Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.029
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(29): e2323040121, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38985761

RESUMEN

Stomata in leaves regulate gas (carbon dioxide and water vapor) exchange and water transpiration between plants and the atmosphere. SLow Anion Channel 1 (SLAC1) mediates anion efflux from guard cells and plays a crucial role in controlling stomatal aperture. It serves as a central hub for multiple signaling pathways in response to environmental stimuli, with its activity regulated through phosphorylation via various plant protein kinases. However, the molecular mechanism underlying SLAC1 phosphoactivation has remained elusive. Through a combination of protein sequence analyses, AlphaFold-based modeling and electrophysiological studies, we unveiled that the highly conserved motifs on the N- and C-terminal segments of SLAC1 form a cytosolic regulatory domain (CRD) that interacts with the transmembrane domain(TMD), thereby maintaining the channel in an autoinhibited state. Mutations in these conserved motifs destabilize the CRD, releasing autoinhibition in SLAC1 and enabling its transition into an activated state. Our further studies demonstrated that SLAC1 activation undergoes an autoinhibition-release process and subsequent structural changes in the pore helices. These findings provide mechanistic insights into the activation mechanism of SLAC1 and shed light on understanding how SLAC1 controls stomatal closure in response to environmental stimuli.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Estomas de Plantas , Transducción de Señal , Fosforilación , Estomas de Plantas/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Dominios Proteicos , Mutación
2.
Proc Natl Acad Sci U S A ; 121(4): e2309006120, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38190516

RESUMEN

Improving water use efficiency in crops is a significant challenge as it involves balancing water transpiration and CO2 uptake through stomatal pores. This study investigates the role of SlROP9, a tomato Rho of Plants protein, in guard cells and its impact on plant transpiration. The results reveal that SlROP9 null mutants exhibit reduced stomatal conductance while photosynthetic CO2 assimilation remains largely unaffected. Notably, there is a notable decrease in whole-plant transpiration in the rop9 mutants compared to the wild type, especially during noon hours when the water pressure deficit is high. The elevated stomatal closure observed in rop9 mutants is linked to an increase in reactive oxygen species formation. This is very likely dependent on the respiratory burst oxidase homolog (RBOH) NADPH oxidase and is not influenced by abscisic acid (ABA). Consistently, activated ROP9 can interact with RBOHB in both yeast and plants. In diverse tomato accessions, drought stress represses ROP9 expression, and in Arabidopsis stomatal guard cells, ABA suppresses ROP signaling. Therefore, the phenotype of the rop9 mutants may arise from a disruption in ROP9-regulated RBOH activity. Remarkably, large-scale field experiments demonstrate that the rop9 mutants display improved water use efficiency without compromising fruit yield. These findings provide insights into the role of ROPs in guard cells and their potential as targets for enhancing water use efficiency in crops.


Asunto(s)
Arabidopsis , Solanum lycopersicum , Solanum lycopersicum/genética , Productos Agrícolas , Proteínas de Plantas/genética , Ácido Abscísico , Arabidopsis/genética
3.
Development ; 150(23)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37997741

RESUMEN

Adaptation to dehydration stress requires plants to coordinate environmental and endogenous signals to inhibit stomatal proliferation and modulate their patterning. The stress hormone abscisic acid (ABA) induces stomatal closure and restricts stomatal lineage to promote stress tolerance. Here, we report that mutants with reduced ABA levels, xer-1, xer-2 and aba2-2, developed stomatal clusters. Similarly, the ABA signaling mutant snrk2.2/2.3/2.6, which lacks core ABA signaling kinases, also displayed stomatal clusters. Exposure to ABA or inhibition of ABA catabolism rescued the increased stomatal density and spacing defects observed in xer and aba2-2, suggesting that basal ABA is required for correct stomatal density and spacing. xer-1 and aba2-2 displayed reduced expression of EPF1 and EPF2, and enhanced expression of SPCH and MUTE. Furthermore, ABA suppressed elevated SPCH and MUTE expression in epf2-1 and epf1-1, and partially rescued epf2-1 stomatal index and epf1-1 clustering defects. Genetic analysis demonstrated that XER acts upstream of the EPF2-SPCH pathway to suppress stomatal proliferation, and in parallel with EPF1 to ensure correct stomatal spacing. These results show that basal ABA and functional ABA signaling are required to fine-tune stomatal density and patterning.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Estomas de Plantas/metabolismo , Transducción de Señal/genética , Proliferación Celular/genética , Regulación de la Expresión Génica de las Plantas
4.
Proc Natl Acad Sci U S A ; 120(14): e2220270120, 2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-36972429

RESUMEN

Control of carbon dioxide and water vapor exchange between a leaf's interior and the surrounding air is accomplished by variations in the turgor pressures in the small epidermal and guard cells that cover the leaf's surface. These pressures respond to changes in light intensity and wavelength, temperature, CO2 concentration, and air humidity. The dynamical equations that describe such processes are formally identical to those that define computation in a two-layer, adaptive, cellular nonlinear network. This exact identification suggests that leaf gas-exchange processes can be understood as analog computation and that exploiting the output of two-layer, adaptive, cellular nonlinear networks might provide new tools in applied plant research.


Asunto(s)
Hojas de la Planta , Estomas de Plantas , Luz , Presión , Dióxido de Carbono
5.
Proc Natl Acad Sci U S A ; 120(52): e2310670120, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38113262

RESUMEN

In plants, epidermal guard cells integrate and respond to numerous environmental signals to control stomatal pore apertures, thereby regulating gas exchange. Chromatin structure controls transcription factor (TF) access to the genome, but whether large-scale chromatin remodeling occurs in guard cells during stomatal movements, and in response to the hormone abscisic acid (ABA) in general, remains unknown. Here, we isolate guard cell nuclei from Arabidopsis thaliana plants to examine whether the physiological signals, ABA and CO2 (carbon dioxide), regulate guard cell chromatin during stomatal movements. Our cell type-specific analyses uncover patterns of chromatin accessibility specific to guard cells and define cis-regulatory sequences supporting guard cell-specific gene expression. We find that ABA triggers extensive and dynamic chromatin remodeling in guard cells, roots, and mesophyll cells with clear patterns of cell type specificity. DNA motif analyses uncover binding sites for distinct TFs enriched in ABA-induced and ABA-repressed chromatin. We identify the Abscisic Acid Response Element (ABRE) Binding Factor (ABF) bZIP-type TFs that are required for ABA-triggered chromatin opening in guard cells and roots and implicate the inhibition of a clade of bHLH-type TFs in controlling ABA-repressed chromatin. Moreover, we demonstrate that ABA and CO2 induce distinct programs of chromatin remodeling, whereby elevated atmospheric CO2 had only minimal impact on chromatin dynamics. We provide insight into the control of guard cell chromatin dynamics and propose that ABA-induced chromatin remodeling primes the genome for abiotic stress resistance.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico/farmacología , Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Dióxido de Carbono/metabolismo , Cromatina/genética , Cromatina/metabolismo , Estomas de Plantas/metabolismo , Arabidopsis/metabolismo
6.
Trends Biochem Sci ; 46(12): 992-1002, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34303585

RESUMEN

Tropospheric ozone (O3) is among the most damaging air pollutant to plants. Plants alter the atmospheric O3 concentration in two distinct ways: (i) by the emission of volatile organic compounds (VOCs) that are precursors of O3; and (ii) by dry deposition, which includes diffusion of O3 into vegetation through stomata and destruction by nonstomatal pathways. Isoprene, monoterpenes, and higher terpenoids are emitted by plants in quantities that alter tropospheric O3. Deposition of O3 into vegetation is related to stomatal conductance, leaf structural traits, and the detoxification capacity of the apoplast. The biochemical fate of O3 once it enters leaves and reacts with aqueous surfaces is largely unknown, but new techniques for the tracking and identification of initial products have the potential to open the black box.


Asunto(s)
Contaminantes Atmosféricos , Ozono , Compuestos Orgánicos Volátiles , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/metabolismo , Contaminantes Atmosféricos/farmacología , Ozono/análisis , Ozono/metabolismo , Ozono/farmacología , Hojas de la Planta/metabolismo , Plantas/metabolismo , Compuestos Orgánicos Volátiles/metabolismo , Compuestos Orgánicos Volátiles/farmacología
7.
Plant J ; 120(2): 699-711, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39240190

RESUMEN

The lenticel is a channel-like structure that facilitates oxygen, carbon dioxide, and water vapor exchange on secondary growth tissue, such as a tree stem. Although the structure of lenticel has been described, there is limited understanding regarding the impact of this secondary structure on secondary growth as well as the cellular and metabolic processes underlying its formation. The study reveals the essential role of the lenticel in the process of tree secondary growth and the cellular and metabolic processes that take place during its formation. Under the stomata, lenticel development occurs when cells divide and differentiate into a structure of disconnected cells with air spaces between them. During lenticel formation, specific metabolic pathways and wax biosynthesis are activated. The SERK (somatic embryogenesis receptor kinase) gene controls lenticel density, and serk1serk3serk5 triple mutants enhance lenticel initiation. The findings shed light on the cellular and metabolic processes involved in lenticel formation, laying the groundwork for further mechanistic elucidation of their development, function, and genetic regulation in trees.


Asunto(s)
Tallos de la Planta , Árboles , Tallos de la Planta/crecimiento & desarrollo , Tallos de la Planta/genética , Tallos de la Planta/metabolismo , Árboles/genética , Árboles/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ceras/metabolismo , Estomas de Plantas/crecimiento & desarrollo , Estomas de Plantas/genética , Estomas de Plantas/metabolismo , Estomas de Plantas/citología
8.
Plant J ; 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39410670

RESUMEN

Understanding the relationship between wind speed and gas exchange in plants is a longstanding challenge. Our aim was to investigate the impact of wind speed on maximum rates of gas exchange and the kinetics of stomatal responses. We conducted experiments in different angiosperm and fern species using an infrared gas analyzer equipped with a controlled leaf fan, enabling precise control of the boundary layer conductance. We first showed that the chamber was adequately mixed even at extremely low wind speed (<0.005 m s-1) and evaluated the link between fan speed, wind speed, and boundary layer conductance. We observed that higher wind speeds led to increased gas exchange of both water vapor and CO2, primarily due to the increase in boundary layer conductance. This increase in transpiration subsequently reduced epidermal pressure, leading to stomatal opening. We documented that stomatal opening in response to light was 2.5 times faster at a wind speed of 2 m s-1 compared to minimal wind speed in Vicia faba, while epidermal peels in a buffer with no transpiration exhibited a similar opening rate. The increase in stomatal conductance under high wind was also observed in four angiosperm species under field conditions, but it was not observed in Boston fern (Nephrolepis exaltata), which lacks epidermal mechanical advantage. Our findings highlight the significant impact of boundary layer conductance on determining gas exchange rates and the kinetics of gas exchange responses to environmental changes.

9.
Plant J ; 118(4): 1036-1053, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38289468

RESUMEN

In plants so-called plasma membrane intrinsic proteins (PIPs) are major water channels governing plant water status. Membrane trafficking contributes to functional regulation of major PIPs and is crucial for abiotic stress resilience. Arabidopsis PIP2;1 is rapidly internalised from the plasma membrane in response to high salinity to regulate osmotic water transport, but knowledge of the underlying mechanisms is fragmentary. Here we show that PIP2;1 occurs in complex with SYNTAXIN OF PLANTS 132 (SYP132) together with the plasma membrane H+-ATPase AHA1 as evidenced through in vivo and in vitro analysis. SYP132 is a multifaceted vesicle trafficking protein, known to interact with AHA1 and promote endocytosis to impact growth and pathogen defence. Tracking native proteins in immunoblot analysis, we found that salinity stress enhances SYP132 interactions with PIP2;1 and PIP2;2 isoforms to promote redistribution of the water channels away from the plasma membrane. Concurrently, AHA1 binding within the SYP132-complex was significantly reduced under salinity stress and increased the density of AHA1 proteins at the plasma membrane in leaf tissue. Manipulating SYP132 function in Arabidopsis thaliana enhanced resilience to salinity stress and analysis in heterologous systems suggested that the SNARE influences PIP2;1 osmotic water permeability. We propose therefore that SYP132 coordinates AHA1 and PIP2;1 abundance at the plasma membrane and influences leaf hydraulics to regulate plant responses to abiotic stress signals.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas Qa-SNARE , Estrés Salino , Acuaporinas/metabolismo , Acuaporinas/genética , Arabidopsis/fisiología , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Membrana Celular/metabolismo , Transporte de Proteínas , ATPasas de Translocación de Protón/metabolismo , ATPasas de Translocación de Protón/genética , Proteínas Qa-SNARE/metabolismo , Proteínas Qa-SNARE/genética , Proteínas SNARE/metabolismo , Proteínas SNARE/genética
10.
Plant J ; 118(6): 1719-1731, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38569066

RESUMEN

Stomata are pores at the leaf surface that enable gas exchange and transpiration. The signaling pathways that regulate the differentiation of stomatal guard cells and the mechanisms of stomatal pore formation have been characterized in Arabidopsis thaliana. However, the process by which stomatal complexes develop after pore formation into fully mature complexes is poorly understood. We tracked the morphogenesis of young stomatal complexes over time to establish characteristic geometric milestones along the path of stomatal maturation. Using 3D-nanoindentation coupled with finite element modeling of young and mature stomata, we found that despite having thicker cell walls than young guard cells, mature guard cells are more energy efficient with respect to stomatal opening, potentially attributable to the increased mechanical anisotropy of their cell walls and smaller changes in turgor pressure between the closed and open states. Comparing geometric changes in young and mature guard cells of wild-type and cellulose-deficient plants revealed that although cellulose is required for normal stomatal maturation, mechanical anisotropy appears to be achieved by the collective influence of cellulose and additional wall components. Together, these data elucidate the dynamic geometric and biomechanical mechanisms underlying the development process of stomatal maturation.


Asunto(s)
Arabidopsis , Pared Celular , Estomas de Plantas , Arabidopsis/fisiología , Arabidopsis/crecimiento & desarrollo , Arabidopsis/genética , Estomas de Plantas/fisiología , Estomas de Plantas/crecimiento & desarrollo , Estomas de Plantas/citología , Anisotropía , Pared Celular/metabolismo , Pared Celular/fisiología , Celulosa/metabolismo , Análisis de Elementos Finitos , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética
11.
Plant J ; 117(6): 1815-1835, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37967090

RESUMEN

Developing climate-resilient crops is critical for future food security and sustainable agriculture under current climate scenarios. Of specific importance are drought and soil salinity. Tolerance traits to these stresses are highly complex, and the progress in improving crop tolerance is too slow to cope with the growing demand in food production unless a major paradigm shift in crop breeding occurs. In this work, we combined bioinformatics and physiological approaches to compare some of the key traits that may differentiate between xerophytes (naturally drought-tolerant plants) and mesophytes (to which the majority of the crops belong). We show that both xerophytes and salt-tolerant mesophytes have a much larger number of copies in key gene families conferring some of the key traits related to plant osmotic adjustment, abscisic acid (ABA) sensing and signalling, and stomata development. We show that drought and salt-tolerant species have (i) higher reliance on Na for osmotic adjustment via more diversified and efficient operation of Na+ /H+ tonoplast exchangers (NHXs) and vacuolar H+ - pyrophosphatase (VPPases); (ii) fewer and faster stomata; (iii) intrinsically lower ABA content; (iv) altered structure of pyrabactin resistance/pyrabactin resistance-like (PYR/PYL) ABA receptors; and (v) higher number of gene copies for protein phosphatase 2C (PP2C) and sucrose non-fermenting 1 (SNF1)-related protein kinase 2/open stomata 1 (SnRK2/OST1) ABA signalling components. We also show that the past trends in crop breeding for Na+ exclusion to improve salinity stress tolerance are counterproductive and compromise their drought tolerance. Incorporating these genetic insights into breeding practices could pave the way for more drought-tolerant and salt-resistant crops, securing agricultural yields in an era of climate unpredictability.


Asunto(s)
Productos Agrícolas , Fitomejoramiento , Productos Agrícolas/genética , Productos Agrícolas/metabolismo , Sulfonamidas , Naftalenos , Ácido Abscísico/metabolismo , Sequías
12.
Development ; 149(7)2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35293577

RESUMEN

The flexible deployment of developmental regulators is an increasingly appreciated aspect of plant development and evolution. The GRAS transcription factor SCARECROW (SCR) regulates the development of the endodermis in Arabidopsis and maize roots, but during leaf development it regulates the development of distinct cell types; bundle-sheath in Arabidopsis and mesophyll in maize. In rice, SCR is implicated in stomatal patterning, but it is unknown whether this function is additional to a role in inner leaf patterning. Here, we demonstrate that two duplicated SCR genes function redundantly in rice. Contrary to previous reports, we show that these genes are necessary for stomatal development, with stomata virtually absent from leaves that are initiated after germination of mutants. The stomatal regulator OsMUTE is downregulated in Osscr1;Osscr2 mutants, indicating that OsSCR acts early in stomatal development. Notably, Osscr1;Osscr2 mutants do not exhibit the inner leaf patterning perturbations seen in Zmscr1;Zmscr1h mutants, and Zmscr1;Zmscr1h mutants do not exhibit major perturbations in stomatal patterning. Taken together, these results indicate that SCR was deployed in different developmental contexts after the divergence of rice and maize around 50 million years ago.


Asunto(s)
Proteínas de Arabidopsis , Oryza , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Oryza/genética , Oryza/metabolismo , Hojas de la Planta/metabolismo , Zea mays/genética , Zea mays/metabolismo
13.
Development ; 149(14)2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35894230

RESUMEN

Coordination of growth, patterning and differentiation is required for shaping organs in multicellular organisms. In plants, cell growth is controlled by positional information, yet the behavior of individual cells is often highly heterogeneous. The origin of this variability is still unclear. Using time-lapse imaging, we determined the source and relevance of cellular growth variability in developing organs of Arabidopsis thaliana. We show that growth is more heterogeneous in the leaf blade than in the midrib and petiole, correlating with higher local differences in growth rates between neighboring cells in the blade. This local growth variability coincides with developing stomata. Stomatal lineages follow a specific, time-dependent growth program that is different from that of their surroundings. Quantification of cellular dynamics in the leaves of a mutant lacking stomata, as well as analysis of floral organs, supports the idea that growth variability is mainly driven by stomata differentiation. Thus, the cell-autonomous behavior of specialized cells is the main source of local growth variability in otherwise homogeneously growing tissue. Those growth differences are buffered by the immediate neighbors of stomata and trichomes to achieve robust organ shapes.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Diferenciación Celular/genética , Proliferación Celular , Hojas de la Planta , Estomas de Plantas
14.
Plant Physiol ; 2024 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-39418086

RESUMEN

Rising global temperatures and vapor pressure deficits (VPD) are increasing plant water demand and becoming major drivers of large-scale plant mortality. Controlling transient leaf water loss after stomatal closure (gmin) is recognized as a key trait determining how long plants survive during soil drought. Yet, substantial uncertainty remains regarding how gmin responds to elevated temperatures and VPD and the underlying mechanisms. We measured gmin in 24 Quercus species from temperate and Mediterranean climates to determine if gmin was sensitive to a coupled temperature and VPD increase. We also explored mechanistic links to phenology, climate, evolutionary history, and leaf anatomy. We found that gmin in all species exhibited a non-linear negative temperature and VPD dependence. At 25°C (VPD = 2.2 kPa), gmin varied from 1.19 to 8.09 mmol m-2 s-1 across species but converged to 0.57 ± 0.06 mmol m-2 s-1 at 45°C (VPD = 6.6 kPa). In a subset of species, the effect of temperature and VPD on gmin was reversible and linked to the degree of stomatal closure, which was greater at 45°C than at 25°C. Our results show that gmin is dependent on temperature and VPD, is highly conserved in Quercus species, and is linked to leaf anatomy and stomatal behavior.

15.
Plant Mol Biol ; 114(4): 80, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38940934

RESUMEN

Plant leaves consist of three layers, including epidermis, mesophyll and vascular tissues. Their development is meticulously orchestrated. Stomata are the specified structures on the epidermis for uptake of carbon dioxide (CO2) while release of water vapour and oxygen (O2), and thus play essential roles in regulation of plant photosynthesis and water use efficiency. To function efficiently, stomatal formation must coordinate with the development of other epidermal cell types, such as pavement cell and trichome, and tissues of other layers, such as mesophyll and leaf vein. This review summarizes the regulation of stomatal development in three dimensions (3D). In the epidermis, specific stomatal transcription factors determine cell fate transitions and also activate a ligand-receptor- MITOGEN-ACTIVATED PROTEIN KINASE (MAPK) signaling for ensuring proper stomatal density and patterning. This forms the core regulation network of stomatal development, which integrates various environmental cues and phytohormone signals to modulate stomatal production. Under the epidermis, mesophyll, endodermis of hypocotyl and inflorescence stem, and veins in grasses secrete mobile signals to influence stomatal formation in the epidermis. In addition, long-distance signals which may include phytohormones, RNAs, peptides and proteins originated from other plant organs modulate stomatal development, enabling plants to systematically adapt to the ever changing environment.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Epidermis de la Planta , Estomas de Plantas , Transducción de Señal , Estomas de Plantas/crecimiento & desarrollo , Estomas de Plantas/fisiología , Estomas de Plantas/genética , Epidermis de la Planta/crecimiento & desarrollo , Reguladores del Crecimiento de las Plantas/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Hojas de la Planta/fisiología , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética
16.
Development ; 148(18)2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34463761

RESUMEN

In many land plants, asymmetric cell divisions (ACDs) create and pattern differentiated cell types on the leaf surface. In the Arabidopsis stomatal lineage, BREAKING OF ASYMMETRY IN THE STOMATAL LINEAGE (BASL) regulates division plane placement and cell fate enforcement. Polarized subcellular localization of BASL is initiated before ACD and persists for many hours after the division in one of the two daughters. Untangling the respective contributions of polarized BASL before and after division is essential to gain a better understanding of its roles in regulating stomatal lineage ACDs. Here, we combine quantitative imaging and lineage tracking with genetic tools that provide temporally restricted BASL expression. We find that pre-division BASL is required for division orientation, whereas BASL polarity post-division ensures proper cell fate commitment. These genetic manipulations allowed us to uncouple daughter-cell size asymmetry from polarity crescent inheritance, revealing independent effects of these two asymmetries on subsequent cell behavior. Finally, we show that there is coordination between the division frequencies of sister cells produced by ACDs, and this coupling requires BASL as an effector of peptide signaling.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/fisiología , División Celular Asimétrica/fisiología , Proteínas de Ciclo Celular/metabolismo , Polaridad Celular/fisiología , Estomas de Plantas/metabolismo , Estomas de Plantas/fisiología , Diferenciación Celular/fisiología , Linaje de la Célula/fisiología , Tamaño de la Célula , Transducción de Señal/fisiología
17.
BMC Plant Biol ; 24(1): 248, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38580955

RESUMEN

BACKGROUND: Wheat is one of the world's most important cereal crops. However, the fungal pathogen Zymoseptoria tritici can cause disease epidemics, leading to reduced yields. With climate change and development of new agricultural areas with suitable environments, Z. tritici may advance into geographical areas previously unaffected by this pathogen. It is currently unknown how Egyptian wheat will perform in the face of this incoming threat. This project aimed to assess the resistance of Egyptian wheat germplasm to Z. tritici, to identify cultivars with high levels of resistance and characterise the mechanism(s) of resistance present in these cultivars. RESULTS: Eighteen Egyptian wheat cultivars were screened against two Z. tritici model isolates and exhibited a wide spectrum of responses. This ranged from resistance to complete susceptibility to one or both isolates tested. The most highly resistant cultivars from the initial screen were then tested under two environmental conditions against modern UK field isolates. Disease levels under UK-like conditions were higher, however, symptom development on the cultivar Gemmeiza-12 was noticeably slower than on other Egyptian wheats. The robustness of the resistance shown by Gemmeiza-12 was confirmed in experiments mimicking Egyptian environmental conditions, where degree of Z. tritici infection was lower. The Kompetitive allele-specific PCR (KASP) diagnostic assay suggested the presence of an Stb6 resistant allele in several Egyptian wheats including Gemmeiza-12. Infection assays using the IPO323 WT and IPO323ΔAvrStb6 mutant confirmed the presence of Stb6 in several Egyptian cultivars including Gemmeiza-12. Confocal fluorescence microscopy demonstrated that growth of the IPO323 strain is blocked at the point of stomatal penetration on Gemmeiza-12, consistent with previous reports of Stb gene mediated resistance. In addition to this R-gene mediated resistance, IPO323 spores showed lower adherence to leaves of Gemmeiza-12 compared to UK wheat varieties, suggesting other aspects of leaf physiology may also contribute to the resistance phenotype of this cultivar. CONCLUSION: These results indicate that Gemmeiza-12 will be useful in future breeding programs where improved resistance to Z. tritici is a priority.


Asunto(s)
Ascomicetos , Triticum , Triticum/genética , Triticum/microbiología , Egipto , Fitomejoramiento , Ascomicetos/fisiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología
18.
BMC Plant Biol ; 24(1): 694, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39039438

RESUMEN

BACKGROUND: This study was aimed to determine the taxonomic position and delimitation of fifteen Lamiaceae taxa using leaf epidermal morpho-anatomical features in Lahore. A main objective of the study was also the revision and upgradation of Lamiaceae taxa in the flora of Pakistan, as no details of studied species are found in the flora of Pakistan. METHODS: The examination of significant anatomical parameters, such as epidermal cell shape and size, stomatal types, guard and subsidiary cells shape and size, stomatal cavity size, trichome size and shape, oil droplets, crystals, and secretory cavity characteristics were studied using light microscopic (LM) and scanning electron microscopic (SEM) techniques. Among all the studied Lamiaceae species, these anatomical features varied significantly. Principal component analysis and correlation were done to distinguish the species' similarities. RESULTS: Most species had pentagonal and hexagonal epidermal cells with straight anticlinal wall thickness. On the adaxial surface, paracytic stomata were found in Ocimum basilicum L. and Rosmarinus officinalis L. Diacytic stomata was observed in Ajuga reptans L. and anisocytic stomata in Galeopsis tetrahit L. In the abaxial surface, trichomes were present in five species, i.e., Mentha suaveolens Ehrh. A. reptans, Thymus vulgaris L., M. haplocalyx, and Salvia splendens Ewat. In S. splendens, peltate and glandular trichomes were seen whereas, in other species, trichomes were long, unbranched glandular and had tapering ends. In adaxial side trichomes were present only in M. suaveolens, A. reptans, S. bazyntina, O. basciculum, S. splendens, S. officinalis, S. rosemarinus. In other species, trichomes were absent on the adaxial surface. In abaxial view, M. suaveolens had the largest length of trichomes, and O. basciculum had the smallest. S. splendens L. had the largest trichome width, while T. vulgaris had the smallest. CONCLUSION: Hence, according to these findings, morpho-anatomical traits are useful for identifying Lamiaceae taxa. Also, there is a need of upgradation and addition of studied taxa in flora of Pakistan comprehensively.


Asunto(s)
Lamiaceae , Hojas de la Planta , Pakistán , Lamiaceae/anatomía & histología , Lamiaceae/ultraestructura , Hojas de la Planta/anatomía & histología , Hojas de la Planta/ultraestructura , Estomas de Plantas/anatomía & histología , Estomas de Plantas/ultraestructura , Microscopía Electrónica de Rastreo , Tricomas/anatomía & histología , Tricomas/ultraestructura , Epidermis de la Planta/anatomía & histología , Epidermis de la Planta/ultraestructura
19.
Planta ; 260(3): 56, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39039321

RESUMEN

MAIN CONCLUSION: Stomatal traits in rice genotypes affect water use efficiency. Low-frequency small-size stomata correlate with whole plant efficiency, while low-frequency large-size stomata show intrinsic efficiency and responsiveness to vapour pressure deficit. Leaf surface and the patterning of the epidermal layer play a vital role in determining plant growth. While the surface helps in determining radiation interception, epidermal pattern of stomatal factors strongly regulate gas exchange and water use efficiency (WUE). This study focuses on identifying distinct stomatal traits among rice genotypes to comprehend their influence on WUE. Stomatal frequency ranged from 353 to 687 per mm2 and the size varied between 128.31 and 339.01 µm2 among 150 rice germplasm with significant variability in abaxial and adaxial surfaces. The cumulative water transpired and WUE determined at the outdoor phenomics platform, over the entire crop growth period as well as during specific hours of a 24 h-day did not correlate with stomatal frequency nor size. However, genotypes with low-frequency and large-size stomata recorded higher intrinsic water use efficiency (67.04 µmol CO2 mol-1 H2O) and showed a quicker response to varying vapour pressure deficit that diurnally ranged between 0.03 and 2.17 kPa. The study demonstrated the role of stomatal factors in determining physiological subcomponents of WUE both at single leaf and whole plant levels. Differential expression patterns of stomatal regulatory genes among the contrasting groups explained variations in the epidermal patterning. Increased expression of ERECTA, TMM and YODA genes appear to contribute to decreased stomatal frequency in low stomatal frequency genotypes. These findings underscore the significance of stomatal traits in breeding programs and strongly support the importance of these genes that govern variability in stomatal architecture in future crop improvement programs.


Asunto(s)
Genotipo , Oryza , Hojas de la Planta , Estomas de Plantas , Transpiración de Plantas , Agua , Oryza/genética , Oryza/fisiología , Oryza/crecimiento & desarrollo , Estomas de Plantas/fisiología , Estomas de Plantas/genética , Agua/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/anatomía & histología , Transpiración de Plantas/fisiología , Presión de Vapor
20.
Planta ; 259(6): 142, 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38702456

RESUMEN

MAIN CONCLUSION: PLDα1 promoted H2S production by positively regulating the expression of LCD. Stomatal closure promoted by PLDα1 required the accumulation of H2S under drought stress. Phospholipase Dα1 (PLDα1) acting as one of the signal enzymes can respond to drought stress. It is well known that hydrogen sulfide (H2S) plays an important role in plant responding to biotic or abiotic stress. In this study, the functions and relationship between PLDα1 and H2S in drought stress resistance in Arabidopsis were explored. Our results indicated that drought stress promotes PLDα1 and H2S production by inducing the expression of PLDα1 and LCD genes. PLDα1 and LCD enhanced plant tolerance to drought by regulating membrane lipid peroxidation, proline accumulation, H2O2 content and stomatal closure. Under drought stress, the H2O2 content of PLDα1-deficient mutant (pldα1), L-cysteine desulfhydrase (LCD)-deficient mutant (lcd) was higher than that of ecotype (WT), the stomatal aperture of pldα1 and lcd was larger than that of WT. The transcriptional and translational levels of LCD were lower in pldα1 than that in WT. Exogenous application of the H2S donor NaHS or GYY reduced the stomatal aperture of WT, pldα1, PLDα1-CO, and PLDα1-OE lines, while exogenous application of the H2S scavenger hypotaurine (HT) increased the stomatal aperture. qRT-PCR analysis of stomatal movement-related genes showed that the expression of CAX1, ABCG5, SCAB1, and SLAC1 genes in pldα1 and lcd were down-regulated, while ACA1 and OST1 gene expression was significantly up-regulated. Thus, PLDα1 and LCD are required for stomatal closure to improve drought stress tolerance.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Sequías , Regulación de la Expresión Génica de las Plantas , Sulfuro de Hidrógeno , Fosfolipasa D , Estomas de Plantas , Arabidopsis/genética , Arabidopsis/fisiología , Estomas de Plantas/fisiología , Estomas de Plantas/genética , Fosfolipasa D/metabolismo , Fosfolipasa D/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sulfuro de Hidrógeno/metabolismo , Peróxido de Hidrógeno/metabolismo , Estrés Fisiológico/genética , Prolina/metabolismo , Cistationina gamma-Liasa/genética , Cistationina gamma-Liasa/metabolismo , Peroxidación de Lípido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA