Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 315
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Proc Biol Sci ; 291(2027): 20240636, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39013423

RESUMEN

Though far less obvious than direct effects (clinical disease or mortality), the indirect influences of pathogens are difficult to estimate but may hold fitness consequences. Here, we disentangle the directional relationships between infection and energetic reserves, evaluating the hypotheses that energetic reserves influence infection status of the host and that infection elicits costs to energetic reserves. Using repeated measures of fat reserves and infection status in individual bighorn sheep (Ovis canadensis) in the Greater Yellowstone Ecosystem, we documented that fat influenced ability to clear pathogens (Mycoplasma ovipneumoniae) and infection with respiratory pathogens was costly to fat reserves. Costs of infection approached, and in some instances exceeded, costs of rearing offspring to independence in terms of reductions to fat reserves. Fat influenced probability of clearing pathogens, pregnancy and over-winter survival; from an energetic perspective, an animal could survive for up to 23 days on the amount of fat that was lost to high levels of infection. Cost of pathogens may amplify trade-offs between reproduction and survival. In the absence of an active outbreak, the influence of resident pathogens often is overlooked. Nevertheless, the energetic burden of pathogens likely has consequences for fitness and population dynamics, especially when food resources are insufficient.


Asunto(s)
Borrego Cimarrón , Animales , Femenino , Borrego Cimarrón/fisiología , Tejido Adiposo , Metabolismo Energético , Enfermedades de las Ovejas , Masculino , Embarazo , Fenómenos Fisiológicos Nutricionales de los Animales
2.
Proc Biol Sci ; 291(2018): 20232710, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38471560

RESUMEN

Heatwaves are increasing in frequency and intensity due to climate change, pushing animals beyond physiological limits. While most studies focus on survival limits, sublethal effects on fertility tend to occur below lethal thresholds, and consequently can be as important for population viability. Typically, male fertility is more heat-sensitive than female fertility, yet direct comparisons are limited. Here, we measured the effect of experimental heatwaves on tsetse flies, Glossina pallidipes, disease vectors and unusual live-bearing insects of sub-Saharan Africa. We exposed males or females to a 3-day heatwave peaking at 36, 38 or 40°C for 2 h, and a 25°C control, monitoring mortality and reproduction over six weeks. For a heatwave peaking at 40°C, mortality was 100%, while a 38°C peak resulted in only 8% acute mortality. Females exposed to the 38°C heatwave experienced a one-week delay in producing offspring, whereas no such delay occurred in males. Over six weeks, heatwaves resulted in equivalent fertility loss in both sexes. Combined with mortality, this lead to a 10% population decline over six weeks compared to the control. Furthermore, parental heatwave exposure gave rise to a female-biased offspring sex ratio. Ultimately, thermal limits of both survival and fertility should be considered when assessing climate change vulnerability.


Asunto(s)
Moscas Tse-Tse , Masculino , Femenino , Animales , Calor , Fertilidad , Reproducción , Cambio Climático
3.
Oecologia ; 204(1): 71-81, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38097779

RESUMEN

Factors behind intraspecific variation in sensitivity to pathogens remain poorly understood. We investigated how geographical origin in two North European amphibians affects tolerance to infection by the chytrid fungus Batrachochytrium dendrobatidis (Bd), a generalist pathogen which has caused amphibian population declines worldwide. We exposed newly metamorphosed individuals of moor frog Rana arvalis and common toad Bufo bufo from two latitudinal regions to two different BdGPL strains. We measured survival and growth as infections may cause sub-lethal effects in fitness components even in the absence of mortality. Infection loads were higher in B. bufo than in R. arvalis, and smaller individuals had generally higher infection loads. B. bufo had high mortality in response to Bd infection, whereas there was little mortality in R. arvalis. Bd-mediated mortality was size-dependent and high-latitude individuals were smaller leading to high mortality in the northern B. bufo. Bd exposure led to sub-lethal effects in terms of reduced growth suggesting that individuals surviving the infection may have reduced fitness mediated by smaller body size. In both host species, the Swedish Bd strain caused stronger sublethal effects than the British strain. We suggest that high-latitude populations can be more vulnerable to chytrids than those from lower latitudes and discuss the possible mechanisms how body size and host geographical origin contribute to the present results.


Asunto(s)
Quitridiomicetos , Micosis , Humanos , Animales , Anfibios , Anuros/microbiología , Bufonidae , Micosis/veterinaria , Micosis/microbiología , Tamaño Corporal
4.
Environ Res ; 262(Pt 1): 119894, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39218340

RESUMEN

Neonicotinoid insecticides are widely used in agriculture and have been linked to various detrimental physiological effects on wild birds. Despite this, the impact of acetamiprid - a less studied member of the neonicotinoid family - on the hypothalamic-pituitary-adrenal axis responsible for the hormonal regulation of the response to stress has rarely been examined in birds. In our study, we explored the effects of acetamiprid on feather levels of corticosterone, the major end product of the HPA, and blood oxidative status of House sparrows (Passer domesticus), following the ingestion of a low, field-realistic dose during two consecutive experiments in 2015 and 2016. We involved 112 birds in each experiment - 56 males and 56 females - that were administered a placebo or a dose of acetamiprid equivalent to 0.5% of the LD50 of the Zebra finch over the entire duration of the experiments, which lasted approximately three weeks. We measured corticosterone concentrations in feathers grown during an acclimation phase before ingestion and in newly grown feather after the experiment and assessed three oxidative stress markers in the blood. We found no impact of acetamiprid on oxidative stress markers. However, in 2015, male sparrows that ingested acetamiprid exhibited higher corticosterone levels in their feathers compared to those that received a placebo. No such difference was found in females. Interestingly, this effect was not observed in year 2016, which was characterised by less stressful conditions for the birds. These findings offer the first evidence of a potential effect of acetamiprid on corticosterone levels in a songbird, suggesting that ingesting this compound at very low dose may alter the endocrine physiology of the response to stress.

5.
Med Vet Entomol ; 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39167411

RESUMEN

Chagas disease is considered one of the most important human parasitosis in the United States. This disease is mainly transmitted by insects of the subfamily Triatominae. The chemical vector control is the main tool for reducing the incidence of the disease. However, the presence of triatomines after pyrethroids spraying has been reported in some regions, as in the case of Triatoma infestans in Argentina and Bolivia. The presence of insects can be explained by the colonization from neighbouring areas, the reduction of insecticide dose to sublethal levels due to environmental factors, and/or by the evolution of insecticide resistance. In the last two scenarios, a proportion of the insects is not killed by insecticide and gives rise to residual populations. This article focuses on the toxicological processes associated with these scenarios in triatomines. Sublethal doses may have different effects on insect biology, that is, sublethal effects, which may contribute to the control. In addition, for insect disease vectors, sublethal doses could have negative effects on disease transmission. The study of sublethal effects in triatomines has focused primarily on the sequence of symptoms associated with nervous intoxication. However, the effects of sublethal doses on excretion, reproduction and morphology have also been studied. Rhodnius prolixus and T. infestans and pyrethroids insecticides were the triatomine species and insecticides, respectively, mainly studied. Insecticide resistance is an evolutionary phenomenon in which the insecticide acts as a selective force, concentrating on the insect population's pre-existing traits that confer resistance. This leads to a reduction in the susceptibility to the insecticide, which was previously effective in controlling this species. The evolution of resistance in triatomines received little attention before the 2000s, but after the detection of the first focus of resistance associated with chemical control failures in T. infestans from Argentina in 2002, the study of resistance increased remarkably. A significant number of works have studied the geographical distribution, the resistance mechanisms, the biological modifications associated with resistance, the environmental influences and the genetic of T. infestans resistant to pyrethroid insecticides. Currently, studies of insecticide resistance are gradually being extended to other areas and other species. The aim of this article was to review the knowledge on both phenomena (sublethal effects and insecticide resistance) in triatomines. For a better understanding of this article, some concepts and processes related to insect-insecticide interactions, individual and population toxicology and evolutionary biology are briefly reviewed. Finally, possible future lines of research in triatomine toxicology are discussed.

6.
Ecotoxicol Environ Saf ; 284: 116917, 2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39182280

RESUMEN

The fall armyworm (FAW), Spodoptera frugiperda Smith (Lepidoptera: Noctuidae), poses a significant threat to food security, necessitating effective management strategies. While chemical control remains a primary approach, understanding the toxicity and detoxification mechanisms of different insecticides is crucial. In this study, we conducted leaf-dipping bioassays to assess the toxicity of quinalphos and beta-cypermethrin·emamectin benzoate (ß-cyp·EMB) on S. frugiperda larvae. Additionally, we assessed the response of alterations in CarE, GST, MFO, and AChE activities to sublethal concentrations of these insecticides over various treatment durations. Results indicated that ß-cyp·EMB exhibited higher toxicity than quinalphos in S. frugiperda. Interestingly, the highest activities of GST, CarE, MFO, and AChE were observed at 6 h exposure to LC10 and LC25 of ß-cyp·EMB, surpassing equivalent sublethal concentrations of quinalphos. Subsequently, GST and CarE activities exposure to ß-cyp·EMB steadily decreased, while MFO and AChE activities exposure to both insecticides was initially decreased then increased. Conversely, two sublethal concentrations of quinalphos notably enhanced GST activity across all exposure durations, with significantly higher than ß-cyp·EMB at 12-48 h. Similarly, CarE activity was also increased at various durations. Our research has exhibited significant alterations in enzyme activities exposure to both concentration and duration. Furthermore, Pearson correlation analysis showed significant correlations among these enzyme activities at different treatment durations. These findings contribute to a better understanding of detoxification mechanisms across different insecticides, providing valuable insights for the rational management of S. frugiperda populations.

7.
Ecotoxicology ; 33(3): 253-265, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38468020

RESUMEN

In agroecosystems, insects contend with chemical insecticides often encountered at sublethal concentrations. Insects' exposure to these mild stresses may induce hormetic effects, which has consequences for managing insect pests. In this study, we used an electrical penetration graph (EPG) technique to investigate the feeding behavior and an age-stage, two-sex life table approach to estimate the sublethal effects of thiamethoxam on greenbug, Schizaphis graminum. The LC5 and LC10 of thiamethoxam significantly decreased longevity and fecundity of directly exposed adult aphids (F0). However, the adult longevity, fecundity, and reproductive days (RPd)-indicating the number of days in which the females produce offspring - in the progeny generation (F1) exhibited significant increase when parental aphids (F0) were treated with LC5 of the active ingredient. Subsequently, key demographic parameters such as intrinsic rate of increase (r) and net reproductive rate (R0) significantly increased at LC5 treatment. EPG recordings showed that total durations of non-probing (Np), intercellular stylet pathway (C), and salivary secretion into the sieve element (E1) were significantly increased, while mean duration of probing (Pr) and total duration of phloem sap ingestion and concurrent salivation (E2) were decreased in F0 adults exposed to LC5 and LC10. Interestingly, in the F1 generation, total duration of Np was significantly decreased while total duration of E2 was increased in LC5 treatment. Taken together, our results showed that an LC5 of thiamethoxam induces intergenerational hormetic effects on the demographic parameters and feeding behavior of F1 individuals of S. graminum. These findings have important implications on chemical control against S. graminum and highlight the need for a deeper understanding of the ecological consequences of such exposures within pest management strategies across the agricultural landscapes.


Asunto(s)
Áfidos , Insecticidas , Humanos , Animales , Femenino , Tiametoxam , Reproducción , Insecticidas/toxicidad , Conducta Alimentaria , Demografía
8.
Pestic Biochem Physiol ; 201: 105879, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38685245

RESUMEN

The fall armyworm (FAW), Spodoptera frugiperda (J.E. Smith) (Lepidoptera, Noctuidae), is a highly polyphagous invasive pest that damages various crops. Pesticide control is the most common and effective strategy to control FAW. In this study, we evaluated the toxicity of metaflumizone and indoxacarb against third-instar FAW larvae using the insecticide-incorporated artificial diet method under laboratory conditions. Both metaflumizone and indoxacarb exhibited substantial toxicity against FAW, with LC50 values of 2.43 and 14.66 mg/L at 72 h, respectively. The sublethal effects of metaflumizone and indoxacarb on parental and F1 generation FAW were investigated by exposing third-instar larvae to LC10 and LC30 concentrations of these insecticides. Sublethal exposure to these two insecticides significantly shortened adult longevity, extended pupal developmental times and led to reduced pupal weight, pupation rates, and adult fecundity in the treated parental generation and F1 generation at LC10 or LC30 concentrations, in comparison to the control group. The larval developmental times were shortened in the parental generation but prolonged in the F1 generation, after being treated with sublethal concentrations of metaflumizone. Furthermore, larvae exposed to LC10 or LC30 concentrations of indoxacarb exhibited elevated activity levels of cytochrome P450 monooxygenase and glutathione S-transferase, which coincides with the observed synergistic effect of piperonyl butoxide and diethyl maleate. In conclusion, the high toxicity and negative impact of metaflumizone and indoxacarb on FAW provided significant implications for the rational utilization of insecticides against this pest.


Asunto(s)
Insecticidas , Larva , Oxazinas , Semicarbazonas , Spodoptera , Animales , Spodoptera/efectos de los fármacos , Spodoptera/crecimiento & desarrollo , Insecticidas/toxicidad , Insecticidas/farmacología , Semicarbazonas/farmacología , Larva/efectos de los fármacos , Oxazinas/toxicidad , Longevidad/efectos de los fármacos , Fertilidad/efectos de los fármacos , Inactivación Metabólica
9.
Pestic Biochem Physiol ; 202: 105962, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38879310

RESUMEN

Lufenuron, a benzoylurea chitin synthesis inhibitor, is effective against many insect pests. However, the insecticidal activity of lufenuron has not been completely elucidated, nor has its disturbing effect on chitin synthesis genes. In this study, bioassay results demonstrated an outstanding toxicity of lufenuron against Helicoverpa armigera larvae. The treated larvae died from abortive molting and metamorphosis defects, and severe separation of epidermis and subcutaneous tissues was observed. Treatment of 3rd- and 4th-instar larvae with LC25 lufenuron significantly extended the duration of larval and pupal stage, reduced the rates of pupation and emergence, and adversely affected pupal weight. Besides, lufenuron can severely reduce chitin content in larval integument, and the lufenuron-treated larvae showed reduced trehalose content in their hemolymph. Further analysis using RNA sequencing revealed that five chitin synthesis genes were down-regulated, whereas the expressions of two chitin degradation genes were significantly enhanced. Knockdown of chitin synthase 1 (HaCHS1), uridine diphosphate-N-acetylglucosamine-pyrophosphorylase (HaUAP), phosphoacetyl glucosamine mutase (HaPGM), and glucosamine 6-phosphate N-acetyl-transferase (HaGNPAT) in H. armigera led to significant increase in larval susceptibilities to LC25 lufenuron by 75.48%, 65.00%, 68.42% and 28.00%, respectively. Our findings therefore revealed the adverse effects of sublethal doses of lufenuron on the development of H. armigera larvae, elucidated the perturbations on chitin metabolism, and proved that the combination of RNAi and lufenuron would improve the control effect of this pest.


Asunto(s)
Benzamidas , Quitina , Insecticidas , Larva , Mariposas Nocturnas , Animales , Quitina/biosíntesis , Benzamidas/farmacología , Larva/efectos de los fármacos , Insecticidas/farmacología , Insecticidas/toxicidad , Mariposas Nocturnas/efectos de los fármacos , Mariposas Nocturnas/metabolismo , Mariposas Nocturnas/crecimiento & desarrollo , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética , Quitina Sintasa/metabolismo , Quitina Sintasa/genética , Helicoverpa armigera , Fluorocarburos
10.
Pestic Biochem Physiol ; 201: 105892, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38685254

RESUMEN

As an agricultural pest, the fall armyworm (FAW), Spodoptera frugiperda, poses a severe threat to agriculture in China. Chlorantraniliprole has been widely used to control this pest. In our previous studies, we discovered that LD10, LD20, and LD30 chlorantraniliprole promoted encapsulation in the 4th instar larvae of the FAW, with LD30 chlorantraniliprole having the most significant effect. To further investigate the molecular mechanism underlying the sublethal effects of chlorantraniliprole on encapsulation in the FAW, this study conducted the effects of encapsulation in 4th instar larvae of the FAW exposed to LD30 chlorantraniliprole. Then, we analyzed the transcriptome of the FAW hemolymph treated with LD30 chlorantraniliprole and identified genes related to encapsulation using RNAi. Our results showed that the encapsulation in the FAW was enhanced at 6, 12, 18, 24, and 48 h after exposure to LD30 chlorantraniliprole. Additionally, LD30 chlorantraniliprole significantly affected the expression of certain immune-related genes, with the heat shock protein 70 family gene SfHSP68.1 showing the most significant upregulation. Subsequent interference with SfHSP68.1 resulted in a significant inhibition of encapsulation in FAW. These findings suggested that LD30 chlorantraniliprole can promote encapsulation in the FAW by upregulating SfHSP68.1 expression. This study provides valuable insights into the sublethal effects of chlorantraniliprole on encapsulation in the FAW and the interaction between encapsulation and heat shock proteins (HSPs).


Asunto(s)
Proteínas HSP70 de Choque Térmico , Proteínas de Insectos , Insecticidas , Larva , Spodoptera , ortoaminobenzoatos , Animales , ortoaminobenzoatos/toxicidad , ortoaminobenzoatos/farmacología , Spodoptera/efectos de los fármacos , Spodoptera/genética , Insecticidas/toxicidad , Insecticidas/farmacología , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Larva/efectos de los fármacos , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Regulación hacia Arriba/efectos de los fármacos
11.
Pestic Biochem Physiol ; 200: 105827, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38582591

RESUMEN

In addition to the acute lethal toxicity, insecticides might affect population dynamics of insect pests by inducing life history trait changes under low concentrations, however, the underlying mechanisms remain not well understood. Here we examined systemic impacts on development and reproduction caused by low concentration exposures to cyantraniliprole in the fall armyworm (FAW), Spodoptera frugiperda, and the putative underlying mechanisms were investigated. The results showed that exposure of third-instar larvae to LC10 and LC30 of cyantraniliprole significantly extended larvae duration by 1.46 and 5.41 days, respectively. Treatment with LC30 of cyantraniliprole significantly decreased the pupae weight and pupation rate as well as the longevity, fecundity and egg hatchability of female adults. Consistently, we found that exposure of FAW to LC30 cyantraniliprole downregulated the mRNA expression of four ecdysteroid biosynthesis genes including SfNobo, SfShd, SfSpo and SfDib and one ecdysone response gene SfE75 in the larvae as well as the gene encoding vitellogenin (SfVg) in the female adults. We also found that treatment with LC30 of cyantraniliprole significantly decreased the whole body levels of glucose, trehalose, glycogen and triglyceride in the larvae. Our results indicate that low concentration of cyantraniliprole inhibited FAW development by disruption of ecdysteroid biosynthesis as well as carbohydrate and lipid metabolism, which have applied implications for the control of FAW.


Asunto(s)
Ecdisteroides , Insecticidas , Pirazoles , ortoaminobenzoatos , Animales , Spodoptera , Metabolismo de los Lípidos , Larva , Insecticidas/toxicidad , Carbohidratos
12.
Exp Appl Acarol ; 92(1): 27-39, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37985607

RESUMEN

Multiple arthropod pests can affect the same crop in agricultural systems, requiring the integration of control methods. In the present study, the effects of residual exposure to four broad-spectrum insecticides/acaricides (azadiractin, abamectin, chlorfenapyr, and fenpyroximate) on immature (development and survival time) and adult females (longevity, fecundity, and fertility life table parameters) of the predatory mite Neoseiulus barkeri were evaluated. Additionally, the insecticides/acaricides were categorized according to their selectivity based on the classification proposed by the International Organization for Biological Control (IOBC) for assessing the susceptibility of arthropods in laboratory experiments. Method 004, proposed by the Insecticide Resistance Action Committee (IRAC), was adopted for the bioassays with predators exposed to insecticide-acaricide residues. Among the insecticides/acaricides studied, azadirachtin had minimal effects on immature and adult N. barkeri (all non-significant) and was considered harmless based on the classification of toxicity according to the standards/categories proposed by the IOBC. All other insecticides/acaricides affected immature and adult N. barkeri and were considered slightly harmful in terms of toxicity, according to the IOBC.


Asunto(s)
Acaricidas , Insecticidas , Ácaros , Plaguicidas , Femenino , Animales , Acaricidas/toxicidad , Plaguicidas/farmacología , Insecticidas/farmacología , Fertilidad , Conducta Predatoria
13.
Insect Mol Biol ; 32(6): 738-747, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37646607

RESUMEN

Cucurbits are important economic plants that are attacked by numerous pests, among which the melon fly Zeugodacus cucurbitae is extremely problematic. New sustainable pest control strategies are necessary to replace chemical insecticides that are harmful to the environment, human health and nontarget species. The RNA interference (RNAi) technology is one of the most promising tools due to high efficiency and species specificity. We developed an RNAi strategy targeting the ecdysone receptor (ECR) of Z. cucurbitae, which plays an important role in moulting and reproduction. We identified, described and isolated the ECR gene of Z. cucurbitae and measured its expression pattern across developmental stages and tissues. ZcECR knockdown via dsZcECR ingestion caused a significant larval mortality and abnormal phenotypes in pupae and adults. About 68% of larvae fed with a dsZcECR-treated diet failed to enter the pupal stage and died. In addition, ZcECR knockdown dramatically reduced pupal weight (by 3.24 mg on average) and fecundity (by about 23%). RNAi targeting the ECR gene is therefore a promising method to control Z. cucurbitae, paving the way for the development of novel sustainable and highly specific control strategies.


Asunto(s)
Cucurbitaceae , Receptores de Esteroides , Tephritidae , Humanos , Animales , Cucurbitaceae/metabolismo , Tephritidae/genética , Larva , Receptores de Esteroides/genética , Pupa/metabolismo
14.
Toxicol Appl Pharmacol ; 459: 116340, 2023 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-36509231

RESUMEN

Several crops of agronomic interest depend on bees' pollination, and Apis mellifera L (Hymanoptera: Apidae) is the most studied direct pollinator. Nevertheless, the use of pesticides in agricultural environments is common, including fungicides. Studies that seek to evaluate the effects of fungicides on the hypopharyngeal glands of bees, the site of royal jelly synthesis, are lacking. Thus, this work aimed to evaluate the effect of field doses of fungicides (Captan SC® and Zignal®), alone or in mixture, on the hypopharyngeal glands and their subsequent effect on the strength of hives. The evaluations were carried out under field conditions in three hives per treatment. For a period of one month, bee hives received feed containing sugar syrup, pollen and 1.2 mL of Zignal® and 3 mL of Captan SC® in the isolated treatments and 4.2 mL in the mixture. The action of fungicides on the hypopharyngeal glands was determined by transmission electron microscopy analysis in bees 7 and 15 days old, collected in the hives one month after exposure to fungicides. The strength of the hives was evaluated for six months based on the number of frames with adult bees, open and closed brood, and stored food. The results indicate that fungicides promote early degeneration of the rough endoplasmic reticulum and morphological and structural changes in mitochondria. In addition, a reduction in adult population, open and closed breeding and food stock was observed. More pronounced damage occurred when bees were exposed to the mixture of fungicides. Overall, it can be concluded that the presence of fungicides in bee diets promotes harm accentuated over time and compromises the survival of hives. It will be worth estimating the fungicide effects of the queen development and on the colony heath.


Asunto(s)
Fungicidas Industriales , Himenópteros , Plaguicidas , Abejas , Animales , Fungicidas Industriales/toxicidad , Captano , Agricultura
15.
J Exp Biol ; 226(8)2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-36970762

RESUMEN

Fipronil (Fpl), an insecticide belonging to the class of phenylpyrazoles, is associated with the widespread mortality of pollinator insects worldwide. Based on studies carried out on residual concentrations of Fpl commonly found in the environment, in this study, we evaluated the sublethal effects of Fpl on behavior and other neurophysiological parameters using the cockroach Nauphoeta cinerea as a biological model. Sublethal doses of Fpl (0.1-0.001 µg g-1) increased the time spent grooming and caused dose-dependent inhibition of exploratory activity, partial neuromuscular blockade in vivo and irreversible negative cardiac chronotropism. Fpl also disrupted learning and olfactory memory formation at all doses tested. These results provide the first evidence that short-term exposure to sublethal concentrations of Fpl can significantly disrupt insect behavior and physiology, including olfactory memory. These findings have implications for current pesticide risk assessment and could be potentially useful in establishing a correlation with pesticide effects in other insects, such as honey bees.


Asunto(s)
Cucarachas , Insecticidas , Plaguicidas , Abejas , Animales , Insecticidas/toxicidad , Pirazoles/farmacología , Plaguicidas/farmacología
16.
J Invertebr Pathol ; 200: 107974, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37479056

RESUMEN

Topical applications of insecticides ß-cyfluthrin, imidacloprid, and spinosad in combination with Beauveria bassiana (topical and contact filter paper application) induced synergistic interactions in lesser mealworm larvae, increasing mortality and in some cases numbers of larval cadavers exhibiting conidiogenesis. Reduced concentrations (LC10, LC20, LC30) of the insecticides induced sublethal effects in lesser mealworm larvae, inhibiting development (mass, head-capsule width, moulting) after eight days' exposure and movement behaviour (area explored and distance travelled) after 3 h' exposure. The most potent synergist was ß-cyfluthrin, it strongly inhibited larval development and movement while significantly increasing mortality and conidiogenesis in B. bassiana-infected larvae. Imidacloprid also strongly inhibited larval development and movement, but only produced weak short-lived synergistic increases in mortality, with no increase in conidiogenesis. Spinosad induced no effect on development and limited effect on movement, but still induced moderate short-lived synergistic increases in mortality and conidiogenesis. Intoxicated larvae exposed to B. bassiana on filter paper for 3 h showed no synergistic interactions, except when intoxicated by spinosad.


Asunto(s)
Ascomicetos , Beauveria , Escarabajos , Hypocreales , Insecticidas , Tenebrio , Animales , Insecticidas/farmacología , Larva
17.
Ecotoxicol Environ Saf ; 262: 115203, 2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37406606

RESUMEN

Evaluating the sublethal effects of insecticide is crucial for protecting and utilizing natural enemies. In this study, we determined the sublethal effects of acetamiprid and afidopyropen on Harmonia axyridis (Pallas) and explored the potential molecular mechanisms underlying these effects through transcriptomics analysis. The results showed that sublethal concentrations of acetamiprid significantly reduced the adult fecundity and longevity of F0H. axyridis and decreased the survival time and survival rate of the F1 generation. Sublethal concentrations of afidopyropen prolonged the developmental time of 4th instar larvae in the F0 generation. Additionally, acetamiprid and afidopyropen treatments significantly decreased the predation of H. axyridis. Furthermore, transcriptome sequencing analysis revealed that several P450 and UGT genes expressed differently when H. axyridis were exposed to sublethal concentrations of acetamiprid and afidopyropen, suggesting that the differential expression of detoxifying genes might be involved in the response and detoxification metabolism of acetamiprid and afidopyropen in H. axyridis. Our findings demonstrate that sublethal concentrations of acetamiprid adversely influences the development and predation of H. axyridis, while afidopyropen has limited effects on H. axyridis. These results are helpful for protecting and utilizing natural enemies and guiding the scientific use of pesticides in the field.

18.
Ecotoxicol Environ Saf ; 253: 114658, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36796207

RESUMEN

Pesticide residues have serious environmental impacts on rice-based ecosystems. In rice fields, Chironomus kiiensis and Chironomus javanus provide alternative food sources to predatory natural enemies of rice insect pests, especially when pests are low. Chlorantraniliprole is a substitute for older classes of insecticides and has been used extensively to control rice pests. To determine the ecological risks of chlorantraniliprole in rice fields, we evaluated its toxic effects on certain growth, biochemical and molecular parameters in these two chironomids. The toxicity tests were performed by exposing third-instar larvae to a range of concentrations of chlorantraniliprole. LC50 values at 24 h, 48 h, and 10 days showed that chlorantraniliprole was more toxic to C. javanus than to C. kiiensis. Chlorantraniliprole significantly prolonged the larval growth duration, inhibited pupation and emergence, and decreased egg numbers of C. kiiensis and C. javanus at sublethal dosages (LC10 = 1.50 mg/L and LC25 = 3.00 mg/L for C. kiiensis; LC10 = 0.25 mg/L and LC25 = 0.50 mg/L for C. javanus). Sublethal exposure to chlorantraniliprole significantly decreased the activity of the detoxification enzymes carboxylesterase (CarE) and glutathione S-transferases (GSTs) in both C. kiiensis and C. javanus. Sublethal exposure to chlorantraniliprole also markedly inhibited the activity of the antioxidant enzyme peroxidase (POD) in C. kiiensis and POD and catalase (CAT) in C. javanus. Expression levels of 12 genes revealed that detoxification and antioxidant abilities were affected by sublethal exposures to chlorantraniliprole. There were significant changes in the expression levels of seven genes (CarE6, CYP9AU1, CYP6FV2, GSTo1, GSTs1, GSTd2, and POD) in C. kiiensis and ten genes (CarE6, CYP9AU1, CYP6FV2, GSTo1, GSTs1, GSTd2, GSTu1, GSTu2, CAT, and POD) in C. javanus. These results provide a comprehensive overview of the differences in chlorantraniliprole toxicity to chironomids, indicating that C. javanus is more susceptible and suitable as an indicator for ecological risk assessment in rice ecosystems.


Asunto(s)
Chironomidae , Insecticidas , Animales , Antioxidantes/farmacología , Ecosistema , Larva , ortoaminobenzoatos/toxicidad , Insecticidas/toxicidad
19.
Ecotoxicol Environ Saf ; 252: 114581, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36731179

RESUMEN

The codling moth Cydia pomonella (Lepidoptera: Tortricidae) is a major invasive pest of pome fruits and walnuts worldwide. Lambda-cyhalothrin (LCT) and abamectin (AM) have been frequently used in C. pomonella control, but control of this pest is very difficult because shortly after hatching, larvae of this insect bore tunnels and hide inside host plant fruit. In this study, a simulated field spray bioassay method was developed against neonate larvae of C. pomonella and concentration-response bioassays were conducted to evaluate the susceptibility of the neonate larvae to LCT and AM. Exposure of neonate larvae to sublethal concentration (LC30) of LCT or AM significantly reduced the survival rate of larvae (4th and 5th instars), lowered the mean weight of larvae and pupae, and decreased the daily maximal number of eggs laid and the total number of eggs laid (fecundity) per female. The sublethal effects, including reduced body mass, mean fecundity and net reproductive rate, extended mean generation time, and shortened oviposition period, were also found in transgenerational offspring. Furthermore, the transgenerational maternal effects were more obvious for AM than LCT, in comparison to the control. Additionally, the estimated population size was decreased by exposure to LC30 of LCT and AM, and the observed reduction of fecundity and population size within and across generations was likely the result of the downregulation of the reproduction-related vitellogenin gene (CpVg) after exposure to LC30 of LCT and AM. These results provide a better understanding of the overall effects of LCT and AM on C. pomonella and the transgenerational effects which should be taken into consideration when using insecticides in order to control C. pomonella.


Asunto(s)
Insecticidas , Mariposas Nocturnas , Piretrinas , Animales , Femenino , Piretrinas/toxicidad , Larva , Insecticidas/toxicidad , Reproducción
20.
Ecotoxicol Environ Saf ; 264: 115499, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37729803

RESUMEN

This study aimed to investigate the sublethal effects of thiacloprid on microRNA (miRNA) expression in honeybees (Apis mellifera L.) and the role of a specific miRNA, ame-miR-283-5p, in thiacloprid resistance. The high-throughput small RNA-sequencing was used to analyze global miRNA expression profile changes in honeybees orally exposed to sublethal concentrations of thiacloprid (20 mg/L and 4 mg/L) for 72 h. Thiacloprid at 20 mg/L had no observed adverse effects. In addition, bees were fed with miRNA mimics or inhibitors to increase or decrease ame-miR-283-5p expression, and its effects on P450 gene expression (CYP9Q2 and CYP9Q3) were examined. Thiacloprid susceptibility was also detected. The results showed that treatment with thiacloprid at 20 mg/L and 4 mg/L induced 11 and five differentially expressed miRNAs (DEMs), respectively. Bioinformatic analysis suggested that the DEMs are mainly involved in the regulation of growth and development, metabolism, nerve conduction, and behavior. ame-miR-283-5p was downregulated by both concentrations, which was validated using quantitative real-time reverse transcription PCR analysis. Enhancing ame-miR-283-5p expression significantly inhibited CYP9Q2 mRNA and protein expression, and increased thiacloprid toxicity, while reducing ame-miR-283-5p expression significantly promoted CYP9Q2 expression, and decreased thiacloprid susceptibility. Our study revealed a novel role of miRNAs in insecticide resistance in honeybees.


Asunto(s)
Insecticidas , MicroARNs , Tiazinas , Abejas/genética , Animales , Insecticidas/toxicidad , Neonicotinoides/toxicidad , Tiazinas/toxicidad , MicroARNs/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA