Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Int J Mol Sci ; 24(8)2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37108627

RESUMEN

Age-related macular degeneration (AMD) is the leading cause of blindness in developed countries. AMD is characterized by the formation of lipidic deposits between the retinal pigment epithelium (RPE) and the choroid called drusen. 7-Ketocholesterol (7KCh), an oxidized-cholesterol derivative, is closely related to AMD as it is one of the main molecules accumulated in drusen. 7KCh induces inflammatory and cytotoxic responses in different cell types, and a better knowledge of the signaling pathways involved in its response would provide a new perspective on the molecular mechanisms that lead to the development of AMD. Furthermore, currently used therapies for AMD are not efficient enough. Sterculic acid (SA) attenuates the 7KCh response in RPE cells and is presented as an alternative to improve these therapies. By using genome-wide transcriptomic analysis in monkey RPE cells, we have provided new insight into 7KCh-induced signaling in RPE cells, as well as the protective capacity of SA. 7KCh modulates the expression of several genes associated with lipid metabolism, endoplasmic reticulum stress, inflammation and cell death and induces a complex response in RPE cells. The addition of SA successfully attenuates the deleterious effect of 7KCh and highlights its potential for the treatment of AMD.


Asunto(s)
Degeneración Macular , Transcriptoma , Humanos , Cetocolesteroles/farmacología , Epitelio Pigmentado de la Retina/metabolismo , Degeneración Macular/metabolismo , Epitelio/metabolismo
2.
Angew Chem Int Ed Engl ; 61(38): e202207640, 2022 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-35838324

RESUMEN

In the field of lipid research, bioorthogonal chemistry has made the study of lipid uptake and processing in living systems possible, whilst minimising biological properties arising from detectable pendant groups. To allow the study of unsaturated free fatty acids in live cells, we here report the use of sterculic acid, a 1,2-cyclopropene-containing oleic acid analogue, as a bioorthogonal probe. We show that this lipid can be readily taken up by dendritic cells without toxic side effects, and that it can subsequently be visualised using an inverse electron-demand Diels-Alder reaction with quenched tetrazine-fluorophore conjugates. In addition, the lipid can be used to identify changes in protein oleoylation after immune cell activation. Finally, this reaction can be integrated into a multiplexed bioorthogonal reaction workflow by combining it with two sequential copper-catalysed Huisgen ligation reactions. This allows for the study of multiple biomolecules in the cell simultaneously by multimodal confocal imaging.


Asunto(s)
Ácidos Grasos , Compuestos Heterocíclicos , Reacción de Cicloadición , Ciclopropanos , Ácidos Grasos Monoinsaturados , Colorantes Fluorescentes/química , Compuestos Heterocíclicos/química , Ionóforos
3.
J Dairy Sci ; 104(2): 2384-2395, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33246605

RESUMEN

The objective of the current study was first to characterize lipid raft microdomains isolated as detergent-resistant membranes (DRM) from mammary gland tissue, and second to determine how dietary fatty acids (FA) such as conjugated linoleic acid (CLA), 19:1 cyclo, and long-chain n-3 polyunsaturated FA affect lipid raft markers of mammary cells, and to finally establish relationships between these markers and lactation performance in dairy cows. Eight Holstein cows were used in a replicated 4 × 4 Latin square design with periods of 28 d. For the first 14 d, cows received daily an abomasal infusion of (1) 406 g of a saturated FA supplement (112 g of 16:0 + 230 g of 18:0) used as a control; (2) 36 g of a CLA supplement (13.9 g of trans-10,cis-12 18:2) + 370 g of saturated FA; (3) 7 g of Sterculia fetida oil (3.1 g of 19:1 cyclo, STO) + 399 g of saturated FA; or (4) 406 g of fish oil (55.2 g of cis-5,cis-8,cis-11,cis-14,cis-17 20:5 + 59.3 g of cis-4,cis-7,cis-10,cis-13,cis-16,cis-19 22:6, FO). Mammary biopsies were harvested on d 14 of each infusion period and were followed by a 14-d washout interval. Cholera toxin subunit B, which specifically binds to ganglioside M-1 (GM-1), a lipid raft marker, was used to assess its distribution in DRM. Infusions of CLA, STO, and FO were individually compared with the control, and significance was declared at P ≤ 0.05. Milk fat yield was decreased with CLA and FO, but was not affected by STO. Milk lactose yield was decreased with CLA and STO, but was not affected by FO. Mammary tissue shows a strong GM-1-signal enrichment in isolated DRM from mammary gland tissue. Caveolin (CAV) and flotillin (FLOT) are 2 proteins considered as lipid raft markers and they are present in DRM from mammary gland tissue. Distributions of GM-1, CAV-1, and FLOT-1 showed an effect of treatments determined by their subcellular distributions in sucrose gradient fractions. Regardless of treatments, data showed positive relationships between the yield of milk fat, protein, and lactose, and the abundance GM-1 in DRM fraction. Milk protein yield was positively correlated with relative proportion of FLOT-1 in the soluble fraction, whereas lactose yield was positively correlated with relative proportion of CAV-1 in the DRM fractions. Infusion of CLA decreased mRNA abundance of CAV-1, FLOT-1, and FLOT-2. Regardless of treatments, a positive relationship was observed between fat yield and mRNA abundance of FLOT-2. In conclusion, although limited to a few markers, results of the current experiment raised potential links between variation in specific biologically active component of raft microdomains in bovine mammary gland and lactation performances in dairy cows.


Asunto(s)
Alimentación Animal , Grasas de la Dieta/farmacología , Suplementos Dietéticos , Ácidos Grasos/farmacología , Glándulas Mamarias Animales/efectos de los fármacos , Microdominios de Membrana/metabolismo , Abomaso/metabolismo , Animales , Bovinos , Dieta/veterinaria , Femenino , Aceites de Pescado/administración & dosificación , Lactancia/efectos de los fármacos , Ácidos Linoleicos Conjugados/farmacología , Microdominios de Membrana/efectos de los fármacos , Leche/metabolismo , Proteínas de la Leche/metabolismo , Sterculia
4.
Korean J Parasitol ; 54(2): 139-45, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27180571

RESUMEN

Toxoplasmosis is a serious disease caused by Toxoplasma gondii, one of the most widespread parasites in the world. Lipid metabolism is important in the intracellular stage of T. gondii. Stearoyl-CoA desaturase (SCD), a key enzyme for the synthesis of unsaturated fatty acid is predicted to exist in T. gondii. Sterculic acid has been shown to specifically inhibit SCD activity. Here, we examined whether sterculic acid and its methyl ester analogues exhibit anti-T. gondii effects in vitro. T. gondii-infected Vero cells were disintegrated at 36 hr because of the propagation and egress of intracellular tachyzoites. All test compounds inhibited tachyzoite propagation and egress, reducing the number of ruptured Vero cells by the parasites. Sterculic acid and the methyl esters also inhibited replication of intracellular tachyzoites in HFF cells. Among the test compounds, sterculic acid showed the most potent activity against T. gondii, with an EC50 value of 36.2 µM, compared with EC50 values of 248-428 µM for the methyl esters. Our study demonstrated that sterculic acid and its analogues are effective in inhibition of T. gondii growth in vitro, suggesting that these compounds or analogues targeting SCD could be effective agents for the treatment of toxoplasmosis.


Asunto(s)
Antiprotozoarios/farmacología , Ciclopropanos/farmacología , Ácidos Grasos Monoinsaturados/farmacología , Estearoil-CoA Desaturasa/antagonistas & inhibidores , Toxoplasma/efectos de los fármacos , Toxoplasmosis/tratamiento farmacológico , Animales , Línea Celular , Chlorocebus aethiops , Ácidos Grasos Insaturados/biosíntesis , Humanos , Toxoplasma/crecimiento & desarrollo , Toxoplasmosis/parasitología , Células Vero
5.
J Dairy Sci ; 97(10): 6411-25, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25064649

RESUMEN

The purpose of this study was to determine the effects of conjugated linoleic acid (CLA), Sterculia foetida oil (STO), and fish oil (FO) on milk yield and composition, milk FA profile, Δ(9)-desaturation activity, and mammary expression of 2 isoforms of stearoyl-coenzyme A desaturase (SCD-1 and SCD-5) in lactating dairy cows. Eight multiparous Holstein cows (69 ± 13 d postpartum) were used in a double 4 × 4 Latin square design with 28-d periods. For the first 14 d of each period, cows received an abomasal infusion of (1) 406 g of a saturated fatty acid (SFA) supplement (112 g of 16:0 + 230 g of 18:0) used as a control (CTL), (2) 36 g of a CLA supplement (13.9 g of trans-10,cis-12 18:2) + 370 g of SFA, (3) 7 g of STO (3.1g of 19:1 cyclo) + 399 g of SFA, or (4) 406 g of FO (55.2 g of cis-5,-8,-11,-14,-17 20:5 + 59.3 g of cis-4,-7,-10,-13,-16,-19 22:6). Infusions were followed by a 14-d washout interval. Compared with CTL, STO decreased milk yield from 38.0 to 33.0 kg/d, and increased milk fat concentration from 3.79 to 4.45%. Milk fat concentration was also decreased by CLA (2.23%) and FO (3.34%). Milk fat yield was not affected by STO (1,475 g/d) compared with CTL (1,431 g/d), but was decreased by CLA (774 g/d) and FO (1,186 g/d). Desaturase indices for 10:0, 12:0, and 20:0 were decreased, whereas the extent of desaturation of 14:0, 16:0, 17:0, and 18:0 was not affected by CLA treatment compared with CTL. Infusion of STO significantly decreased all calculated desaturase indices compared with CTL; the 14:0 index was reduced by 80.7%. Infusion of FO decreased the desaturase indices for 10:0, 14:0, 20:0, trans-11 18:1, and 18:0. The effect of FO on the 14:0 index indicates a decrease in apparent Δ(9)-desaturase activity of 30.2%. Compared with CTL, mammary mRNA abundance of SCD-1 was increased by STO (+30%) and decreased by CLA (-24%), whereas FO had no effect. No effect was observed on mRNA abundance of SCD-5. In conclusion, abomasal infusion of CLA, STO, and FO were shown to exhibit varying and distinct effects on desaturase indices, an indicator of apparent SCD activity, and mammary mRNA abundance of SCD-1.


Asunto(s)
Bovinos/fisiología , Aceites de Pescado/farmacología , Ácidos Linoleicos Conjugados/farmacología , Leche/metabolismo , Aceites de Plantas/farmacología , Estearoil-CoA Desaturasa/metabolismo , Abomaso/metabolismo , Animales , Suplementos Dietéticos , Ácidos Grasos/metabolismo , Femenino , Infusiones Parenterales/veterinaria , Lactancia , Ácidos Linoleicos Conjugados/administración & dosificación , Leche/química , Estearoil-CoA Desaturasa/genética , Sterculia/química
6.
Pharmaceutics ; 15(11)2023 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-38004569

RESUMEN

Age-related macular degeneration (AMD) is the main cause of blindness in developed countries. AMD is characterized by the formation of drusen, which are lipidic deposits, between retinal pigment epithelium (RPE) and the choroid. One of the main molecules accumulated in drusen is 7-Ketocholesterol (7KCh), an oxidized-cholesterol derivative. It is known that 7KCh induces inflammatory and cytotoxic responses in different cell types and the study of its mechanism of action is interesting in order to understand the development of AMD. Sterculic acid (SA) counteracts 7KCh response in RPE cells and could represent an alternative to improve currently used AMD treatments, which are not efficient enough. In the present study, we determine that 7KCh induces a complex cell death signaling characterized by the activation of necrosis and an alternative pyroptosis mediated by P2X7, p38 and GSDME, a new mechanism not yet related to the response to 7KCh until now. On the other hand, SA treatment can successfully attenuate the activation of both necrosis and pyroptosis, highlighting its therapeutic potential for the treatment of AMD.

7.
Cancers (Basel) ; 13(17)2021 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-34503180

RESUMEN

Sterculic acid (SA) is a cyclopropenoid fatty acid isolated from Sterculia foetida seeds. This molecule is a well-known inhibitor of SCD1 enzyme, also known as ∆9-desaturase, which main function is related to lipid metabolism. However, recent studies have demonstrated that it also modifies many other pathways and the underlying gene expression. SCD overexpression, or up-regulated activity, has been associated with tumor aggressiveness and poor prognosis in many cancer types. Scd1 down-regulation, with different inhibitors or molecular strategies, reduces tumor cell survival and cell proliferation, as well as the chemoresistance associated with cancer stem cell presence. However, SA effects over cancer cell migration and extracellular matrix or adhesion molecules have not been described in cancer cells up to now. We used different migration assays and qPCR gene expression analysis to evaluate the effects of SA treatment in cancer cells. The results reveal that SA induces tumoral cell death at high doses, but we also observed that lower SA-treatments induce cell adhesion-migration capacity reduction as a result of modifications in the expression of genes related to integrins and extracellular matrix compounds. Overall, the functional and transcriptomic findings suggest that SA could represent a new inhibitor activity of epithelial to mesenchymal transition.

8.
Cells ; 9(1)2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31936134

RESUMEN

In many tissues, stearoyl-CoA desaturase 1 (SCD1) catalyzes the biosynthesis of monounsaturated fatty acids (MUFAS),(i.e., palmitoleate and oleate) from their saturated fatty acid (SFA) precursors (i.e., palmitate and stearate), influencing cellular membrane physiology and signaling, leading to broad effects on human physiology. In addition to its predominant role in lipid metabolism and body weight control, SCD1 has emerged recently as a potential new target for the treatment for various diseases, such as nonalcoholic steatohepatitis, Alzheimer's disease, cancer, and skin disorders. Sterculic acid (SA) is a cyclopropene fatty acid originally found in the seeds of the plant Sterculia foetida with numerous biological activities. On the one hand, its ability to inhibit stearoyl-CoA desaturase (SCD) allows its use as a coadjuvant of several pathologies where this enzyme has been associated. On the other hand, additional effects independently of its SCD inhibitory properties, involve anti-inflammatory and protective roles in retinal diseases such as age-related macular degeneration (AMD). This review aims to summarize the mechanisms by which SA exerts its actions and to highlight the emerging areas where this natural compound may be of help for the development of new therapies for human diseases.


Asunto(s)
Ciclopropanos/farmacología , Ciclopropanos/uso terapéutico , Enfermedad , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Ácidos Grasos Monoinsaturados/farmacología , Ácidos Grasos Monoinsaturados/uso terapéutico , Estearoil-CoA Desaturasa/antagonistas & inhibidores , Ciclopropanos/química , Inhibidores Enzimáticos/química , Ácidos Grasos Monoinsaturados/química , Humanos , Transducción de Señal
9.
Cells ; 9(5)2020 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-32403229

RESUMEN

In addition to its predominant role in lipid metabolism and body weight control, SCD1 has emerged recently as a potential new target for the treatment of various diseases. Sterculic acid (SA) is a cyclopropene fatty acid with numerous biological activities, generally attributed to its Stearoyl-CoA desaturase (SCD) inhibitory properties. Additional effects exerted by SA, independently of SCD inhibition, may be mediating anti-inflammatory and protective roles in retinal diseases such as age-related macular degeneration (AMD), but the mechanisms involved are poorly understood. In order to provide insights into those mechanisms, genome-wide transcriptomic analyses were carried out in mRPE cells exposed to SA for 24 h. Integrative functional enrichment analysis of genome-wide expression data provided biological insight about the protective mechanisms induced by SA. On the one hand, pivotal genes related to fatty acid biosynthesis, steroid biosynthesis, cell death, actin-cytoskeleton reorganization and extracellular matrix-receptor interaction were significantly downregulated by exposition to SA. On the other hand, genes related to fatty acid degradation and beta-oxidation were significantly upregulated. In conclusion, SA administration to RPE cells regulates crucial pathways related to cell proliferation, inflammation and cell death that may be of interest for the treatment of ocular diseases.


Asunto(s)
Ciclopropanos/farmacología , Células Epiteliales/metabolismo , Ácidos Grasos Monoinsaturados/farmacología , Genoma , Epitelio Pigmentado de la Retina/citología , Transcriptoma/genética , Animales , Muerte Celular/efectos de los fármacos , Línea Celular , Ciclopropanos/administración & dosificación , Células Epiteliales/efectos de los fármacos , Ácidos Grasos Monoinsaturados/administración & dosificación , Regulación de la Expresión Génica/efectos de los fármacos , Ontología de Genes , Haplorrinos , Humanos , Cetocolesteroles/farmacología , Oxadiazoles/farmacología , Sustancias Protectoras/farmacología , Piridazinas/farmacología , Transcriptoma/efectos de los fármacos
10.
Foods ; 9(7)2020 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-32650618

RESUMEN

Cyclopropenoid fatty acids (CPEFA), found in oilseeds from Malvaceae and Sterculiaceae, have been shown to interfere with the endogenous synthesis of several bioactive lipids of dairy fat, such as cis-9, trans-11 18:2 and cis-9 18:1, by inhibiting Δ9-desaturase. No previous study has reported the presence of sterculic acid in animal fat and its incorporation in tissues after its administration, due to the lack of a proper methodology. In the present research, a GC-MS method based on cold base derivatization to fatty acids methylesters was developed to determine CPEFA in ewe milk triglycerides, after infusing sterculic acid (0.5 g/day) to six lactating ewes. An alternative derivatization based on silanyzation followed by GC-MS analysis was also tested, showing its possible applicability when CPEFA are present in the form of free fatty acids. Sterculic acid was detected in ewe milk triglycerides, demonstrating its incorporation from the bloodstream into milk by the mammary gland. The mean transfer rate represented 8.0 ± 1.0% of the daily dose. This study provides, for the first time, the presence of sterculic acid in milk fat, supporting the importance of understanding its occurrence in vivo and encouraging further research to determine whether it can be present in foods, such as dairy products, obtained under practical farming conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA