Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Planta ; 256(4): 68, 2022 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-36053378

RESUMEN

MAIN CONCLUSION: The combination of image-based phenotyping with in-depth anatomical analysis allows for a thorough investigation of plant physiological plasticity in acclimation, which is driven by environmental conditions and mediated by anatomical traits. Understanding the ability of plants to respond to fluctuations in environmental conditions is critical to addressing climate change and unlocking the agricultural potential of crops both indoor and in the field. Recent studies have revealed that the degree of eco-physiological acclimation depends on leaf anatomical traits, which show stress-induced alterations during organogenesis. Indeed, it is still a matter of debate whether plant anatomy is the bottleneck for optimal plant physiology or vice versa. Here, we cultivated 'Salanova' lettuces in a phenotyping chamber under two different vapor pressure deficits (VPDs; low, high) and watering levels (well-watered, low-watered); then, plants underwent short-term changes in VPD. We aimed to combine high-throughput phenotyping with leaf anatomical analysis to evaluate their capability in detecting the early stress signals in lettuces and to highlight the different degrees of plants' eco-physiological acclimation to the change in VPD, as influenced by anatomical traits. The results demonstrate that well-watered plants under low VPD developed a morpho-anatomical structure in terms of mesophyll organization, stomatal and vein density, which more efficiently guided the acclimation to sudden changes in environmental conditions and which was not detected by image-based phenotyping alone. Therefore, we emphasized the need to complement high-throughput phenotyping with anatomical trait analysis to unveil crop acclimation mechanisms and predict possible physiological behaviors after sudden environmental fluctuations due to climate changes.


Asunto(s)
Aclimatación , Lactuca , Fotosíntesis/fisiología , Hojas de la Planta/fisiología , Presión de Vapor , Agua/fisiología
2.
Plant Cell Environ ; 45(1): 121-132, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34748220

RESUMEN

The commonly observed negative relationship between stomatal density (SD) and atmospheric CO2 has led to SD being proposed as an indicator of atmospheric CO2 concentration. The use of SD as a proxy for CO2 , however, has been hampered by an insufficient understanding of the intraspecific variation of this trait. We hypothesized that SD in Pinus sylvestris, a widely distributed conifer, varies geographically and that this variation is determined by major climatic variables. By sampling needles from naturally growing trees along a latitudinal range of 32.25°, equivalent to 13.7°C gradient of mean annual temperature (MAT) across Europe, we found that SD decreased from the warmest southern sites to the coldest sites in the north at a rate of 4 stomata per mm2 for each 1°C, with MAT explaining 44% of the variation. Additionally, samples from a provenance trial exhibited a positive relationship between SD and the MAT of the original localities, suggesting that high SD is an adaptation to warm temperature. Our study revealed one of the strongest intraspecific relationships between SD and climate in any woody species, supporting the utility of SD as a temperature, rather than direct CO2 , proxy. In addition, our results predict the response of SD to climate warming.


Asunto(s)
Dióxido de Carbono , Pinus sylvestris/fisiología , Estomas de Plantas/fisiología , Adaptación Fisiológica , Clima , Europa (Continente) , Pinus sylvestris/anatomía & histología , Estomas de Plantas/anatomía & histología , Temperatura
3.
Int J Mol Sci ; 23(21)2022 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-36362283

RESUMEN

Crop productivity is enormously exposed to different environmental stresses, among which chromium (Cr) stress raises considerable concerns and causes a serious threat to plant growth. This study explored the toxic effect of Cr on sweet potato plants. Plants were hydroponically grown, and treatments of 0, 25, 50, 100, and 200 µM Cr were applied for seven days. This study exhibited that a low level of Cr treatment (25 µM) enhanced the growth, biomass, photosynthesis, osmolytes, antioxidants, and enzyme activities. However, significant deleterious effects in growth, biomass, photosynthetic attributes, antioxidants, and enzymes were observed at higher levels of Cr treatment. The remarkable reduction in plant growth traits was associated with the over-accumulation of H2O2 and MDA contents (410% and 577%, respectively) under the highest rate of Cr (200 µM). Under 200 µM Cr, the uptake in the roots were 27.4 mg kg-1 DW, while in shoots were 11 mg kg-1 DW with the highest translocation rate from root to shoot was 0.40. The results showed that the higher accumulation of Cr negatively correlated with the phenotypic and physiological parameters. It may be proposed that Cr toxicity causes oxidative damage as sustained by augmented lipid peroxidation, reactive oxygen species, and reduced photosynthetic rate, chlorophyll, and stomatal traits. The chloroplastic ultrastructure was damaged, and more apparent damage and size reduction were observed at higher Cr levels. Furthermore, aggregated Cr concentration positively correlates with the increase of osmolytes and superoxide dismutase (SOD) activity in the leaves of sweet potato. Moreover, improved osmolytes and SOD do not help protect sweet potato against high Cr stress. Overall, these findings will improve the understanding of the defense mechanisms of sweet potato to Cr stress.


Asunto(s)
Ipomoea batatas , Contaminantes del Suelo , Cromo/toxicidad , Peróxido de Hidrógeno/farmacología , Contaminantes del Suelo/toxicidad , Antioxidantes/farmacología , Hojas de la Planta , Superóxido Dismutasa/farmacología
4.
BMC Plant Biol ; 19(1): 255, 2019 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-31195963

RESUMEN

BACKGROUND: Understanding the mechanisms of crops in response to elevated CO2 concentrations is pivotal to estimating the impacts of climate change on the global agricultural production. Based on earlier results of the "doubling-CO2 concentration" experiments, many current climate models may overestimate the CO2 fertilization effect on crops, and meanwhile, underestimate the potential impacts of future climate change on global agriculture ecosystem when the atmospheric CO2 concentration goes beyond the optimal levels for crop growth. RESULTS: This study examined the photosynthetic response of soybean (Glycine max (L.) Merr.) to elevated CO2 concentration associated with changes in leaf structure, non-structural carbohydrates and nitrogen content with environmental growth chambers where the CO2 concentration was controlled at 400, 600, 800, 1000, 1200, 1400, 1600 ppm. We found CO2-induced down-regulation of leaf photosynthesis as evidenced by the consistently declined leaf net photosynthetic rate (An) with elevated CO2 concentrations. This down-regulation of leaf photosynthesis was evident in biochemical and photochemical processes since the maximum carboxylation rate (Vcmax) and the maximum electron transport rate (Jmax) were dramatically decreased at higher CO2 concentrations exceeding their optimal values of about 600 ppm and 400 ppm, respectively. Moreover, the down-regulation of leaf photosynthesis at high CO2 concentration was partially attributed to the reduced stomatal conductance (Gs) as demonstrated by the declines in stomatal density and stomatal area as well as the changes in the spatial distribution pattern of stomata. In addition, the smaller total mesophyll size (palisade and spongy tissues) and the lower nitrogen availability may also contribute to the down-regulation of leaf photosynthesis when soybean subjected to high CO2 concentration environment. CONCLUSIONS: Down-regulation of leaf photosynthesis associated with the changes in stomatal traits, mesophyll tissue size, non-structural carbohydrates, and nitrogen availability of soybean in response to future high atmospheric CO2 concentration and climate change.


Asunto(s)
Dióxido de Carbono/metabolismo , Glycine max/metabolismo , Nitrógeno/metabolismo , Fotosíntesis , Hojas de la Planta/metabolismo , Metabolismo de los Hidratos de Carbono , Cambio Climático , Regulación hacia Abajo , Hojas de la Planta/anatomía & histología , Estomas de Plantas/anatomía & histología , Glycine max/anatomía & histología
5.
Physiol Mol Biol Plants ; 24(5): 973-983, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30150871

RESUMEN

Variations in photosynthetic gas exchange, stomatal traits and photosystem (PS) II activity were investigated in three popular rice (Oryza sativa L.) landraces namely Kalajeera, Machakanta and Haladichudi from Koraput, India and compared with high yielding modern varieties (IR 64 and IR 42) to judge the possibility of using them in crop improvement programmes. The leaf CO2 photosynthetic rate (PN), stomatal conductance (gs), water use efficiency and carboxylation efficiency were significantly higher in traditional landraces as compared to the high yielding variety. In contrast, the transpiration rate, internal CO2 concentration, special analysis device (SPAD) index and chlorophyll were higher in high yielding varieties. In addition, the traditional landraces showed better stomatal traits such as stomatal density (SD), stomatal size (SS) and stomatal index. Further, multiple correlations between different gas-exchange characteristics and other physiological traits revealed that the PN was not dependent on the leaf pigment content or PS II activity. However, it was dependent on stomatal traits like gs, SD and SS. Taken together, the traditional landraces such as Kalajeera, Machakanta and Haladichudi had superior PN and stomatal efficiency compared to the high yielding variety under prevailing environmental condition. Further research is required to elucidate the genetic diversity of these popular landraces compared to high-yielding ones in relation to photosynthesis efficiency for future crop improvement programmes.

6.
Glob Chang Biol ; 22(1): 415-31, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26363182

RESUMEN

The tropical coffee crop has been predicted to be threatened by future climate changes and global warming. However, the real biological effects of such changes remain unknown. Therefore, this work aims to link the physiological and biochemical responses of photosynthesis to elevated air [CO2 ] and temperature in cultivated genotypes of Coffea arabica L. (cv. Icatu and IPR108) and Coffea canephora cv. Conilon CL153. Plants were grown for ca. 10 months at 25/20°C (day/night) and 380 or 700 µl CO2 l(-1) and then subjected to temperature increase (0.5°C day(-1) ) to 42/34°C. Leaf impacts related to stomatal traits, gas exchanges, C isotope composition, fluorescence parameters, thylakoid electron transport and enzyme activities were assessed at 25/20, 31/25, 37/30 and 42/34°C. The results showed that (1) both species were remarkably heat tolerant up to 37/30°C, but at 42/34°C a threshold for irreversible nonstomatal deleterious effects was reached. Impairments were greater in C. arabica (especially in Icatu) and under normal [CO2 ]. Photosystems and thylakoid electron transport were shown to be quite heat tolerant, contrasting to the enzymes related to energy metabolism, including RuBisCO, which were the most sensitive components. (2) Significant stomatal trait modifications were promoted almost exclusively by temperature and were species dependent. Elevated [CO2 ], (3) strongly mitigated the impact of temperature on both species, particularly at 42/34°C, modifying the response to supra-optimal temperatures, (4) promoted higher water-use efficiency under moderately higher temperature (31/25°C) and (5) did not provoke photosynthetic downregulation. Instead, enhancements in [CO2 ] strengthened photosynthetic photochemical efficiency, energy use and biochemical functioning at all temperatures. Our novel findings demonstrate a relevant heat resilience of coffee species and that elevated [CO2 ] remarkably mitigated the impact of heat on coffee physiology, therefore playing a key role in this crop sustainability under future climate change scenarios.


Asunto(s)
Dióxido de Carbono/metabolismo , Coffea/fisiología , Calor , Fotosíntesis/fisiología , Aclimatación , Cambio Climático , Transporte de Electrón , Genotipo , Calentamiento Global , Hojas de la Planta/fisiología , Estomas de Plantas/fisiología , Tilacoides/metabolismo , Agua/metabolismo
7.
Oecologia ; 180(4): 1103-12, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26686200

RESUMEN

Several mistletoe species are able to grow and reproduce on both deciduous and evergreen hosts, suggesting a degree of plasticity in their ability to cope with differences in intrinsic host functions. The aim of this study was to investigate the influence of host phenology on mistletoe water relations and leaf gas exchange. Mistletoe Passovia ovata parasitizing evergreen (Miconia albicans) hosts and P. ovata parasitizing deciduous (Byrsonima verbascifolia) hosts were sampled in a Neotropical savanna. Photosynthetic parameters, diurnal cycles of stomatal conductance, pre-dawn and midday leaf water potential, and stomatal anatomical traits were measured during the peak of the dry and wet seasons, respectively. P. ovata showed distinct water-use strategies that were dependent on host phenology. For P. ovata parasitizing the deciduous host, water use efficiency (WUE; ratio of photosynthetic rate to transpirational water loss) was 2-fold lower in the dry season than in the wet season; in contrast, WUE was maintained at the same level during the wet and dry seasons in P. ovata parasitizing the evergreen host. Generally, mistletoe and host diurnal cycles of stomatal conductance were linked, although there were clear differences in leaf water potential, with mistletoe showing anisohydric behaviour and the host showing isohydric behaviour. Compared to mistletoes attached to evergreen hosts, those parasitizing deciduous hosts had a 1.4-fold lower stomatal density and 1.2-fold wider stomata on both leaf surfaces, suggesting that the latter suffered less intense drought stress. This is the first study to show morphophysiological differences in the same mistletoe species parasitizing hosts of different phenological groups. Our results provide evidence that phenotypical plasticity (anatomical and physiological) might be essential to favour the use of a greater range of hosts.


Asunto(s)
Adaptación Fisiológica , Sequías , Muérdago/fisiología , Hojas de la Planta/fisiología , Estaciones del Año , Árboles/fisiología , Agua , Pradera , Malpighiaceae/fisiología , Melastomataceae/fisiología , Muérdago/anatomía & histología , Fenotipo , Fotosíntesis/fisiología , Hojas de la Planta/anatomía & histología , Estomas de Plantas/anatomía & histología , Estomas de Plantas/fisiología , Transpiración de Plantas/fisiología , Clima Tropical
8.
Plant Divers ; 46(2): 265-273, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38807905

RESUMEN

To determine the invasiveness of invasive plants, many studies have compared photosynthetic traits or strategies between invasive and native species. However, few studies have compared the photosynthetic dynamics between invasive and native species during light fluctuations. We compared photosynthetic induction, relaxation dynamics and leaf traits between the invasive species, Tithonia diversifolia and two native species, Clerodendrum bungei and Blumea balsamifera, in full-sun and shady habitats. The photosynthetic dynamics and leaf traits differed among species. T. diversifolia showed a slower induction speed and stomatal opening response but had higher average intrinsic water-use efficiency than the two native species in full-sun habitats. Thus, the slow induction response may be attributed to the longer stomatal length in T. diversifolia. Habitat had a significant effect on photosynthetic dynamics in T. diversifolia and B. balsamifera but not in C. bungei. In shady habitat, T. diversifolia had a faster photosynthetic induction response than in full-sun habitat, leading to a higher average stomatal conductance during photosynthetic induction in T. diversifolia than in the two native species. In contrast, B. balsamifera had a larger stomatal length and slower photosynthetic induction and relaxation response in shady habitat than in full-sun habitat, resulting in higher carbon gain during photosynthetic relaxation. Nevertheless, in both habitats, T. diversifolia had an overall higher carbon gain during light fluctuations than the two native species. Our results indicated that T. diversifolia can adopt more effective response strategies under fluctuating light environments to maximize carbon gain, which may contribute to its successful invasion.

9.
Plants (Basel) ; 12(4)2023 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-36840066

RESUMEN

Grapevine rootstocks may supply water to the scion according to the transpiration demand, thus modulating plant responses to water deficit, but the scion variety can alter these responses, as well. The rootstock genotypes' effect on the scion physiological response, aquaporin expression, and hormone concentrations in the xylem and the leaf was assessed under well watered (WW) and water stress (WS) conditions. Under WW, vines grafted onto 1103P and R110 rootstocks (the more vigorous and drought-tolerant) showed higher photosynthesis (AN), stomatal conductance (gs), and hydraulic conductance (Khplant) compared with the less vigorous and drought-sensitive rootstock (161-49C), while under WS, there were hardly any differences between vines depending on the rootstock grafted. Besides, stomatal traits were affected by drought, which was related to gs, but not by the rootstock. Under WS conditions, all VvPIP and VvTIP aquaporins were up-regulated in the vines grafted onto 1103P and down-regulated in the ones grafted onto 161-49C. The 1103P capability to tolerate drought was enhanced by the up-regulation of all VvPIP and VvTIP aquaporins, lower ABA synthesis, and higher ACC/ABA ratios in leaves during WS compared with 161-49C. It was concluded that, under WW conditions, transpiration and stomatal control were rootstock-dependent. However, under WS conditions, alterations in the molecular components of water transport and hormone concentration of the scion resulted in similar gas exchange values in the studied scions grafted onto different rootstocks.

10.
Front Plant Sci ; 14: 1271262, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38089800

RESUMEN

Introduction: Soil phosphorus (P) deficiency limits plant growth and productivity in grassland ecosystems and may moderate the growth-promoting effects of "carbon dioxide (CO2) fertilization effect". Methods: To evaluate the interactive effects of these two factors on the growth and physiology for annual ryegrass (Lolium multiflorum Lam.), plants were grown in controlled growth chambers with a range of P supply (0.004, 0.012, 0.02, 0.06, 0.1 and 0.5 mM) under two levels of CO2 (400 and 800 µmol mol-1, respectively). Results: Elevated [CO2] dramatically increased the aboveground biomass and net photosynthetic rates of annual ryegrass by 14.5% and 25.3% under sufficient P supply (0.5 mM), respectively, whereas decreased the belowground biomass and net photosynthetic rates under lower P supply of P0.004, P0.02, and P0.06. Two-way ANOVA results showed that CO2 × P (p < 0.001) significantly affected stomatal traits, leaf photosynthesis and biomass. The stimulation of growth and photosynthesis by elevated CO2 concentration (e[CO2]) was reduced or highly suppressed, indicating that the sensitivity of annual ryegrass to P deficiency was enhanced under e[CO2]. Discussion: These results indicated that P limitation may offset the positive effects of e[CO2] on plant growth by altering stomatal traits, leaf photochemical processes and biochemical composition in annual ryegrass.

11.
Front Plant Sci ; 13: 890928, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36061776

RESUMEN

Understanding the potential mechanisms and processes of leaf photosynthesis in response to elevated CO2 concentration ([CO2]) and temperature is critical for estimating the impacts of climatic change on the growth and yield in crops such as maize (Zea mays L.), which is a widely cultivated C4 crop all over the world. We examined the combined effect of elevated [CO2] and temperature on plant growth, leaf photosynthesis, stomatal traits, and biochemical compositions of maize with six environmental growth chambers controlling two CO2 levels (400 and 800 µmol mol-1) and three temperature regimes (25/19°C, 31/25°C, and 37/31°C). We found that leaf photosynthesis was significantly enhanced by increasing growth temperature from 25/19°C to 31/25°C independent of [CO2]. However, leaf photosynthesis drastically declined when the growth temperature was continually increased to 37/31°C at both ambient CO2 concentration (400 µmol mol-1, a[CO2]) and elevated CO2 concentration (800 µmol mol-1, e[CO2]). Meanwhile, we also found strong CO2 fertilization effect on maize plants grown at the highest temperature (37/31°C), as evidenced by the higher leaf photosynthesis at e[CO2] than that at a[CO2], although leaf photosynthesis was similar between a[CO2] and e[CO2] under the other two temperature regimes of 25/19°C and 31/25°C. Furthermore, we also found that e[CO2] resulted in an increase in leaf soluble sugar, which was positively related with leaf photosynthesis under the high temperature regime of 37/31°C (R 2 = 0.77). In addition, our results showed that e[CO2] substantially decreased leaf transpiration rates of maize plants, which might be partially attributed to the reduced stomatal openness as demonstrated by the declined stomatal width and stomatal area. These results suggest that the CO2 fertilization effect on plant growth and leaf photosynthesis of maize depends on growth temperatures through changing stomatal traits, leaf anatomy, and soluble sugar contents.

12.
Front Plant Sci ; 13: 831314, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35498645

RESUMEN

Adverse environmental conditions, such as low temperature (LT), greatly limit the growth and production of tomato. Recently, light-emitting diodes (LEDs) with specific spectra have been increasingly used in horticultural production facilities. The chosen spectrum can affect plant growth, development, and resistance, but the physiological regulatory mechanisms are largely unknown. In this study, we investigated the effects of LED light supplementation (W:B = 2:1, light intensity of 100 µmol⋅m-2⋅s-1, for 4 h/day from 9:00 to 13:00) from above and below the canopy on tomato resistance under sub-LT stress (15/8°C). The results showed that supplemental lighting from underneath the canopy (USL) promoted the growth of tomato seedlings, as the plant height, stem diameter, root activity, and plant biomass were significantly higher than those under LT. The activity of the photochemical reaction center was enhanced because of the increase in the maximal photochemical efficiency (F v /F m ) and photochemical quenching (qP), which distributed more photosynthetic energy to the photochemical reactions and promoted photosynthetic performance [the maximum net photosynthetic rate (Pmax) was improved]. USL also advanced the degree of stomatal opening, thus facilitating carbon assimilation under LT. Additionally, the relative conductivity (RC) and malondialdehyde (MDA) content were decreased, while the soluble protein content and superoxide dismutase (SOD) activity were increased with the application of USL under LT, thereby causing a reduction in membrane lipid peroxidation and alleviation of stress damage. These results suggest that light supplementation from underneath the canopy improves the cold resistance of tomato seedlings mainly by alleviating the degree of photoinhibition on photosystems, improving the activity of the photochemical reaction center, and enhancing the activities of antioxidant enzymes, thereby promoting the growth and stress resistance of tomato plants.

13.
Antioxidants (Basel) ; 11(12)2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36552615

RESUMEN

Vanadium (V) is a heavy metal found in trace amounts in many plants and widely distributed in the soil. This study investigated the effects of vanadium concentrations on sweet potato growth, biomass, root morphology, photosynthesis, photosynthetic assimilation, antioxidant defense system, stomatal traits, and V accumulation. Sweet potato plants were grown hydroponically and treated with five levels of V (0, 10, 25, 50, and 75 mg L-1). After 7 days of treatment, V content at low concentration (10 mg L-1) enhanced the plant growth and biomass; in contrast, drastic effects were observed at 25, 50, and 75 mg L-1. Higher V concentrations negatively affect the relative water content, photosynthetic assimilation, photosynthesis, and root growth and reduce tolerance indices. The stomatal traits of sweet potato, such as stomatal length, width, pore length, and pore width, were also decreased under higher V application. Furthermore, V concentration and uptake in the roots were higher than in the shoots. In the same way, reactive oxygen species (ROS) production (hydrogen peroxide), lipid peroxidation (malondialdehyde), osmolytes, glutathione, and enzymes (catalase and superoxide dismutase) activities were increased significantly under V stress. In conclusion, V at a low level (10 mg L-1) enhanced sweet potato growth, and a higher level of V treatment (25, 50, and 75 mg L-1) had a deleterious impact on the growth, physiology, and biochemical mechanisms, as well as stomatal traits of sweet potato.

14.
Tree Physiol ; 42(10): 1957-1974, 2022 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-35604362

RESUMEN

The study of ancient species provides valuable information concerning the evolution of specific adaptations to past and current environmental conditions. Araucaria araucana (Molina) K. Koch belongs to one of the oldest families of conifers in the world, but despite this, there are few studies focused on its physiology and responses to changes in environmental conditions. We used an integrated approach aimed at comprehensively characterizing the ecophysiology of this poorly known species, focusing in its stomatal, mesophyll and biochemical traits, hypothesizing that these traits govern the carbon assimilation of A. araucana under past and present levels of atmospheric CO2. Results indicated that A. araucana presents the typical traits of an ancient species, such as large stomata and low stomatal density, which trigger low stomatal conductance and slow stomatal responsiveness to changing environmental conditions. Interestingly, the quantitative analysis showed that photosynthetic rates were equally limited by both diffusive and biochemical components. The Rubisco catalytic properties proved to have a low Rubisco affinity for CO2 and O2, similar to other ancient species. This affinity for CO2, together with the low carboxylation turnover rate, are responsible for the low Rubisco catalytic efficiency of carboxylation. These traits could be the result of the diverse environmental selective pressures that A. araucana was exposed during its diversification. The increase in measured temperatures induced an increase in stomatal and biochemical limitations, which together with a lower Rubisco affinity for CO2 could explain the low photosynthetic capacity of A. araucana in warmer conditions.


Asunto(s)
Carbono , Ribulosa-Bifosfato Carboxilasa , Araucaria araucana , Dióxido de Carbono , Fotosíntesis/fisiología , Hojas de la Planta/metabolismo , Ribulosa-Bifosfato Carboxilasa/metabolismo
15.
Front Plant Sci ; 12: 655255, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33995451

RESUMEN

The arrangement patterns of stomata on the leaf surface influence water loss and CO2 uptake via transportation and diffusion between stomata, the sites of photosynthesis, and vasculature. However, the quantification of such patterns remains unclear. Based on the distance between stomata, we developed three independent indices to quantify stomatal arrangement pattern (SAP). "Stomatal evenness" was used to quantify the regularity of the distribution of stomata based on a minimum spanning tree, "stomatal divergence" described the divergence in the distribution of stomata based on their distances from their center of gravity, and "stomatal aggregation" was used to quantitatively distinguish the SAP as clustered, random, or regularly distributed based on the nearest-neighbor distances. These three indices address the shortcoming of stomatal density that only describes "abundance" and may, collectively, have a better capacity to explore crop development, plant adaptation and evolution, and potentially ultimately enable a more accurate reconstruction of the palaeoclimate.

16.
Sci Total Environ ; 789: 147757, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34058578

RESUMEN

The stomatal traits influence ecosystem carbon-water fluxes and play essential roles that enable plants to adapt to changing environmental conditions. However, how stomatal traits vary along a large climate gradient and whether stomatal traits coordinated with other leaf functional traits in response to environmental changes remain unclear. We investigated the stomatal density (SD), stomatal size (SS), and leaf traits (leaf area (LA), leaf mass per area (LMA), and vein density (VD)) of 44 in situ Quercus variabilis populations across Eastern Asia (24 to 51.8°N, 99 to 137°E) and 15 populations grown in a common garden, and evaluated their relationships with environmental factors. Stepwise multiple regression showed that the SD was significantly associated with mean annual precipitation (MAP), LMA, and VD, and the SS with latitude, mean annual temperature (MAT), mean monthly solar radiation (MMSR), and VD. The SD was positively correlated with the LMA, while the SS was negatively correlated with the VD. The SD and LMA increased with decreasing precipitation, which indicated that they may coordinate to commonly enhance plant resistance against drought. The SS decreased; however, the VD increased with temperature. This implied that plants might further reduce their SS by increasing VD limitations under global warming. In the common garden, plants exhibited a higher SD and VD and lower SS and LA compared to those in the field; however, no relation between the stomatal and leaf traits was observed. Our results suggested that stomatal traits have high environmental plasticity and are highly coordinated with other leaf functional traits in response to environmental changes. Nevertheless, this coordination may have been formed through long-term adaptations, rather than over short time spans.


Asunto(s)
Quercus , Clima , Ecosistema , Asia Oriental , Hojas de la Planta
17.
Plants (Basel) ; 9(3)2020 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-32210120

RESUMEN

The sensitivity of stomatal behavior and patterning (i.e., distribution, density, size) to environmental stimuli, renders them crucial for defining the physiological performance of leaves. Thus, assessing long-term modifications in stomatal traits in conserved specimens arises as a valuable eco-physiological approach to predict how the rising trend of warmer, drier summers could affect plant fitness; particularly in mountain areas already experiencing climate aggravation and lacking the related monitoring schemes like Mediterranean high-mountains. Variations in foliar and stomatal traits were studied in conserved specimens of Senecio pyrenaicus subsp. carpetanus from Sierra de Guadarrama over the past 71 years. Our findings revealed decreasing trends in leaf width, stomatal size, and increasing tendency in stomatal density, all correlated with the recent 30-year climate exacerbation in these mountains. This evidenced a positive selection favoring traits that allow safeguarding plant performance under drier, hotter weather conditions. The significant relation between stomatal traits and climatic variables upholds the role of stomatal patterning in sensing environmental cues in this species, feasibly optimizing physiological responses involved in the growth-water loss trade-off. The transition to smaller, densely packed stomata observed in recent decades could indicate local-adaptive plasticity in this species, enhancing stomatal response, as coarser environmental conditions take place in Sierra de Guadarrama.

18.
Front Plant Sci ; 8: 1511, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28912795

RESUMEN

Quantifying changes in interspecific plant growth and physiology under climate warming will facilitate explanation of the shifts in community structure in subtropical forest. We evaluated the effects of 3 years climate warming (ca. 1°C, 2012-2015) on plant growth and physiological parameters of six subtropical tree species by translocating seedlings and soil from a higher to a lower elevation site. We found that an increase in soil/air temperature had divergent effects on six co-occurring species. Warming increased the biomass of Schima superba and Pinus massoniana, whereas it decreased their specific leaf area and intrinsic water use efficiency compared to other species. Warming decreased the foliar non-structural carbohydrates for all species. Our findings demonstrated that a warmer climate would have species-specific effects on the physiology and growth of subtropical trees, which may cause changes in the competitive balance and composition of these forests.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA