin to spines appears governed by cell-intrinsic mechanisms as the relative frequency of spines harboring Synaptopodin is conserved in vivo and in vitro Here we show that expression of Synaptopodin/SA in spines is required for induction of mGluR-LTD at Schaffer collateral-CA1 synapses of male mice. Post-mGluR-LTD, mushroom spines lacking Synaptopodin/SA are selectively lost, whereas spines harboring it are preserved. This process, dependent on activation of mGluR1 but not mGluR5, is conserved in mature mouse neurons and rat neurons of both sexes. Mechanistically, we find that mGluR1 supports physical retention of Synaptopodin within excitatory spine synapses during LTD while triggering lysosome-dependent degradation of the protein residing in dendritic shafts. Together, these results reveal a cellular mechanism, dependent on mGluR1, which enables selective preservation of stronger spines containing Synaptopodin/SA while eliminating weaker ones and potentially countering spurious strengthening by de novo recruitment of Synaptopodin. Overall, our results identify spines with Synaptopodin/SA as the locus of mGluR-LTD and underscore the importance of the molecular microanatomy of spines in synaptic plasticity.SIGNIFICANCE STATEMENT Long-term changes in functional synaptic strength are associated with modification of synaptic connectivity through stabilization or elimination of dendritic spines, the postsynaptic locus of excitatory synapses. How heterogeneous spine microanatomy instructs spine remodeling after long-term synaptic depression (LTD) remains unclear. Metabotropic glutamate receptors mGluR1 and mGluR5 induce a form of LTD critical to circuit function in physiological and disease conditions. Our results identify spines containing the protein Synaptopodin, which enables local assembly of a spine apparatus, as the locus of expression of mGluR-LTD and demonstrate a specific role of mGluR1 in promoting selective loss after mGluR-LTD of mature dendritic spines lacking Synaptopodin/spine apparatus. These findings highlight the fundamental contribution of spine microanatomy in selectively enabling functional and structural plasticity.


Asunto(s)
Actinas , Depresión Sináptica a Largo Plazo , Receptores de Glutamato Metabotrópico , Sinapsis , Actinas/metabolismo , Animales , Espinas Dendríticas/metabolismo , Femenino , Hipocampo/metabolismo , Hipocampo/fisiología , Depresión Sináptica a Largo Plazo/fisiología , Masculino , Ratones , Plasticidad Neuronal/fisiología , Ratas , Receptores de Glutamato Metabotrópico/metabolismo , Sinapsis/fisiología
4.
J Cell Sci ; 132(16)2019 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-31371487

RESUMEN

The spine apparatus (SA) is an endoplasmic reticulum-related organelle that is present in a subset of dendritic spines in cortical and pyramidal neurons, and plays an important role in Ca2+ homeostasis and dendritic spine plasticity. The protein synaptopodin is essential for the formation of the SA and is widely used as a maker for this organelle. However, it is still unclear which factors contribute to its localization at selected synapses, and how it triggers local SA formation. In this study, we characterized development, localization and mobility of synaptopodin clusters in hippocampal primary neurons, as well as the molecular dynamics within these clusters. Interestingly, synaptopodin at the shaft-associated clusters is less dynamic than at spinous clusters. We identify the actin-based motor proteins myosin V (herein referring to both the myosin Va and Vb forms) and VI as novel interaction partners of synaptopodin, and demonstrate that myosin V is important for the formation and/or maintenance of the SA. We found no evidence of active microtubule-based transport of synaptopodin. Instead, new clusters emerge inside spines, which we interpret as the SA being assembled on-site.


Asunto(s)
Dendritas/metabolismo , Hipocampo/metabolismo , Proteínas de Microfilamentos/metabolismo , Miosina Tipo V/metabolismo , Animales , Dendritas/genética , Femenino , Hipocampo/citología , Ratones , Proteínas de Microfilamentos/genética , Miosina Tipo V/genética , Ratas , Ratas Wistar
5.
Proc Natl Acad Sci U S A ; 114(24): E4859-E4867, 2017 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-28559323

RESUMEN

Close appositions between the membrane of the endoplasmic reticulum (ER) and other intracellular membranes have important functions in cell physiology. These include lipid homeostasis, regulation of Ca2+ dynamics, and control of organelle biogenesis and dynamics. Although these membrane contacts have previously been observed in neurons, their distribution and abundance have not been systematically analyzed. Here, we have used focused ion beam-scanning electron microscopy to generate 3D reconstructions of intracellular organelles and their membrane appositions involving the ER (distance ≤30 nm) in different neuronal compartments. ER-plasma membrane (PM) contacts were particularly abundant in cell bodies, with large, flat ER cisternae apposed to the PM, sometimes with a notably narrow lumen (thin ER). Smaller ER-PM contacts occurred throughout dendrites, axons, and in axon terminals. ER contacts with mitochondria were abundant in all compartments, with the ER often forming a network that embraced mitochondria. Small focal contacts were also observed with tubulovesicular structures, likely to be endosomes, and with sparse multivesicular bodies and lysosomes found in our reconstructions. Our study provides an anatomical reference for interpreting information about interorganelle communication in neurons emerging from functional and biochemical studies.


Asunto(s)
Retículo Endoplásmico/ultraestructura , Membranas Intracelulares/ultraestructura , Neuronas/ultraestructura , Animales , Encéfalo/ultraestructura , Dendritas/ultraestructura , Femenino , Imagenología Tridimensional , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Microscopía Electrónica de Rastreo/métodos , Microscopía Electrónica de Transmisión , Modelos Neurológicos
6.
J Neurochem ; 140(1): 126-139, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27861893

RESUMEN

Locally synthesized estradiol plays an important role in synaptic plasticity in the hippocampus. We have previously shown that in hippocampal neurons, activity of the enzyme aromatase, which converts testosterone into estradiol, is reduced via Ca2+ -dependent phosphorylation. Synaptopodin is a highly estrogen responsive protein, and it has been shown that it is an important regulator of synaptic plasticity, mediated by its close association with internal calcium stores. In this study, we show that the expression of synaptopodin is stronger in the hippocampus of female animals than in that of male animals. Phosphorylation of aromatase, using letrozole, however, down-regulates synaptopodin immunohistochemistry in the hippocampus of both male and females. Similarly, in aromatase knock-out mice synaptopodin expression in the hippocampus is reduced sex independently. Using primary-dissociated hippocampal neurons, we found that evoked release of Ca2+ from internal stores down-regulates aromatase activity, which is paralleled by reduced expression of synaptopodin. Opposite effects were achieved after inhibition of the release. Calcium-dependent regulation of synaptopodin expression was abolished when the control of aromatase activity by the Ca2+ transients was disrupted. Our data suggest that the regulation of aromatase activity by Ca2+ transients in neurons contributes to synaptic plasticity in the hippocampus of male and female animals as an on-site regulatory mechanism.


Asunto(s)
Inhibidores de la Aromatasa/farmacología , Aromatasa/metabolismo , Proteínas de Microfilamentos/fisiología , Animales , Señalización del Calcio/efectos de los fármacos , Señalización del Calcio/fisiología , Células Cultivadas , Activación Enzimática/efectos de los fármacos , Activación Enzimática/fisiología , Femenino , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Letrozol , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Nitrilos/farmacología , Ratas , Ratas Wistar , Triazoles/farmacología
7.
Front Neurosci ; 17: 1249815, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37575294

RESUMEN

This review uncovers the intricate relationship between presenilins, calcium, and mitochondria in the context of Alzheimer's disease (AD), with a particular focus on the involvement of presenilin mutations in mitochondrial dysfunction. So far, it is unclear whether the impairment of mitochondrial function arises primarily from damage inflicted by ß-amyloid upon mitochondria or from the disruption of calcium homeostasis due to presenilins dysfunctions. The roles of presenilins in mitophagy, autophagy, mitochondrial dynamics, and many other functions, non-γ-secretase related, also require close attention in future research. Resolution of contradictions in understanding of presenilins cellular functions are needed for new effective therapeutic strategies for AD.

8.
Trends Neurosci ; 46(1): 32-44, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36428191

RESUMEN

The heterogeneity of the endoplasmic reticulum (ER) makes it a versatile platform for a broad range of homeostatic processes, ranging from calcium regulation to synthesis and trafficking of proteins and lipids. It is not surprising that neurons use this organelle to fine-tune synaptic properties and thereby provide specificity to synaptic inputs. In this review, we discuss the mechanisms that enable activity-dependent ER recruitment into dendritic spines, with a focus on molecular mechanisms that mediate transport and retention of the ER in spines. The role of calcium signaling in spine ER, synaptopodin 'tagging' of active synapses, and the formation of the spine apparatus (SA) are highlighted. Finally, we discuss the role of liquid-liquid phase separation as a possible driving force in these processes.


Asunto(s)
Retículo Endoplásmico , Hipocampo , Humanos , Hipocampo/fisiología , Neuronas/metabolismo , Espinas Dendríticas/metabolismo , Sinapsis/fisiología , Calcio/metabolismo
9.
Front Cell Neurosci ; 17: 1229731, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37671169

RESUMEN

Introduction: We previously discovered a pyridazine derivative compound series that can improve cognitive functions in mouse models of Alzheimer's disease. One of the advanced compounds from this series, LDN/OSU-0215111-M3, was selected as the preclinical development candidate. This compound activates local protein translation at the perisynaptic astrocytic process (PAP) and enhances synaptic plasticity sequentially. While biochemical evidence supports the hypothesis that the compound enhances the structural plasticity of the tripartite synapse, its direct structural impact has not been investigated. Methods: Volume electron microscopy was used to study the hippocampal tripartite synapse three-dimensional structure in 3-month-old wild-type FVB/NJ mice after LDN/OSU-0215111-M3 treatment. Results: LDN/OSU-0215111-M3 increased the size of tertiary apical dendrites, the volume of mushroom spines, the proportion of mushroom spines containing spine apparatus, and alterations in the spine distribution across the surface area of tertiary dendrites. Compound also increased the number of the PAP interacting with the mushroom spines as well as the size of the PAP in contact with the spines. Furthermore, proteomic analysis of the isolated synaptic terminals indicated an increase in dendritic and synaptic proteins as well as suggested a possible involvement of the phospholipase D signaling pathway. To further validate that LDN/OSU-0215111-M3 altered synaptic function, electrophysiological studies showed increased long-term potentiation following compound treatment. Discussion: This study provides direct evidence that pyridazine derivatives enhance the structural and functional plasticity of the tripartite synapse.

10.
Elife ; 102021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34723795

RESUMEN

Previously we showed that the vitamin A metabolite all-trans retinoic acid (atRA) induces synaptic plasticity in acute brain slices prepared from the mouse and human neocortex (Lenz et al., 2021). Depending on the brain region studied, distinct effects of atRA on excitatory and inhibitory neurotransmission have been reported. Here, we used intraperitoneal injections of atRA (10 mg/kg) in adult C57BL/6J mice to study the effects of atRA on excitatory and inhibitory neurotransmission in the mouse fascia dentata-a brain region implicated in memory acquisition. No major changes in synaptic transmission were observed in the ventral hippocampus while a significant increase in both spontaneous excitatory postsynaptic current frequencies and synapse numbers were evident in the dorsal hippocampus 6 hr after atRA administration. The intrinsic properties of hippocampal dentate granule cells were not significantly different and hippocampal transcriptome analysis revealed no essential neuronal changes upon atRA treatment. In light of these findings, we tested for the metaplastic effects of atRA, that is, for its ability to modulate synaptic plasticity expression in the absence of major changes in baseline synaptic strength. Indeed, in vivo long-term potentiation (LTP) experiments demonstrated that systemic atRA treatment improves the ability of dentate granule cells to express LTP. The plasticity-promoting effects of atRA were not observed in synaptopodin-deficient mice, therefore, extending our previous results regarding the relevance of synaptopodin in atRA-mediated synaptic strengthening in the mouse prefrontal cortex. Taken together, our data show that atRA mediates synaptopodin-dependent metaplasticity in mouse dentate granule cells.


Asunto(s)
Giro Dentado/fisiología , Proteínas de Microfilamentos/genética , Plasticidad Neuronal/efectos de los fármacos , Transmisión Sináptica/fisiología , Tretinoina/administración & dosificación , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas de Microfilamentos/metabolismo
11.
Elife ; 92020 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-33275099

RESUMEN

Large spines are stable and important for memory trace formation. The majority of large spines also contains synaptopodin (SP), an actin-modulating and plasticity-related protein. Since SP stabilizes F-actin, we speculated that the presence of SP within large spines could explain their long lifetime. Indeed, using 2-photon time-lapse imaging of SP-transgenic granule cells in mouse organotypic tissue cultures we found that spines containing SP survived considerably longer than spines of equal size without SP. Of note, SP-positive (SP+) spines that underwent pruning first lost SP before disappearing. Whereas the survival time courses of SP+ spines followed conditional two-stage decay functions, SP-negative (SP-) spines and all spines of SP-deficient animals showed single-phase exponential decays. This was also the case following afferent denervation. These results implicate SP as a major regulator of long-term spine stability: SP clusters stabilize spines, and the presence of SP indicates spines of high stability.


Asunto(s)
Espinas Dendríticas/fisiología , Proteínas de Microfilamentos/metabolismo , Actinas , Animales , Animales Recién Nacidos , Femenino , Proteínas Fluorescentes Verdes , Hipocampo/citología , Masculino , Ratones , Ratones Noqueados , Microdisección , Proteínas de Microfilamentos/genética
12.
Front Cell Neurosci ; 10: 138, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27303269

RESUMEN

Reelin regulates neuronal positioning and synaptogenesis in the developing brain, and adult brain plasticity. Here we used transgenic mice overexpressing Reelin (Reelin-OE mice) to perform a comprehensive dissection of the effects of this protein on the structural and biochemical features of dendritic spines and axon terminals in the adult hippocampus. Electron microscopy (EM) revealed both higher density of synapses and structural complexity of both pre- and postsynaptic elements in transgenic mice than in WT mice. Dendritic spines had larger spine apparatuses, which correlated with a redistribution of Synaptopodin. Most of the changes observed in Reelin-OE mice were reversible after blockade of transgene expression, thus supporting the specificity of the observed phenotypes. Western blot and transcriptional analyses did not show major changes in the expression of pre- or postsynaptic proteins, including SNARE proteins, glutamate receptors, and scaffolding and signaling proteins. However, EM immunogold assays revealed that the NMDA receptor subunits NR2a and NR2b, and p-Cofilin showed a redistribution from synaptic to extrasynaptic pools. Taken together with previous studies, the present results suggest that Reelin regulates the structural and biochemical properties of adult hippocampal synapses by increasing their density and morphological complexity and by modifying the distribution and trafficking of major glutamatergic components.

13.
Exp Neurol ; 261: 230-5, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24837317

RESUMEN

Systemic inflammation is known to affect memory function through the activation of immune cells and the release of inflammatory cytokines. However, the neuronal targets by which inflammatory signaling pathways affect synaptic plasticity remain not well understood. Here, we addressed the question of whether systemic lipopolysaccharide (LPS)-induced inflammation influences the expression of Synaptopodin (SP). SP is an actin-binding protein, which is considered to control the ability of neurons to express synaptic plasticity by regulating the actin-cytoskeleton and/or intracellular Ca(2+) stores. This makes SP an interesting target molecule in the context of inflammation-induced alterations in synaptic plasticity. Using quantitative PCR (qPCR)-analysis and immunohistochemistry we here demonstrate that intraperitoneal LPS-injection in two-month old male Balb/c mice leads to a reduction in hippocampal SP-levels (area CA1; 24h after injection). These changes are accompanied by a defect in the ability to induce long-term potentiation (LTP) of Schaffer collateral-CA1 synapses, similar to what is observed in SP-deficient mice. We therefore propose that systemic inflammation could exert its effects on neural plasticity, at least in part, through the down-regulation of SP in vivo.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Hipocampo/metabolismo , Inflamación/patología , Proteínas de Microfilamentos/metabolismo , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Animales , Citocinas , Estimulación Eléctrica , Regulación de la Expresión Génica/efectos de los fármacos , Hipocampo/patología , Técnicas In Vitro , Inflamación/inducido químicamente , Lipopolisacáridos/toxicidad , Potenciación a Largo Plazo/efectos de los fármacos , Potenciación a Largo Plazo/fisiología , Masculino , Ratones , Ratones Endogámicos BALB C , Proteínas de Microfilamentos/genética , Neuronas/fisiología , ARN Mensajero/metabolismo , Factores de Tiempo
14.
Neuroscience ; 281: 135-46, 2014 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-25264032

RESUMEN

Work from the past 40years has unraveled a wealth of information on the cellular and molecular mechanisms underlying synaptic plasticity and their relevance in physiological brain function. At the same time, it has been recognized that a broad range of neurological diseases may be accompanied by severe alterations in synaptic plasticity, i.e., 'maladaptive synaptic plasticity', which could initiate and sustain the remodeling of neuronal networks under pathological conditions. Nonetheless, our current knowledge on the specific contribution and interaction of distinct forms of synaptic plasticity (including metaplasticity and homeostatic plasticity) in the context of pathological brain states remains limited. This review focuses on recent experimental evidence, which highlights the fundamental role of endoplasmic reticulum-mediated Ca(2+) signals in modulating the duration, direction, extent and type of synaptic plasticity. We discuss the possibility that intracellular Ca(2+) stores may regulate synaptic plasticity and hence behavioral and cognitive functions at the interface between physiology and pathology.


Asunto(s)
Señalización del Calcio/fisiología , Calcio/metabolismo , Retículo Endoplásmico/fisiología , Enfermedades del Sistema Nervioso/fisiopatología , Plasticidad Neuronal/fisiología , Animales , Retículo Endoplásmico/metabolismo , Humanos , Enfermedades del Sistema Nervioso/metabolismo
15.
J Comp Neurol ; 522(9): 2152-63, 2014 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-24338694

RESUMEN

There is growing evidence that astrocytes, long held to merely provide metabolic support in the adult brain, participate in both synaptic plasticity and learning and memory. Astrocytic processes are sometimes present at the synaptic cleft, suggesting that they might act directly at individual synapses. Associative learning induces synaptic plasticity and morphological changes at synapses in the lateral amygdala (LA). To determine whether astrocytic contacts are involved in these changes, we examined LA synapses after either threat conditioning (also called fear conditioning) or conditioned inhibition in adult rats by using serial section transmission electron microscopy (ssTEM) reconstructions. There was a transient increase in the density of synapses with no astrocytic contact after threat conditioning, especially on enlarged spines containing both polyribosomes and a spine apparatus. In contrast, synapses with astrocytic contacts were smaller after conditioned inhibition. This suggests that during memory consolidation astrocytic processes are absent if synapses are enlarging but present if they are shrinking. We measured the perimeter of each synapse and its degree of astrocyte coverage, and found that only about 20-30% of each synapse was ensheathed. The amount of synapse perimeter surrounded by astrocyte did not scale with synapse size, giving large synapses a disproportionately long astrocyte-free perimeter and resulting in a net increase in astrocyte-free perimeter after threat conditioning. Thus astrocytic processes do not mechanically isolate LA synapses, but may instead interact through local signaling, possibly via cell-surface receptors. Our results suggest that contact with astrocytic processes opposes synapse growth during memory consolidation.


Asunto(s)
Amígdala del Cerebelo/fisiología , Astrocitos/fisiología , Condicionamiento Clásico/fisiología , Miedo/fisiología , Sinapsis/fisiología , Estimulación Acústica , Amígdala del Cerebelo/ultraestructura , Animales , Astrocitos/ultraestructura , Percepción Auditiva/fisiología , Axones/fisiología , Axones/ultraestructura , Espinas Dendríticas/fisiología , Espinas Dendríticas/ultraestructura , Electrochoque , Procesamiento de Imagen Asistido por Computador , Masculino , Microscopía Electrónica de Transmisión , Ratas , Sinapsis/ultraestructura
16.
Neuroscience ; 251: 75-89, 2013 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-22561733

RESUMEN

Because dendritic spines are the sites of excitatory synapses, pathological changes in spine morphology should be considered as part of pathological changes in neuronal circuitry in the forms of synaptic connections and connectivity strength. In the past, spine pathology has usually been measured by changes in their number or shape. A more complete understanding of spine pathology requires visualization at the nanometer level to analyze how the changes in number and size affect their presynaptic partners and associated astrocytic processes, as well as organelles and other intracellular structures. Currently, serial section electron microscopy (ssEM) offers the best approach to address this issue because of its ability to image the volume of brain tissue at the nanometer resolution. Renewed interest in ssEM has led to recent technological advances in imaging techniques and improvements in computational tools indispensable for three-dimensional analyses of brain tissue volumes. Here we consider the small but growing literature that has used ssEM analysis to unravel ultrastructural changes in neuropil including dendritic spines. These findings have implications in altered synaptic connectivity and cell biological processes involved in neuropathology, and serve as anatomical substrates for understanding changes in network activity that may underlie clinical symptoms.


Asunto(s)
Espinas Dendríticas/ultraestructura , Microscopía Electrónica de Rastreo/métodos , Neurópilo/ultraestructura , Encéfalo/ultraestructura , Sinapsis/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA