Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 277
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Brain ; 147(2): 680-697, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-37831655

RESUMEN

Migraine is a common and disabling neurological disorder. The headache and sensory amplifications of migraine are attributed to hyperexcitable sensory circuits, but a detailed understanding remains elusive. A mutation in casein kinase 1 delta (CK1δ) was identified in non-hemiplegic familial migraine with aura and advanced sleep phase syndrome. Mice carrying the CK1δT44A mutation were more susceptible to spreading depolarization (the phenomenon that underlies migraine aura), but mechanisms underlying this migraine-relevant phenotype were not known. We used a combination of whole-cell electrophysiology and multiphoton imaging, in vivo and in brain slices, to compare CK1δT44A mice (adult males) to their wild-type littermates. We found that despite comparable synaptic activity at rest, CK1δT44A neurons were more excitable upon repetitive stimulation than wild-type, with a reduction in presynaptic adaptation at excitatory but not inhibitory synapses. The mechanism of this adaptation deficit was a calcium-dependent enhancement of the size of the readily releasable pool of synaptic vesicles, and a resultant increase in glutamate release, in CK1δT44A compared to wild-type synapses. Consistent with this mechanism, CK1δT44A neurons showed an increase in the cumulative amplitude of excitatory post-synaptic currents, and a higher excitation-to-inhibition ratio during sustained activity compared to wild-type. At a local circuit level, action potential bursts elicited in CK1δT44A neurons triggered an increase in recurrent excitation compared to wild-type, and at a network level, CK1δT44A mice showed a longer duration of 'up state' activity, which is dependent on recurrent excitation. Finally, we demonstrated that the spreading depolarization susceptibility of CK1δT44A mice could be returned to wild-type levels with the same intervention (reduced extracellular calcium) that normalized presynaptic adaptation. Taken together, these findings show a stimulus-dependent presynaptic gain of function at glutamatergic synapses in a genetic model of migraine, that accounts for the increased spreading depolarization susceptibility and may also explain the sensory amplifications that are associated with the disease.


Asunto(s)
Depresión de Propagación Cortical , Epilepsia , Trastornos Migrañosos , Migraña con Aura , Ratones , Animales , Migraña con Aura/genética , Ratones Transgénicos , Canales de Calcio Tipo N/genética , Calcio/metabolismo , Trastornos Migrañosos/genética , Mutación/genética , Depresión de Propagación Cortical/fisiología
2.
Proc Natl Acad Sci U S A ; 119(39): e2207052119, 2022 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-36122217

RESUMEN

Understanding the physiological mechanisms that limit animal thermal tolerance is crucial in predicting how animals will respond to increasingly severe heat waves. Despite their importance for understanding climate change impacts, these mechanisms underlying the upper thermal tolerance limits of animals are largely unknown. It has been hypothesized that the upper thermal tolerance in fish is limited by the thermal tolerance of the brain and is ultimately caused by a global brain depolarization. In this study, we developed methods for measuring the upper thermal limit (CTmax) in larval zebrafish (Danio rerio) with simultaneous recordings of brain activity using GCaMP6s calcium imaging in both free-swimming and agar-embedded fish. We discovered that during warming, CTmax precedes, and is therefore not caused by, a global brain depolarization. Instead, the CTmax coincides with a decline in spontaneous neural activity and a loss of neural response to visual stimuli. By manipulating water oxygen levels both up and down, we found that oxygen availability during heating affects locomotor-related neural activity, the neural response to visual stimuli, and CTmax. Our results suggest that the mechanism limiting the upper thermal tolerance in zebrafish larvae is insufficient oxygen availability causing impaired brain function.


Asunto(s)
Encéfalo , Oxígeno , Termotolerancia , Pez Cebra , Animales , Encéfalo/patología , Encéfalo/fisiología , Calcio/metabolismo , Larva , Oxígeno/metabolismo , Termotolerancia/fisiología , Agua/química
3.
J Neurosci ; 43(33): 5975-5985, 2023 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-37487740

RESUMEN

Cortical spreading depolarization (CSD) is a key pathophysiological event that underlies visual and sensory auras in migraine. CSD is also thought to drive the headache phase in migraine by promoting the activation and mechanical sensitization of trigeminal primary afferent nociceptive neurons that innervate the cranial meninges. The factors underlying meningeal nociception in the wake of CSD remain poorly understood but potentially involve the parenchymal release of algesic mediators and damage-associated molecular patterns, particularly ATP. Here, we explored the role of ATP-P2X purinergic receptor signaling in mediating CSD-evoked meningeal afferent activation and mechanical sensitization. Male rats were subjected to a single CSD episode. In vivo, extracellular single-unit recording was used to measure meningeal afferent ongoing activity changes. Quantitative mechanical stimuli using a servomotor force-controlled stimulator assessed changes in the afferent's mechanosensitivity. Manipulation of meningeal P2X receptors was achieved via local administration of pharmacological agents. Broad-spectrum P2X receptor inhibition, selective blockade of the P2X7 receptor, and its related Pannexin 1 channel suppressed CSD-evoked afferent mechanical sensitization but did not affect the accompanying afferent activation response. Surprisingly, inhibition of the pronociceptive P2X2/3 receptor did not affect the activation or sensitization of meningeal afferents post-CSD. P2X7 signaling underlying afferent mechanosensitization was localized to the meninges and did not affect CSD susceptibility. We propose that meningeal P2X7 and Pannexin 1 signaling, potentially in meningeal macrophages or neutrophils, mediates the mechanical sensitization of meningeal afferents, which contributes to migraine pain by exacerbating the headache during normally innocuous physical activities.SIGNIFICANCE STATEMENT Activation and sensitization of meningeal afferents play a key role in migraine headache, but the underlying mechanisms remain unclear. Here, using a rat model of migraine with aura involving cortical spreading depolarization (CSD), we demonstrate that meningeal purinergic P2X7 signaling and its related Pannexin 1 pore, but not nociceptive P2X2/3 receptors, mediate prolonged meningeal afferent sensitization. Additionally, we show that meningeal P2X signaling does not contribute to the increased afferent ongoing activity in the wake of CSD. Our finding points to meningeal P2X7 signaling as a critical mechanism underlying meningeal nociception in migraine, the presence of distinct mechanisms underlying the activation and sensitization of meningeal afferents in migraine, and highlight the need to target both processes for effective migraine therapy.


Asunto(s)
Trastornos Migrañosos , Nociceptores , Ratas , Masculino , Animales , Meninges , Cefalea , Adenosina Trifosfato/farmacología
4.
J Physiol ; 2024 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-38279931

RESUMEN

Migraine, a common neurological disorder, impacts over a billion individuals globally. Its complex aetiology involves various signalling cascades. Hypoxia causes headaches such as high-altitude headache and acute mountain sickness which share phenotypical similarities with migraine. Epidemiological data indicate an increased prevalence of migraine with and without aura in high-altitude populations. Experimental studies have further shown that hypoxia can induce migraine attacks. This review summarizes evidence linking hypoxia to migraine, delves into potential pathophysiological mechanisms and highlights research gaps.

5.
J Neurochem ; 168(5): 443-449, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38613180

RESUMEN

This Preface introduces the Special Issue entitled, "Energy Substrates and Microbiome Govern Brain Bioenergetics and Cognitive Function with Aging", which is comprised of manuscripts contributed by invited speakers and program/organizing committee members who participated in the 14th International Conference on Brain Energy Metabolism (ICBEM) held on October 24-27, 2022 in Santa Fe, New Mexico, USA. The conference covered the latest developments in research related to neuronal energetics, emerging roles for glycogen in higher brain functions, the impact of dietary intervention on aging, memory, and Alzheimer's disease, roles of the microbiome in gut-brain signaling, astrocyte-neuron interactions related to cognition and memory, novel roles for mitochondria and their metabolites, and metabolic neuroimaging in aging and neurodegeneration. The special issue contains 25 manuscripts on these topics plus three tributes to outstanding scientists who have made important contributions to brain energy metabolism and participated in numerous ICBEM conferences. In addition, two of the manuscripts describe important directions and the rationale for future research in many thematic areas covered by the conference.


Asunto(s)
Envejecimiento , Encéfalo , Cognición , Metabolismo Energético , Humanos , Metabolismo Energético/fisiología , Encéfalo/metabolismo , Cognición/fisiología , Envejecimiento/metabolismo , Envejecimiento/fisiología , Animales , Microbiota/fisiología , Congresos como Asunto
6.
Neurobiol Dis ; 192: 106405, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38211710

RESUMEN

Mechanisms underlying the migraine aura are incompletely understood, which to large extent is related to a lack of models in which cortical spreading depolarization (CSD), the correlate of the aura, occurs spontaneously. Here, we investigated electrophysiological and behavioural CSD features in freely behaving mice expressing mutant CaV2.1 Ca2+ channels, either with the milder R192Q or the severer S218L missense mutation in the α1 subunit, known to cause familial hemiplegic migraine type 1 (FHM1) in patients. Very rarely, spontaneous CSDs were observed in mutant but never in wildtype mice. In homozygous Cacna1aR192Q mice exclusively single-wave CSDs were observed whereas heterozygous Cacna1aS218L mice displayed multiple-wave events, seemingly in line with the more severe clinical phenotype associated with the S218L mutation. Spontaneous CSDs were associated with body stretching, one-directional slow head turning, and rotating movement of the body. Spontaneous CSD events were compared with those induced in a controlled manner using minimally invasive optogenetics. Also in the optogenetic experiments single-wave CSDs were observed in Cacna1aR192Q and Cacna1aS218L mice (whereas the latter also showed multiple-wave events) with movements similar to those observed with spontaneous events. Compared to wildtype mice, FHM1 mutant mice exhibited a reduced threshold and an increased propagation speed for optogenetically induced CSD with a more profound CSD-associated dysfunction, as indicated by a prolonged suppression of transcallosal evoked potentials and a reduction of unilateral forepaw grip performance. When induced during sleep, the optogenetic CSD threshold was particularly lowered, which may explain why spontaneous CSD events predominantly occurred during sleep. In conclusion, our data show that key neurophysiological and behavioural features of optogenetically induced CSDs mimic those of rare spontaneous events in FHM1 R192Q and S218L mutant mice with differences in severity in line with FHM1 clinical phenotypes seen with these mutations.


Asunto(s)
Ataxia Cerebelosa , Depresión de Propagación Cortical , Epilepsia , Trastornos Migrañosos , Migraña con Aura , Humanos , Ratones , Animales , Migraña con Aura/genética , Ratones Transgénicos , Depresión de Propagación Cortical/fisiología , Trastornos Migrañosos/genética , Potenciales Evocados
7.
Microcirculation ; 31(6): e12861, 2024 08.
Artículo en Inglés | MEDLINE | ID: mdl-38762881

RESUMEN

OBJECTIVE: We attempted to record the regional cerebral blood flow (CBF) simultaneously at various regions of the cerebral cortex and the striatum during middle cerebral artery (MCA) occlusion and to evaluate neurological deficits and infarct formation. METHODS: In male C57BL/6J mice, CBF was recorded in three regions including the ipsilateral cerebral cortex and the striatum with laser Doppler flowmeters, and the origin of MCA was occluded with a monofilament suture for 15-90 min. After 48 h, neurological deficits were evaluated, and infarct was examined by triphenyltetrazolium chloride (TTC) staining. RESULTS: CBF decrease in the striatum was approximately two-thirds of the MCA-dominant region of the cortex during MCA occlusion. The characteristic CBF fluctuation because of spontaneously occurred spreading depolarization observed throughout the cortex was not found in the striatum. Ischemic foci with slight lower staining to TTC were found in the ipsilateral striatum in MCA-occluded mice for longer than 30 min (n = 54). Twenty-nine among 64 MCA-occluded mice exhibited neurological deficits even in the absence of apparent infarct with minimum staining to TTC in the cortex, and the severity of neurological deficits was not correlated with the size of the cortical infarct. CONCLUSION: Neurological deficits might be associated with the ischemic striatum rather than with cortical infarction.


Asunto(s)
Circulación Cerebrovascular , Cuerpo Estriado , Infarto de la Arteria Cerebral Media , Animales , Infarto de la Arteria Cerebral Media/fisiopatología , Infarto de la Arteria Cerebral Media/patología , Ratones , Masculino , Circulación Cerebrovascular/fisiología , Cuerpo Estriado/fisiopatología , Cuerpo Estriado/irrigación sanguínea , Corteza Cerebral/irrigación sanguínea , Corteza Cerebral/fisiopatología , Ratones Endogámicos C57BL
8.
Brain ; 146(7): 2989-3002, 2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-36795624

RESUMEN

Spreading depolarization (SD), the underlying mechanism of migraine aura, may trigger the opening of the pannexin 1 (PANX1) pore to sustain the cortical neuroinflammatory cascades involved in the genesis of headache. Yet, the mechanism underlying SD-evoked neuroinflammation and trigeminovascular activation remains incompletely understood. We characterized the identity of inflammasome activated following SD-evoked PANX1 opening. Pharmacological inhibitors targeting PANX1 or NLRP3 as well as genetic ablation of Nlrp3 and Il1b were applied to investigate the molecular mechanism of the downstream neuroinflammatory cascades. In addition, we examined whether SD-triggered microglial activation facilitates neuronal NLRP3-mediated inflammatory cascades. Pharmacological inhibition of toll-like receptors TLR2/4, the potential receptors of the damage-associated molecular pattern HMGB1, was further employed to interrogate the neuron-microglia interplay in SD-induced neuroinflammation. We found that NLRP3 but not NLRP1 or NLRP2 inflammasome was activated following PANX1 opening after single or multiple SDs evoked by either KCl topical application or non-invasively with optogenetics. The SD-evoked NLRP3 inflammasome activation was observed exclusively in neurons but not microglia or astrocytes. Proximity ligation assay demonstrated that the assembly of the NLRP3 inflammasome occurred as early as 15 min after SD. Genetic ablation of Nlrp3 or Il1b or pharmacological inhibition of PANX1 or NLRP3 ameliorated SD-induced neuronal inflammation, middle meningeal artery dilatation, calcitonin gene-related peptide expression in trigeminal ganglion and c-Fos expression in trigeminal nucleus caudalis. Moreover, multiple SDs induced microglial activation subsequent to neuronal NLRP3 inflammasome activation, which in turn orchestrated with neurons to mediate cortical neuroinflammation, as demonstrated by decreased neuronal inflammation after pharmacological inhibition of microglia activation or blockade of the TLR2/4 receptors. To conclude, single or multiple SDs evoked activation of neuronal NLRP3 inflammasomes and its downstream inflammatory cascades to mediate cortical neuroinflammation and trigeminovascular activation. In the context of multiple SDs, the cortical inflammatory processes could be facilitated by SD-evoked microglia activation. These findings may implicate the potential role of innate immunity in migraine pathogenesis.


Asunto(s)
Inflamasomas , Trastornos Migrañosos , Humanos , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Enfermedades Neuroinflamatorias , Receptor Toll-Like 2 , Inflamación , Neuronas/metabolismo , Proteínas del Tejido Nervioso , Conexinas
9.
Neurocrit Care ; 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39192101

RESUMEN

BACKGROUND: Impairment in cerebral autoregulation has been proposed as a potentially targetable factor in patients with aneurysmal subarachnoid hemorrhage (aSAH); however, there are different continuous measures that can be used to calculate the state of autoregulation. In addition, it has previously been proposed that there may be an association of impaired autoregulation with the occurrence of spreading depolarization (SD) events. METHODS: Study participants with invasive multimodal monitoring and aSAH were enrolled in an observational study. Autoregulation indices were prospectively calculated from this database as a 10 s moving correlation coefficient between various cerebral blood flow (CBF) surrogates and mean arterial pressure (MAP). In study participants with subdural electrocorticography (ECoG) monitoring, SD was also scored. Associations between clinical outcomes using the modified Rankin scale and occurrence of either isolated or clustered SD were assessed. RESULTS: A total of 320 study participants were included, 47 of whom also had ECoG SD monitoring. As expected, baseline severity factors, such as modified Fisher scale score and World Federation of Neurosurgical Societies scale grade, were strongly associated with the clinical outcome. SD probability was related to blood pressure in a triphasic pattern, with a linear increase in probability below MAP of ~ 100 mm Hg. Multiple autoregulation indices were available for review based on moving correlations between mean arterial pressure (MAP) and various surrogates of cerebral blood flow (CBF). We calculated the pressure reactivity (PRx) using two different sources for intracranial pressure (ICP). We calculated the oxygen reactivity (ORx) using the partial pressure of brain tissue oxygen (PbtO2) from the Licox probe. We calculated the cerebral blood flow reactivity (CBFRx) using perfusion measurements from the Bowman perfusion probe. Finally, we calculated the cerebral oxygen saturation reactivity (OSRx) using regional cerebral oxygen saturation measured by near-infrared spectroscopy from the INVOS sensors. Only worse ORx and OSRx were associated with worse clinical outcomes. Both ORx and OSRx also were found to increase in the hour prior to SD for both sporadic and clustered SD. CONCLUSIONS: Impairment in autoregulation in aSAH is associated with worse clinical outcomes and occurrence of SD when using ORx and OSRx. Impaired autoregulation precedes SD occurrence. Targeting the optimal MAP or cerebral perfusion pressure in patients with aSAH should use ORx and/or OSRx as the input function rather than intracranial pressure.

10.
J Headache Pain ; 25(1): 152, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39289629

RESUMEN

BACKGROUND: Migraine is among the most prevalent and burdensome neurological disorders in the United States based on disability-adjusted life years. Cortical spreading depolarization (SD) is the most likely electrophysiological cause of migraine aura and may be linked to trigeminal nociception. We previously demonstrated, using a minimally invasive optogenetic approach of SD induction (opto-SD), that opto-SD triggers acute periorbital mechanical allodynia that is reversed by 5HT1B/1D receptor agonists, supporting SD-induced activation of migraine-relevant trigeminal pain pathways in mice. Recent data highlight hypothalamic neural circuits in migraine, and SD may activate hypothalamic neurons. Furthermore, neuroanatomical, electrophysiological, and behavioral data suggest a homeostatic analgesic function of hypothalamic neuropeptide hormone, oxytocin. We, therefore, examined the role of hypothalamic paraventricular nucleus (PVN) and oxytocinergic (OXT) signaling in opto-SD-induced trigeminal pain behavior. METHODS: We induced a single opto-SD in adult male and female Thy1-ChR2-YFP transgenic mice and quantified fos immunolabeling in the PVN and supraoptic nucleus (SON) compared with sham controls. Oxytocin expression was also measured in fos-positive neurons in the PVN. Periorbital mechanical allodynia was tested after treatment with selective OXT receptor antagonist L-368,899 (5 to 25 mg/kg i.p.) or vehicle at 1, 2, and 4 h after opto-SD or sham stimulation using von Frey monofilaments. RESULTS: Opto-SD significantly increased the number of fos immunoreactive cells in the PVN and SON as compared to sham stimulation (p < 0.001, p = 0.018, respectively). A subpopulation of fos-positive neurons also stained positive for oxytocin. Opto-SD evoked periorbital mechanical allodynia 1 h after SD (p = 0.001 vs. sham), which recovered quickly within 2 h (p = 0.638). OXT receptor antagonist L-368,899 dose-dependently prolonged SD-induced periorbital allodynia (p < 0.001). L-368,899 did not affect mechanical thresholds in the absence of opto-SD. CONCLUSIONS: These data support an SD-induced activation of PVN neurons and a role for endogenous OXT in alleviating acute SD-induced trigeminal allodynia by shortening its duration.


Asunto(s)
Hiperalgesia , Ratones Transgénicos , Oxitocina , Animales , Oxitocina/metabolismo , Masculino , Femenino , Ratones , Núcleo Hipotalámico Paraventricular/metabolismo , Núcleo Hipotalámico Paraventricular/efectos de los fármacos , Depresión de Propagación Cortical/fisiología , Depresión de Propagación Cortical/efectos de los fármacos , Receptores de Oxitocina/metabolismo , Núcleo Supraóptico/metabolismo , Núcleo Supraóptico/efectos de los fármacos , Modelos Animales de Enfermedad , Canfanos , Piperazinas
11.
J Headache Pain ; 25(1): 124, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39080518

RESUMEN

BACKGROUND: The initiation of migraine headaches and the involvement of neuroinflammatory signaling between parenchymal and meningeal cells remain unclear. Experimental evidence suggests that a cascade of inflammatory signaling originating from neurons may extend to the meninges, thereby inducing neurogenic inflammation and headache. This review explores the role of parenchymal inflammatory signaling in migraine headaches, drawing upon recent advancements. BODY: Studies in rodents have demonstrated that sterile meningeal inflammation can stimulate and sensitize meningeal nociceptors, culminating in headaches. The efficacy of relatively blood-brain barrier-impermeable anti-calcitonin gene-related peptide antibodies and triptans in treating migraine attacks, both with and without aura, supports the concept of migraine pain originating in meninges. Additionally, PET studies utilizing inflammation markers have revealed meningeal inflammatory activity in patients experiencing migraine with aura, particularly over the occipital cortex generating visual auras. The parenchymal neuroinflammatory signaling involving neurons, astrocytes, and microglia, which eventually extends to the meninges, can link non-homeostatic perturbations in the insensate brain to pain-sensitive meninges. Recent experimental research has brought deeper insight into parenchymal signaling mechanisms: Neuronal pannexin-1 channels act as stress sensors, initiating the inflammatory signaling by inflammasome formation and high-mobility group box-1 release in response to transient perturbations such as cortical spreading depolarization (CSD) or synaptic metabolic insufficiency caused by transcriptional changes induced by migraine triggers like sleep deprivation and stress. After a single CSD, astrocytes respond by upregulating the transcription of proinflammatory enzymes and mediators, while microglia are involved in restoring neuronal structural integrity; however, repeated CSDs may prompt microglia to adopt a pro-inflammatory state. Transcriptional changes from pro- to anti-inflammatory within 24 h may serve to dampen the inflammatory signaling. The extensive coverage of brain surface and perivascular areas by astrocyte endfeet suggests their role as an interface for transporting inflammatory mediators to the cerebrospinal fluid to contribute to meningeal nociception. CONCLUSION: We propose that neuronal stress induced by CSD or synaptic activity-energy mismatch may initiate a parenchymal inflammatory signaling cascade, transmitted to the meninges, thereby triggering lasting headaches characteristic of migraine, with or without aura. This neuroinflammatory interplay between parenchymal and meningeal cells points to the potential for novel targets for migraine treatment and prophylaxis.


Asunto(s)
Meninges , Trastornos Migrañosos , Enfermedades Neuroinflamatorias , Transducción de Señal , Humanos , Trastornos Migrañosos/metabolismo , Trastornos Migrañosos/fisiopatología , Enfermedades Neuroinflamatorias/fisiopatología , Animales , Transducción de Señal/fisiología , Neuronas/metabolismo
12.
J Headache Pain ; 25(1): 8, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38225575

RESUMEN

BACKGROUND: Spreading depolarization (SD), underlying mechanism of migraine aura and potential activator of pain pathways, is known to elicit transient local silencing cortical activity. Sweeping across the cortex, the electrocorticographic depression is supposed to underlie spreading negative symptoms of migraine aura. Main information about the suppressive effect of SD on cortical oscillations was obtained in anesthetized animals while ictal recordings in conscious patients failed to detect EEG depression during migraine aura. Here, we investigate the suppressive effect of SD on spontaneous cortical activity in awake animals and examine whether the anesthesia modifies the SD effect. METHODS: Spectral and spatiotemporal characteristics of spontaneous cortical activity following a single unilateral SD elicited by amygdala pinprick were analyzed in awake freely behaving rats and after induction of urethane anesthesia. RESULTS: In wakefulness, SD transiently suppressed cortical oscillations in all frequency bands except delta. Slow delta activity did not decline its power during SD and even increased it afterwards; high-frequency gamma oscillations showed the strongest and longest depression under awake conditions. Unexpectedly, gamma power reduced not only during SD invasion the recording cortical sites but also when SD occupied distant subcortical/cortical areas. Contralateral cortex not invaded by SD also showed transient depression of gamma activity in awake animals. Introduction of general anesthesia modified the pattern of SD-induced depression: SD evoked the strongest cessation of slow delta activity, milder suppression of fast oscillations and no distant changes in gamma activity. CONCLUSION: Slow and fast cortical oscillations differ in their vulnerability to SD influence, especially in wakefulness. In the conscious brain, SD produces stronger and spatially broader depression of fast cortical oscillations than slow ones. The frequency-specific effects of SD on cortical activity of awake brain may underlie some previously unexplained clinical features of migraine aura.


Asunto(s)
Depresión de Propagación Cortical , Epilepsia , Migraña con Aura , Humanos , Ratas , Animales , Depresión de Propagación Cortical/fisiología , Migraña con Aura/etiología , Encéfalo , Cabeza , Epilepsia/etiología
13.
J Headache Pain ; 25(1): 162, 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39354357

RESUMEN

BACKGROUND: Patients with migraine are typically advised to avoid passive smoking because it may aggravate headaches and other health conditions. However, there is insufficient high-quality evidence on the association between passive smoking and migraine, which warrants further investigation using animal models. Therefore, using a mouse model, we examined the effect of passive smoking on susceptibility to cortical spreading depolarization (CSD), the biological basis of migraine with aura. FINDINGS: Fifty C57BL/6 mice (25 males and 25 females) were exposed for one hour to cigarette smoke or room air. Subsequently, potassium chloride (KCl) was administered under isoflurane anesthesia to induce CSD, and the CSD threshold, frequency of induction, and propagation velocity were determined. The threshold to induce CSD (median [interquartile range (IQR)]) was significantly lower in female mice (adjusted p = 0.01) in the smoking group (0.05 [0.05, 0.088]) than in the sham group (0.125 [0.1, 0.15]); however, there was no significant difference in the male mice (adjusted p = 0.77). CSD frequency or propagation velocity did not differ significantly between the two groups for either sex. CONCLUSIONS: Female mice in the smoking group showed lower CSD threshold compared to the sham group, suggesting a potential sex-specific difference in the effect of smoking on the pathogenesis of CSD and migraine with aura. This finding may contribute to the understanding of migraine pathophysiology in association with passive smoking and sex difference.


Asunto(s)
Depresión de Propagación Cortical , Ratones Endogámicos C57BL , Contaminación por Humo de Tabaco , Animales , Femenino , Masculino , Depresión de Propagación Cortical/fisiología , Depresión de Propagación Cortical/efectos de los fármacos , Contaminación por Humo de Tabaco/efectos adversos , Ratones , Modelos Animales de Enfermedad , Caracteres Sexuales , Factores Sexuales , Migraña con Aura/fisiopatología
14.
J Headache Pain ; 25(1): 113, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39009958

RESUMEN

BACKGROUND: Neurogenic meningeal inflammation is regarded as a key driver of migraine headache. Multiple evidence show importance of inflammatory processes in the dura mater for pain generation but contribution of the leptomeninges is less clear. We assessed effects of cortical spreading depolarization (CSD), the pathophysiological mechanism of migraine aura, on expression of inflammatory mediators in the leptomeninges. METHODS: A single CSD event was produced by a focal unilateral microdamage of the cortex in freely behaving rats. Three hours later intact cortical leptomeninges and parenchyma of ipsi-lesional (invaded by CSD) and sham-treated contra-lesional (unaffected by CSD) hemispheres were collected and mRNA levels of genes associated with inflammation (Il1b, Tnf, Ccl2; Cx3cl1, Zc3h12a) and endocannabinoid CB2 receptors (Cnr2) were measured using qPCR. RESULTS: Three hours after a single unilateral CSD, most inflammatory factors changed their expression levels in the leptomeninges, mainly on the side of CSD. The meninges overlying affected cortex increased mRNA expression of all proinflammatory cytokines (Il1b, Tnf, Ccl2) and anti-inflammatory factors Zc3h12a and Cx3cl1. Upregulation of proinflammatory cytokines was found in both meninges and parenchyma while anti-inflammatory markers increased only meningeal expression. CONCLUSION: A single CSD is sufficient to produce pronounced leptomeningeal inflammation that lasts for at least three hours and involves mostly meninges overlying the cortex affected by CSD. The prolonged post-CSD inflammation of the leptomeninges can contribute to mechanisms of headache generation following aura phase of migraine attack.


Asunto(s)
Depresión de Propagación Cortical , Meninges , Animales , Depresión de Propagación Cortical/fisiología , Ratas , Masculino , Meninges/fisiopatología , Inflamación/fisiopatología , Corteza Cerebral/metabolismo , Corteza Cerebral/fisiopatología , Modelos Animales de Enfermedad , Ratas Wistar , Quimiocina CX3CL1/metabolismo , Quimiocina CX3CL1/genética
15.
Angew Chem Int Ed Engl ; 63(12): e202318973, 2024 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-38272831

RESUMEN

Spreading depolarization (SD) is one of the most common neuropathologic phenomena in the nervous system, relating to numerous diseases. However, real-time monitoring the rapid chemical changes during SD to probe the molecular mechanism remains a great challenge. We develop a potentiometric dual-channel microsensor for simultaneous monitoring of H2 S and pH featuring excellent selectivity and spatiotemporal resolution. Using this microsensor we first observe real time changes of H2 S and pH in the rat brain induced by SD. This changes of H2 S are completely suppressed when the rat pre-treats with aminooxyacetic acid (AOAA), a blocker to inhibit the H2 S-producing enzyme, indicating H2 S fluctuation might be related to enzyme-dependent pathway during SD and less pH-dependent. This study provides a new perspective for studying the function of H2 S and the molecular basis of SD-associated diseases.


Asunto(s)
Encéfalo , Ratas , Animales , Potenciometría , Concentración de Iones de Hidrógeno
16.
J Neurochem ; 2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36810711

RESUMEN

Spreading depolarization (SD) is assumed to be the pathophysiological correlate of migraine aura, leading to spreading depression of activity and a long-lasting vasoconstriction known as spreading oligemia. Furthermore, cerebrovascular reactivity is reversibly impaired after SD. Here, we explored the progressive restoration of impaired neurovascular coupling to somatosensory activation during spreading oligemia. Also, we evaluated whether nimodipine treatment accelerated the recovery of impaired neurovascular coupling after SD. Male, 4-9-month-old C57BL/6 mice (n = 11) were anesthetized with isoflurane (1%-1.5%), and SD was triggered with KCl through a burr hole made at the caudal parietal bone. EEG and cerebral blood flow (CBF) were recorded minimally invasively with a silver ball electrode and transcranial laser-Doppler flowmetry, rostral to SD elicitation. The L-type voltage-gated Ca2+ channel blocker nimodipine was administered i.p. (10 mg/kg). Whisker stimulation-related evoked potentials (EVPs) and functional hyperemia were assessed under isoflurane (0.1%)-medetomidine (0.1 mg/kg i.p.) anesthesia before, and repeatedly after SD, at 15-min intervals for 75 minutes. Nimodipine accelerated the recovery of CBF from spreading oligemia (time to full recovery, 52 ± 13 vs. 70 ± 8 min, nimodipine vs. control) and exhibited a tendency to shorten the duration of the SD-related EGG depression duration. The amplitudes of EVP and functional hyperemia were markedly reduced after SD, and progressively recovered over an hour post-SD. Nimodipine exerted no impact on EVP amplitude but consistently increased the absolute level of functional hyperemia from 20 min post-CSD (93 ± 11% vs. 66 ± 13%, nimodipine vs. control). A linear, positive correlation between EVP and functional hyperemia amplitude was skewed by nimodipine. In conclusion, nimodipine facilitated CBF restoration from spreading oligemia and the recovery of functional hyperemia post-SD, which were linked to a tendency of an accelerated return of spontaneous neural activity after SD. The use of nimodipine in migraine prophylaxis is suggested to be re-visited.

17.
Neurobiol Dis ; 178: 106026, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36731681

RESUMEN

Spreading depolarizations (SDs) occur frequently in acute cerebral injuries. They are characterized by a breakdown of transmembrane ion gradients resulting in a reduced extracellular sodium ([Na+]o) and increased extracellular potassium concentration ([K+]o). Elevated [K+]o induces astrocytic swelling, another feature of SD; however, the solutes that drive astrocytic swelling remain incompletely understood. We incidentally found astrocytic accumulation of fluorescein (Fluo) - a low molecular weight anionic dye - during SDs induced by elevated [K+]o. Herein, we aimed to explore the properties of astrocytic Fluo accumulation during SDs, electrical stimulation, [K+]o and glutamate elevation and elucidate underlying mechanisms and its relation to swelling. Experiments were performed in acute neocortical slices from adult male C57Bl6 mice and transgenic mice expressing tdTomato in parvalbumin (PV)-positive neurons. We labeled astrocytes with sulforhodamine-101 (SR-101), measured Fluo kinetics using 2-photon laser scanning microscopy and recorded local field potentials (LFP) to detect SDs. Elevations of [K+]o lead to an increase of the astrocytic Fluo intensity in parallel with astrocytic swelling. Pharmacological inhibitors of sodium­potassium ATPase (Na/K-ATPase), secondary-active transporters and channels were used to address the underlying mechanisms. Fluo accumulation as well as swelling were only prevented by inhibition of the sodium­potassium ATPase. Application of glutamate or hypoosmolar solution induced astrocytic swelling independent of Fluo accumulation and glutamate opposed Fluo accumulation when co-administered with high [K+]o. Astrocytes accumulated Fluo and swelled during electrical stimulation and even more during SDs. Taken together, Fluo imaging can be used as a tool to visualize yet unidentified anion fluxes during [K+]o- but not glutamate- or hypoosmolarity induced astrocytic swelling. Fluo imaging may thereby help to elucidate mechanisms of astrocytic swelling and associated fluid movements between brain compartments during physiological and pathological conditions, e.g. SDs.


Asunto(s)
Astrocitos , ATPasa Intercambiadora de Sodio-Potasio , Masculino , Animales , Ratones , Astrocitos/metabolismo , Ratones Endogámicos C57BL , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Ratones Transgénicos , Ácido Glutámico/metabolismo , Potasio/metabolismo , Sodio/metabolismo , Fluoresceínas/metabolismo
18.
Neurobiol Dis ; 186: 106269, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37619791

RESUMEN

Traumatic brain injury (TBI) involves an acute injury (primary damage), which may evolve in the hours to days after impact (secondary damage). Seizures and cortical spreading depolarization (CSD) are metabolically demanding processes that may worsen secondary brain injury. Metabolic stress has been associated with mitochondrial dysfunction, including impaired calcium homeostasis, reduced ATP production, and elevated ROS production. However, the association between mitochondrial impairment and vascular function after TBI is poorly understood. Here, we explored this association using a rodent closed head injury model. CSD is associated with neurobehavioral decline after TBI. Craniotomy was performed to elicit CSD via electrical stimulation or to induce seizures via 4-aminopyridine application. We measured vascular dysfunction following CSDs and seizures in TBI animals using laser doppler flowmetry. We observed a more profound reduction in local cortical blood flow in TBI animals compared to healthy controls. CSD resulted in mitochondrial dysfunction and pathological signs of increased oxidative stress adjacent to the vasculature. We explored these findings further using electron microscopy and found that TBI and CSDs resulted in vascular morphological changes and mitochondrial cristae damage in astrocytes, pericytes and endothelial cells. Overall, we provide evidence that CSDs induce mitochondrial dysfunction, impaired cortical blood flow, and neurobehavioral deficits in the setting of TBI.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Lesiones Encefálicas , Acoplamiento Neurovascular , Animales , Células Endoteliales , Lesiones Traumáticas del Encéfalo/complicaciones
19.
J Neuroinflammation ; 20(1): 295, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38082296

RESUMEN

The role of high mobility group box 1 (HMGB1) in inflammation is well characterized in the immune system and in response to tissue injury. More recently, HMGB1 was also shown to initiate an "inflammatory signaling cascade" in the brain parenchyma after a mild and brief disturbance, such as cortical spreading depolarization (CSD), leading to headache. Despite substantial evidence implying a role for inflammatory signaling in prevalent neuropsychiatric disorders such as migraine and depression, how HMGB1 is released from healthy neurons and how inflammatory signaling is initiated in the absence of apparent cell injury are not well characterized. We triggered a single cortical spreading depolarization by optogenetic stimulation or pinprick in naïve Swiss albino or transgenic Thy1-ChR2-YFP and hGFAP-GFP adult mice. We evaluated HMGB1 release in brain tissue sections prepared from these mice by immunofluorescent labeling and immunoelectron microscopy. EzColocalization and Costes thresholding algorithms were used to assess the colocalization of small extracellular vesicles (sEVs) carrying HMGB1 with astrocyte or microglia processes. sEVs were also isolated from the brain after CSD, and neuron-derived sEVs were captured by CD171 (L1CAM). sEVs were characterized with flow cytometry, scanning electron microscopy, nanoparticle tracking analysis, and Western blotting. We found that HMGB1 is released mainly within sEVs from the soma of stressed neurons, which are taken up by surrounding astrocyte processes. This creates conditions for selective communication between neurons and astrocytes bypassing microglia, as evidenced by activation of the proinflammatory transcription factor NF-ĸB p65 in astrocytes but not in microglia. Transmission immunoelectron microscopy data illustrated that HMGB1 was incorporated into sEVs through endosomal mechanisms. In conclusion, proinflammatory mediators released within sEVs can induce cell-specific inflammatory signaling in the brain without activating transmembrane receptors on other cells and causing overt inflammation.


Asunto(s)
Astrocitos , Proteína HMGB1 , Animales , Ratones , Astrocitos/metabolismo , Proteína HMGB1/metabolismo , Inflamación/etiología , Neuronas/metabolismo , Transducción de Señal
20.
J Neurosci Res ; 101(6): 976-989, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36747471

RESUMEN

While numerous studies have suggested the involvement of cerebrovascular dysfunction in the pathobiology of blast-induced traumatic brain injury (bTBI), its exact mechanisms and how they affect the outcome of bTBI are not fully understood. Our previous study showed the occurrence of cortical spreading depolarization (CSD) and subsequent long-lasting oligemia/hypoxemia in the rat brain exposed to a laser-induced shock wave (LISW). We hypothesized that this hemodynamic abnormality is associated with shock wave-induced generation of nitric oxide (NO). In this study, to verify this hypothesis, we used an NO-sensitive fluorescence probe, diaminofluorescein-2 diacetate (DAF-2 DA), for real-time in vivo imaging of male Sprague-Dawley rats' brain exposed to a mild-impulse LISW. We observed the most intense fluorescence, indicative of NO production, along the pial arteriolar walls during the period of 10-30 min post-exposure, parallel with CSD occurrence. This post-exposure period also coincided with the early phase of hemodynamic abnormalities. While the changes in arteriolar wall fluorescence measured in rats receiving pharmacological NO synthase inhibition by nitro-L-arginine methyl ester (L-NAME) 24 h before exposure showed a temporal profile similar to that of changes observed in LISW-exposed rats with CSD, their intensity level was considerably lower; this suggests partial involvement of NOS in shock wave-induced NO production. To the best of our knowledge, this is the first real-time in vivo imaging of NO in rat brain, confirming the involvement of NO in shock-wave-induced hemodynamic impairments. Finally, we have outlined the limitations of this study and our future research directions.


Asunto(s)
Depresión de Propagación Cortical , Óxido Nítrico , Ratas , Masculino , Animales , Óxido Nítrico/farmacología , Ratas Sprague-Dawley , Depresión de Propagación Cortical/fisiología , Encéfalo , Óxido Nítrico Sintasa , Inhibidores Enzimáticos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA