Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 182
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Environ Res ; 252(Pt 3): 118870, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38579994

RESUMEN

In persulfate-based advanced oxidation processes (PS-AOPs), sulfate radicals (SO4•-) have been recognized to play more important roles in inducing bromate (BrO3-) formation rather than hydroxyl radicals (HO•) because of the stronger oxidation capacity of the former. However, this study reported an opposite result that HO• indeed dominated the formation of bromate instead of SO4•-. Quenching experiments were coupled with electron paramagnetic resonance (EPR) detection and chemical probe identification to elucidate the contributions of each radical species. The comparison of different thermal activated persulfates (PDS and PMS) demonstrated that the significant higher bromate formation in HEAT/PMS ([BrO3-]/[Br-]0 = 0.8), as compared to HEAT/PDS ([BrO3-]/[Br-]0 = 0.2), was attributable to the higher concentration of HO• radicals in HEAT/PMS. Similarly, the bromate formation in UV/PDS ([BrO3-]/[Br-]0 = 1.0), with a high concentration of HO•, further underscored the dominant role of HO•. As a result, we quantified that HO• and SO4•- radicals accounted 66.7% and 33.3% for bromate formation. This controversial result can be reconciled by considering the critical intermediate, hypobromic acid/hypobromate (HOBr/BrO-), involved in the transformation of Br- to BrO3-. HO• radicals have the chemical preference to induce the formation of HOBr/BrO- intermediates (contributing âˆ¼ 60%) relative to SO4•- radicals (contributing âˆ¼ 40%). This study highlighted the dominant role of HO• in the formation of bromate rather than SO4•- in PS-AOPs and potentially offered novel insights for reducing disinfection byproduct formation by controlling the radical species in AOPs.


Asunto(s)
Bromatos , Radical Hidroxilo , Oxidación-Reducción , Sulfatos , Bromatos/química , Radical Hidroxilo/química , Sulfatos/química , Espectroscopía de Resonancia por Spin del Electrón
2.
Int J Mol Sci ; 25(19)2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39408859

RESUMEN

In this study, Fe, N co-doped biochar (Fe@N co-doped BC) was synthesized by the carbonization-pyrolysis method and used as a carbocatalyst to activate peroxymonosulfate (PMS) for sulfamethoxazole (SMX) removal. In the Fe@N co-doped BC/PMS system, the degradation efficiency of SMX (10.0 mg·L-1) was 90.2% within 40 min under optimal conditions. Radical quenching experiments and electron spin resonance (ESR) analysis suggested that sulfate radicals (SO4•-), hydroxyl radicals (•OH), and singlet oxygen (1O2) participated in the degradation process. After the reaction, the proportion of pyrrolic N decreased from 57.9% to 27.1%. Pyrrolic N served as an active site to break the inert carbon network structure and promote the generation of reactive oxygen species (ROS). In addition, pyrrolic N showed a stronger interaction with PMS and significantly reduced the activation energy required for the reaction (∆G = 23.54 kcal/mol). The utilization potentiality of Fe@N co-doped BC was systematically evaluated in terms of its reusability and selectivity to organics. Finally, the intermediates of SMX were also detected.


Asunto(s)
Carbón Orgánico , Peróxidos , Sulfametoxazol , Sulfametoxazol/química , Peróxidos/química , Carbón Orgánico/química , Hierro/química , Espectroscopía de Resonancia por Spin del Electrón , Nitrógeno/química , Contaminantes Químicos del Agua/química , Especies Reactivas de Oxígeno/química , Catálisis
3.
Environ Sci Technol ; 57(47): 18597-18606, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-36563128

RESUMEN

Radicals in advanced oxidation processes (AOPs) degrade micropollutants during water and wastewater treatment, but the transformation of dissolved organic matter (DOM) may be equally important. Ketone moieties in DOM are known disinfection byproduct precursors, but ketones themselves are intermediates produced during AOPs. We found that aromatic alcohols in DOM underwent transformation to ketones by one-electron oxidants (using SO4•- as a representative), and the formed ketones significantly increased trichloromethane (CHCl3) formation potential (FP) upon subsequent chlorination. CHCl3-FPs from aromatic ketones (Ar-CO-CH3, average of 22 mol/mol) were 6-24 times of CHCl3-FPs from aromatic alcohols (Ar-CH(OH)-CH3, average of 0.85 mol/mol). At a typical SO4•- exposure of 7.0 × 10-12 M·s, CHCl3-FPs from aromatic alcohol transformation increased by 24.8%-112% with an average increase of 53.4%. Notably, SO4•- oxidation of aliphatic alcohols resulted in minute changes in CHCl3-FPs due to their low reactivities with SO4•- (∼107 M-1 s-1). Other one-electron oxidants (Cl2•-, Br2•-,and CO3•-) are present in AOPs and also lead to aromatic alcohol-ketone transformations similar to SO4•-. This study highlights that subtle changes in DOM physicochemical properties due to one-electron oxidants can greatly affect the reactivity with free chlorine and the formation of chlorinated byproducts.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Oxidantes , Materia Orgánica Disuelta , Cloroformo , Cetonas , Electrones , Contaminantes Químicos del Agua/análisis , Cloro/química , Purificación del Agua/métodos , Halogenación , Desinfección , Alcohol Bencilo
4.
Environ Res ; 229: 115910, 2023 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-37062479

RESUMEN

Sulfate radical-based advanced oxidation processes (SR-AOPs) are gaining popularity as a feasible alternative for removing recalcitrant pollutants in an aqueous environment. Persulfates, namely peroxydisulfate (PDS) and peroxymonosulfate (PMS) are the most common sulfate radical donors. Persulfates activation by ultraviolet (UV) irradiation is considered feasible due to the high concentration of radicals produced as well as the lack of catalysts leaching. The research focuses on determining the impact of activated PDS and PMS on the degradation of anthraquinone dye, i.e., Acid Blue 129 (AB129). UV-activated PDS and PMS can quickly degrade the AB129 as well as restrict the formation of by-products. This could explain the reduced ecotoxicity levels of the treated water after degradation, using an aquatic plant (Lemna minor) and a crustacean (Daphnia magna). This, on the other hand, can ensure that the sulfate radical-based processes can be an environmentally friendly technology.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Cinética , Contaminantes Químicos del Agua/análisis , Oxidación-Reducción , Antraquinonas
5.
J Environ Manage ; 348: 119486, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37925988

RESUMEN

This study focuses on the treatment of secondary urban wastewater (W) to improve the effluent quality aiming at the reduction of pathogenic microorganisms for the safe reuse of the treated wastewater (TW). Catalyst-free persulfate activation by radiation-based oxidation was applied as a treatment technology. A parametric study was carried out to select the best operating conditions. Total enterobacteria inactivation (quantified by the log reduction (CFU/100 mL)) was achieved when using [S2O82-] = 1 mM, pH = 8.5 (natural pH of W), T = 25 °C, and I = 500 W/m2. However, storing TW for 3 days promoted the regrowth of bacteria, risking its reutilization. Therefore, in this study, and for the first time, the potential beneficial role of inoculation of wastewater treated by the radiation-activated persulfate process with a diverse bacterial community was evaluated in order to control the regrowth of potentially harmful microorganisms through bacterial competition. For this, TW was diluted with river water (R) in the volume percentages of 5, 25, and 50 (percentages refer to R content), and enterobacteria and total heterotrophs were enumerated before and after storage for 72 h. The results showed total heterotrophs and enterobacteria regrowth for TW and R + TW diluted 5 and 25% after storage. However, for R + TW diluted 50%, only the total heterotrophs regrew. Hence, the treated wastewater generated by the oxidative process diluted with 50% river water complies with the legislated limits for reuse in urban uses or irrigation.


Asunto(s)
Aguas Residuales , Purificación del Agua , Desinfección/métodos , Rayos Ultravioleta , Bacterias , Enterobacteriaceae , Agua
6.
J Environ Manage ; 332: 117295, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36738716

RESUMEN

The 2,4-dichlorophenol (2,4-DCP) is an important chemical precursor that can affect human endocrine system and induce pathological symptoms. This research reports the degradation of 2,4-DCP using lab-scale hydrodynamic cavitation (HC) approach, which is considered a green and effective method. To promote the degradation efficiency, the zero-valent iron (Fe0) as the catalyst for sulfate radical (SO4•-) generation via activation of sulfite (SO32-) salts was simultaneously used. Degradation efficiency was favorable in acidic pH than the alkaline pH due to higher production of active radicals and was dependent on the dose of Fe0 and SO32-. Under optimal condition, degradation efficiency by Fe0/HC/sulfite (96.67 ± 2.90%) was considerably enhanced compared to HC alone (45.37 ± 2.26%). Quenching experiments suggested that SO4•-, •OH, 1O2, and O2•- radicals were involved in the degradation of 2,4-DCP by Fe0/HC/sulfite process, but the dominant role was related to •OH (70.09% contribution) and SO4•- (29.91% contribution) radicals. From the turbulence model, turbulent pressure at venturi throat decreased from -0.42 MPa to -2.02 MPa by increasing the inlet pressure from 1.0 to 4.0 bar and increase in pressure gradient has intensified bubble collapse due to higher turbulence tension.


Asunto(s)
Hierro , Contaminantes Químicos del Agua , Humanos , Hidrodinámica , Catálisis , Sulfitos , Oxidación-Reducción
7.
J Environ Manage ; 345: 118861, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37651902

RESUMEN

Disinfection and decontamination of water by application of oxidisers is an essential treatment step across numerous industrial sectors including potable supply and industry waste management, however, could be greatly enhanced if operated as advanced oxidation processes (AOPs). AOPs destroy contaminants including pathogens by uniquely harnessing radical chemistry. Despite AOPs offer great practical opportunities, no reviews to date have highlighted the critical AOP virtues that facilitate AOPs' scale up under growing industrial demand. Hence, this review analyses the critical AOP parameters such as oxidant conversion efficiency, batch mode vs continuous-flow systems, location of radical production, radical delivery by advanced micro-/mesoporous structures and AOP process costs to assist the translation of progressing developments of AOPs into their large-scale applications. Additionally, the state of the art is analysed for various AOP inducing radical/oxidiser measurement techniques and their half-lives with a view to identify radicals/oxidisers that are suitable for in-situ production. It is concluded that radicals with short half-lives such as hydroxyl (10-4 µsec) and sulfate (30-40 µsec) need to be produced in-situ via continuous-flow reactors for their effective transport and dosing. Meanwhile, radicals/oxidisers with longer half-lives such as ozone (7-10 min), hydrogen peroxide (stable for several hours), and hypochlorous acid (10 min -17 h) need to be applied through batch reactor systems due to their relatively longer stability during transportation and dosing. Complex and costly synthesis as well as cytotoxicity of many micro-/mesoporous structures limit their use in scaling up AOPs, particularly to immobilising and delivering the short-lived hydroxyl and sulfate radicals to their point of applications. Overall, radical delivery using safe and advanced biocompatible micro-/mesoporous structures, radical conversion efficiency using advanced reactor design and portability of AOPs are priority areas of development for scaling up to industry.


Asunto(s)
Desinfección , Oxidantes , Oxidación-Reducción , Peróxido de Hidrógeno , Radical Hidroxilo , Sulfatos
8.
Angew Chem Int Ed Engl ; 62(49): e202311807, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-37850999

RESUMEN

We report a protocol for alkene hydroxyalkenylation. Using a persulfate anion as a one-electron-oxidation reagent and 1,2-bis(phenylsulfonyl)ethylene as a radical acceptor in the presence of water, alkenes were converted into the corresponding 1-phenylsulfonyl-4-hydroxyalkenes in good to high yields. The hydroxyalkenylation process involves the nucleophilic hydroxylation of alkene radical cations to give ß-hydroxyalkyl radicals, which, after a radical addition/ß-elimination sequence, provide the products. We also report a photocatalytic protocol for alkoxyalkenylation.

9.
Environ Sci Technol ; 56(1): 546-555, 2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-34747613

RESUMEN

Dissolved organic matter (DOM) has been known to inhibit the degradation of trace organic contaminants (TrOCs) in advanced oxidation processes but quantitative understanding is lacking. Adenine (ADN) was selected as a model TrOC due to the wide occurrence of purine groups in TrOCs and the well-documented transient spectra of its intermediate radicals. ADN degradation in the presence of DOM during UV/peroxydisulfate treatment was quantified using steady-state photochemical experiments, time-resolved spectroscopy, and kinetic modeling. The inhibitory effects of DOM were found to include competing for photons, scavenging SO4•- and HO•, and also converting intermediate ADN radicals (ADN(-H)•) back into ADN. Half of the ADN(-H)• were reduced back to ADN in the presence of about 0.2 mgC L-1 of DOM. The quenching rate constants of ADN(-H)• by the 10 tested DOM isolates were in the range of (0.39-1.18) × 107 MC-1 s-1. They showed a positive linear relationship with the total antioxidant capacity of DOM. The laser flash photolysis results of the low-molecular-weight analogues of redox-active moieties further supported the dominant role of antioxidant moieties in DOM in the quenching of ADN(-H)•. The diverse roles of DOM should be considered in predicting the abatement of TrOCs in advanced oxidation processes.


Asunto(s)
Antioxidantes , Contaminantes Químicos del Agua , Materia Orgánica Disuelta , Oxidación-Reducción , Fotólisis , Purinas , Contaminantes Químicos del Agua/química
10.
Environ Sci Technol ; 56(7): 4457-4466, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35302348

RESUMEN

Dissolved organic matter (DOM) scavenges sulfate radicals (SO4•-), and SO4•--induced DOM transformations influence disinfection byproduct (DBP) formation when chlorination follows advanced oxidation processes (AOPs) used for pollutant destruction during water and wastewater treatment. Competition kinetics experiments and transient kinetics experiments were conducted in the presence of 19 DOM fractions. Second-order reaction rate constants for DOM reactions with SO4•- (kDOM,SO4•-) ranged from (6.38 ± 0.53) × 106 M-1 s-1 to (3.68 ± 0.34) × 107 MC-1 s-1. kDOM,SO4•- correlated with specific absorbance at 254 nm (SUVA254) (R2 = 0.78) or total antioxidant capacity (R2 = 0.78), suggesting that DOM with more aromatics and antioxidative moieties reacted faster with SO4•-. SO4•- exposure activated DBP precursors and increased carbonaceous DBP (C-DBP) yields (e.g., trichloromethane, chloral hydrate, and 1,1,1-trichloropropanone) in humic acid and fulvic acid DOM fractions despite the great reduction in their organic carbon, chromophores, and fluorophores. Conversely, SO4•--induced reactions reduced nitrogenous DBP yields (e.g., dichloroacetonitrile and trichloronitromethane) in wastewater effluent organic matter and algal organic matter without forming more C-DBP precursors. DBP formation as a function of SO4•- exposure (concentration × time) provides guidance on optimization strategies for SO4•--based AOPs in realistic water matrices.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Desinfección , Materia Orgánica Disuelta , Halogenación , Cinética , Sulfatos , Contaminantes Químicos del Agua/análisis
11.
Environ Sci Technol ; 56(1): 681-692, 2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-34908403

RESUMEN

To develop predictive models for the reactivity of organic contaminants toward four oxidants─SO4•-, HClO, O3, and ClO2─all with small sample sizes, we proposed two approaches: combining small data sets and transferring knowledge between them. We first merged these data sets and developed a unified model using machine learning (ML), which showed better predictive performance than the individual models for HClO (RMSEtest: 2.1 to 2.04), O3 (2.06 to 1.94), ClO2 (1.77 to 1.49), and SO4•- (0.75 to 0.70) because the model "corrected" the wrongly learned effects of several atom groups. We further developed knowledge transfer models for three pairs of the data sets and observed different predictive performances: improved for O3 (RMSEtest: 2.06 to 2.01)/HClO (2.10 to 1.98), mixed for O3 (2.06 to 2.01)/ClO2 (1.77 to 1.95), and unchanged for ClO2 (1.77 to 1.77)/HClO (2.1 to 2.1). The effectiveness of the latter approach depended on whether there was consistent knowledge shared between the data sets and on the performance of the individual models. We also compared our approaches with multitask learning and image-based transfer learning and found that our approaches consistently improved the predictive performance for all data sets while the other two did not. This study demonstrated the effectiveness of combining small, similar data sets and transferring knowledge between them to improve ML model performance.


Asunto(s)
Oxidantes , Ozono , Aprendizaje Automático , Relación Estructura-Actividad Cuantitativa
12.
Environ Res ; 211: 113059, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35257689

RESUMEN

Sulfate-based advanced oxidation process mediated by zero-valent iron (ZVI) and ultraviolet radiation for the decomposition of sulfite salts resulted in the formation of strong oxidizing species (sulfate and hydroxide radicals) in aqueous solution is reported. Degradation of direct red 89 (DR89) dye via UV/ZVI/sulfite process was systematically investigated to evaluate the effect of pH, ZVI dose, sulfite, initial DR89 concentration, and reaction time on DR89 degradation. The synergy factor of UV/ZVI/sulfite process was found to be 2.23-times higher than the individual processes including ZVI, sulfite and UV. By increasing the ZVI dose from 100 mg/L to 300 mg/L, dye degradation was linearly enhanced from 67.12 ± 3.36% to 82.40 ± 4.12% by the UV/ZVI/sulfite process due to enhanced ZVI corrosion and sulfite activation. The highest degradation efficiency of 99.61 ± 0.02% was observed at pH of 5.0, [ZVI]0 = 300 mg/L, and [sulfite]0 = 400 mg/L. Toxicity assessment by Lepidium sativum demonstrated that treated dye solution by UV/ZVI/sulfite was within the non-toxic range. The application of optimal adaptive neuro-fuzzy inference system (ANFIS) to predict DR89 degradation indicated high accuracy of ANFIS model (R2 = 0.97 and RMSE = 0.051) via the UV/ZVI/sulfite process. It is suggested that UV/ZVI/sulfite process is suitable for industrial wastewater treatment.


Asunto(s)
Rayos Ultravioleta , Contaminantes Químicos del Agua , Hierro/química , Oxidación-Reducción , Sulfatos , Sulfitos/toxicidad , Contaminantes Químicos del Agua/análisis
13.
Environ Res ; 205: 112424, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-34838758

RESUMEN

The activation of peroxymonosulfate (PMS) by nanocatalysts has shown promise as an effective wastewater treatment protocol. Magnetic CoFe2O4/Ag-nanoparticles (NPs) anchored on functionalized multiwalled carbon nanotubes (fMWCNTs), a support material, were synthesized using a one-pot solvothermal method. The surface morphologies and physicochemical properties of the CoFe2O4/Ag-fMWCNT hybrid nanocomposite catalyst were investigated by powder X-ray diffraction analysis, field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, high-resolution transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and nitrogen adsorption-desorption isotherms. The activity of the nanocomposite combined with PMS (serving as an activator) toward the degradation of rhodamine B, methylene blue, methyl orange, and methyl red was investigated. The obtained optimal 0.02 g CoFe2O4/Ag-fMWCNTs exhibited the highest PMS activation performance, with a removal percentage of 100% for 20 ppm dye concentration at pH 6.5 within 14 min. In addition, the rhodamine B degradation product was investigated by analyzing the intermediate products by liquid chromatography/mass spectrometry (LC-MS). The homogeneous distribution of CoFe2O4/Ag NPs on fMWCNTs accelerated PMS activation and enhanced the catalytic degradation of dyes. The effects of the reaction parameters on the dye degradation efficiency were investigated by using different nanocatalysts (fMWCNTs, CoFe2O4/fMWCNTs, and CoFe2O4/Ag-fMWCNTs) as well as by varying the pH (3-11), dye concentration (10-50 mg/l), catalyst dose (0.002-0.3 g), and PMS dose (0.02-0.1 g). Quenching experiments revealed that sulfate radicals are primarily responsible for rhodamine B degradation. A plausible mechanism for catalytic PMS activation was also proposed. Complete decolorization occurred within the first few minutes of the reaction. Furthermore, the catalytic activity of the CoFe2O4/Ag-fMWCNT/PMS hybrid nanocomposite remained stable after five successive cycles. This study verifies the applicability of CoFe2O4/Ag-fMWCNTs as an ultrafast catalyst for the complete removal of persistent organic pollutants via PMS activation, revealing their promising application in wastewater treatment.


Asunto(s)
Nanocompuestos , Nanotubos de Carbono , Cobalto , Colorantes , Compuestos Férricos , Peróxidos
14.
J Environ Manage ; 314: 115108, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35468438

RESUMEN

The performance of three solid iron wastes (SIW-1, SIW-2 and SIW-3) was evaluated as an activator of persulfate (PS) for the degradation of methylene blue (MB). SIW-3 showed the highest performance among the three catalysts. The morphology, chemical composition and chemical structure of the three SIW were investigated using various analyses. Complete degradation of methylene blue (MB) in neutral pH was achieved after 60 min at PS concentration of 4 mM, initial MB concentration of 10 mg/L and catalyst dose of 1.0 g/100 mL using light. The degradation efficiency of MB decreased from 100% to 34.6% by increasing the initial MB concentration from 10 mg/L to 100 mg/L. The degradation of MB followed the second-order model. Scavenging experiments showed the major role of hydroxyl and sulfate radicals in the MB degradation. The performance of iron waste in the retained form was investigated and the degradation efficiencies were 96%, 91.2%, 91%, 89% and 86% in five succeeding cycles at pH 7, catalyst dose of 1 g/100 mL, initial MB concentration of 10 mg/L and PS concentration of 4 mM. Moreover, the reusability of suspended iron waste was investigated. The degradation efficiencies of methylene blue, methyl red, Congo red and acid blue-25 were 100%, 97%, 96% and 97.3%, respectively after 60 min. The degradation pathways of MB were proposed after the identification of intermediates using liquid chromatography-mass spectroscopy analysis. This study revealed that the iron waste can be efficiently employed for PS activation in the suspended and immobilized modes which reduces the total cost of the Fenton process paving the way for the large-scale application of this technique.


Asunto(s)
Hierro , Contaminantes Químicos del Agua , Catálisis , Hierro/química , Azul de Metileno/química , Acero , Contaminantes Químicos del Agua/química
15.
J Environ Manage ; 308: 114664, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35149402

RESUMEN

The large amount of trace organic contaminants (TrOCs) in wastewater has caused serious impacts on human health. In the past few years, Sulfate radical (SO4•-) based advanced oxidation processes (SR-AOPs) are widely recognized for their high removal rates of recalcitrant TrOCs from water. Peroxymonosulfate (PMS) and persulfate (PS) are stable and non-toxic strong oxidizing oxidants and can act as excellent SO4•- precursors. Compared with hydroxyl radicals(·OH)-based methods, SR-AOPs have a series of advantages, such as long half-life and wide pH range, the oxidation capacity of SO4•- approaches or even exceeds that of ·OH under suitable conditions. In this review, we present the progress of activating PS/PMS to remove TrOCs by different methods. These methods include activation by transition metal, ultrasound, UV, etc. Possible activation mechanisms and influencing factors such as pH during the activation are discussed. Finally, future activation studies of PS/PMS are summarized and prospected. This review summarizes previous experiences and presents the current status of SR-AOPs application for TrOCs removal. Misconceptions in research are avoided and a research basis for the removal of TrOCs is provided.


Asunto(s)
Contaminantes Químicos del Agua , Humanos , Oxidación-Reducción , Sulfatos , Tecnología , Contaminantes Químicos del Agua/análisis
16.
J Environ Manage ; 303: 113897, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34883303

RESUMEN

The regulatory control on dyes is an important issue, as their discharge into the environment can pose significant risks to human health. MIL-101(Fe) prepared by a solvothermal method was used as a catalyst to generate sulfate (SO4•-) and hydroxyl (HO•) radicals from peroxymonosulfate (PMS) for the treatment of orange G (OG). The structural properties of MIL-101(Fe) were assessed by a number of characterization approaches (e.g., Fourier-transform infrared spectroscopy). The factors controlling the removal of OG were explored by a response surface methodology with central composite design (RSM-CCD) plus adaptive neuro-fuzzy inference system (ANFIS). The synthetized MIL-101(Fe) had uniform octahedral nanocrystals with rough surfaces and porous structures. The maximum catalytic removal efficiency of OG with MIL-101(Fe)/PMS process was 74% (the final concentration of Fe2+ as 0.19 mg/L and reaction rate of 434.2 µmol/g/h). The catalytic removal of OG could be defined by the non-linear kinetic models based on RSM. The OG removal efficiency declined noticeably with the addition of radical scavengers such as ethanol (EtOH) and tert-butanol (TBA) along with some mineral anions. Accordingly, MIL-101(Fe)/PMS is identified as an effective remediation option for the dyes based on advanced oxidation process (AOPs) based on high treatment efficiency at low dosage of low cost catalyst.


Asunto(s)
Estructuras Metalorgánicas , Catálisis , Colorantes , Humanos , Peróxidos
17.
Environ Sci Technol ; 55(21): 14844-14853, 2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34674525

RESUMEN

The presence of dissolved organic matter (DOM) is known to inhibit the degradation of trace organic contaminants (TrOCs) in SO4•--based advanced oxidation processes (AOPs) due to filtering of the photochemically active light and radical scavenging effects. This study revealed an unexpected contribution for DOM in the degradation of nitroimidazoles (NZs) in the UV/persulfate AOP. The apparent second-order rate constants of NZs with SO4•- increased by 2.05 to 4.77 times in the presence of different DOMs. The increments were linearly related to the total electron capacity of DOM. Quinone and polyphenol moieties were found to play a dominant role. The reactive species generated from SO4•-'s oxidation of DOM, including semiquinone radical (SQ•-) and superoxide (O2•-), were found to react with NZs via Michael addition and O2•- addition. The second-order rate constants of tinidazole with SQ•- is determined to be (5.69 ± 0.59) × 106 M-1 s-1 by laser flash photolysis. Reactive species potentially generated from DOM may be considered in designing processes for the abatement of different types of TrOCs.


Asunto(s)
Nitroimidazoles , Contaminantes Químicos del Agua , Oxidación-Reducción , Contaminantes Químicos del Agua/análisis
18.
Environ Sci Technol ; 55(3): 1456-1465, 2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33475357

RESUMEN

Previous laboratory studies have suggested that sulfate radical addition to olefinic biogenic volatile organic compounds (BVOCs) is a potential formation mechanism for some organosulfates detected in ambient secondary organic aerosol (SOA). However, these studies propose conflicting reaction products, possibly because laboratory dissolved oxygen levels did not accurately reflect atmospheric conditions. Additionally, these studies used analytical methods that could not definitively identify and quantify the structurally specific products. Here, we describe a method that allows for the study of the reaction of sulfate radicals and several olefinic precursors, including allyl alcohol (AA), methyl vinyl ketone (MVK), 2-methyl-3-buten-2-ol (MBO), and methacrolein (MA), with careful control of dissolved oxygen levels and using the isomer-specific nuclear magnetic resonance (NMR) method to definitively identify and quantify the reaction products. Specific mechanisms for each olefinic precursor were developed, as well as a generalized mechanism that can be used to predict the sulfate radical reaction pathways for any olefin. The product yield results indicate that this mechanism is dominated by carbon backbone fragmentation pathways: 61, 83, 79, and 100% for AA, MVK, MBO, and MA, respectively. Several of the observed organosulfate products have also been detected in field observations of SOA, which indicates the potential relevance of this mechanism in the atmosphere.


Asunto(s)
Compuestos Orgánicos Volátiles , Aerosoles , Alquenos , Sulfatos
19.
Environ Res ; 201: 111523, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34133974

RESUMEN

Advanced oxidation technologies (AOTs) have been intensely used to eliminate various organic pollutants in engineering waters. In this context, we investigated the kinetics and mechanisms of the sulfate radical (SO4-)-mediated degradation of lindane in UV/peroxydisulfate system, and compared results with previous studies on SO4--based AOTs for destruction of lindane. The second order rate constant (k) value between SO4- and lindane was determined to be (8.95 ± 0.29) × 106 M-1 s-1via competition kinetics using p-cyanobenzoic acid as reference compound, which is close to the theoretically calculated value of 4.41 × 107 M-1 s-1, that was performed at SMD/M05-2X/6-311++G**//M05-2X/6-31+G** level of theory using density functional theory (DFT) approach. H-atom abstraction pathway was calculated to be thermodynamically favorable and kinetically dominant. In the combined experimental and theoretical study, we aim for a better understanding on the degradation kinetics and mechanisms of lindane, serving as a starting point for more attention to SO4--mediated degradation kinetics of cycloaliphatic compounds in future.


Asunto(s)
Hexaclorociclohexano , Contaminantes Químicos del Agua , Radical Hidroxilo , Cinética , Modelos Teóricos , Oxidación-Reducción , Sulfatos , Contaminantes Químicos del Agua/análisis
20.
J Environ Manage ; 277: 111399, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33059324

RESUMEN

Functionalized ZnAl layered double hydroxide based photocatalyst was obtained by the addition of sodium dodecyl sulfate (SDS) during the synthesis by the coprecipitation method, and further calcination at 400 °C. Bare and modified materials were characterized by X-ray diffraction, nitrogen adsorption-desorption, IR, UV-Vis, EPR and XPS spectroscopies, SEM and HRTEM. The synthesized material was evaluated in the photodegradation of phenol in a 40 ppm aqueous solution (4.25 × 10-4 mol of phenol/L), under UV light irradiation. An increasing in the degradation of phenol from 62 to 95%, and from 62 to 82% in the mineralization of phenol was obtained using SDS functionalized ZnAl LDH, in comparison with the unmodified material. This increase could be attributed to the presence of sulfate radicals, confirmed by the EPR study.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Adsorción , Hidróxidos , Fotólisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA