Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Ann Rev Mar Sci ; 16: 105-133, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-37487592

RESUMEN

Submarine turbidity currents form the largest sediment accumulations on Earth, raising the question of their role in global carbon cycles. It was previously inferred that terrestrial organic carbon was primarily incinerated on shelves and that most turbidity current systems are presently inactive. Turbidity currents were thus not considered in global carbon cycles, and the burial efficiency of global terrestrial organic carbon was considered low to moderate (∼10-44%). However, recent work has shown that burial of terrestrial organic carbon by turbidity currents is highly efficient (>60-100%) in a range of settings and that flows occur more frequently than once thought, although they were far more active at sea-level lowstands. This leads to revised global estimates for mass flux (∼62-90 Mt C/year) and burial efficiency (∼31-45%) of terrestrial organic carbon in marine sediments. Greatly increased burial fluxes during sea-level lowstands are also likely underestimated; thus, organic carbon cycling by turbidity currents could play a role in long-term changes in atmospheric CO2 and climate.


Asunto(s)
Ciclo del Carbono , Clima , Carbono
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA