Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 11(36): 33347-33355, 2019 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-31424908

RESUMEN

Wearable sensors for smart textile applications have garnered tremendous interest in recent years and can have enormous potential for human machine interfaces and digital health monitoring. Here, we report a soft capacitive microfiber sensor that can be woven seamlessly into textiles for strain measurement. Comprising a dual-lumen elastomeric microtube and liquid metallic alloy, the microfiber sensor enables continual strain perception even after being completely severed. In addition, our microfiber sensor is highly stretchable and flexible and exhibits tunable sensitivity, excellent linearity, a fast response, and negligible hysteresis. More importantly, the microfiber sensor is minimally affected by train rate and compression during strain sensing. Even under drastic environmental changes, the microfiber sensor presents good electrical stability. By integrating the microfiber sensor imperceptibly with textiles, we devise smart textile wearables to interpret hand gestures, detect limb motion, and monitor respiration rate. We believe that this sensor presents enormous potential in unobtrusive continuous health monitoring.


Asunto(s)
Capacidad Eléctrica , Textiles , Dispositivos Electrónicos Vestibles
2.
ACS Appl Mater Interfaces ; 10(15): 12773-12780, 2018 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-29582649

RESUMEN

A key challenge in electronic textiles is to develop an intrinsically conductive thread of sufficient robustness and sensitivity. Here, we demonstrate an elastomeric functionalized microfiber sensor suitable for smart textile and wearable electronics. Unlike conventional conductive threads, our microfiber is highly flexible and stretchable up to 120% strain and possesses excellent piezoresistive characteristics. The microfiber is functionalized by enclosing a conductive liquid metallic alloy within the elastomeric microtube. This embodiment allows shape reconfigurability and robustness, while maintaining an excellent electrical conductivity of 3.27 ± 0.08 MS/m. By producing microfibers the size of cotton threads (160 µm in diameter), a plurality of stretchable tubular elastic piezoresistive microfibers may be woven seamlessly into a fabric to determine the force location and directionality. As a proof of concept, the conductive microfibers woven into a fabric glove were used to obtain physiological measurements from the wrist, elbow pit, and less accessible body parts, such as the neck and foot instep. Importantly, the elastomeric layer protects the sensing element from degradation. Experiments showed that our microfibers suffered minimal electrical drift even after repeated stretching and machine washing. These advantages highlight the unique propositions of our wearable electronics for flexible display, electronic textile, soft robotics, and consumer healthcare applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA