Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.752
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 184(2): 384-403.e21, 2021 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-33450205

RESUMEN

Many oncogenic insults deregulate RNA splicing, often leading to hypersensitivity of tumors to spliceosome-targeted therapies (STTs). However, the mechanisms by which STTs selectively kill cancers remain largely unknown. Herein, we discover that mis-spliced RNA itself is a molecular trigger for tumor killing through viral mimicry. In MYC-driven triple-negative breast cancer, STTs cause widespread cytoplasmic accumulation of mis-spliced mRNAs, many of which form double-stranded structures. Double-stranded RNA (dsRNA)-binding proteins recognize these endogenous dsRNAs, triggering antiviral signaling and extrinsic apoptosis. In immune-competent models of breast cancer, STTs cause tumor cell-intrinsic antiviral signaling, downstream adaptive immune signaling, and tumor cell death. Furthermore, RNA mis-splicing in human breast cancers correlates with innate and adaptive immune signatures, especially in MYC-amplified tumors that are typically immune cold. These findings indicate that dsRNA-sensing pathways respond to global aberrations of RNA splicing in cancer and provoke the hypothesis that STTs may provide unexplored strategies to activate anti-tumor immune pathways.


Asunto(s)
Antivirales/farmacología , Inmunidad/efectos de los fármacos , Empalmosomas/metabolismo , Neoplasias de la Mama Triple Negativas/inmunología , Neoplasias de la Mama Triple Negativas/patología , Inmunidad Adaptativa/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Citoplasma/efectos de los fármacos , Citoplasma/metabolismo , Femenino , Amplificación de Genes/efectos de los fármacos , Humanos , Intrones/genética , Ratones , Terapia Molecular Dirigida , Proteínas Proto-Oncogénicas c-myc/metabolismo , Empalme del ARN/efectos de los fármacos , Empalme del ARN/genética , ARN Bicatenario/metabolismo , Transducción de Señal/efectos de los fármacos , Empalmosomas/efectos de los fármacos , Neoplasias de la Mama Triple Negativas/genética
2.
CA Cancer J Clin ; 73(3): 255-274, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36622841

RESUMEN

A quintessential setting for precision medicine, theranostics refers to a rapidly evolving field of medicine in which disease is diagnosed followed by treatment of disease-positive patients using tools for the therapy identical or similar to those used for the diagnosis. Against the backdrop of only-treat-when-visualized, the goal is a high therapeutic index with efficacy markedly surpassing toxicity. Oncology leads the way in theranostics innovation, where the approach has become possible with the identification of unique proteins and other factors selectively expressed in cancer versus healthy tissue, advances in imaging technology able to report these tissue factors, and major understanding of targeting chemicals and nanodevices together with methods to attach labels or warheads for imaging and therapy. Radiotheranostics-using radiopharmaceuticals-is becoming routine in patients with prostate cancer and neuroendocrine tumors who express the proteins PSMA (prostate-specific membrane antigen) and SSTR2 (somatostatin receptor 2), respectively, on their cancer. The palpable excitement in the field stems from the finding that a proportion of patients with large metastatic burden show complete and partial responses, and this outcome is catalyzing the search for more radiotheranostics approaches. Not every patient will benefit from radiotheranostics; but, for those who cross the target-detected line, the likelihood of response is very high.


Asunto(s)
Tumores Neuroendocrinos , Neoplasias de la Próstata , Masculino , Humanos , Medicina de Precisión , Radiofármacos/uso terapéutico , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/radioterapia , Oncología Médica
3.
Mol Cell ; 79(3): 390-405.e7, 2020 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-32619402

RESUMEN

Despite their apparent lack of catalytic activity, pseudokinases are essential signaling molecules. Here, we describe the structural and dynamic properties of pseudokinase domains from the Wnt-binding receptor tyrosine kinases (PTK7, ROR1, ROR2, and RYK), which play important roles in development. We determined structures of all pseudokinase domains in this family and found that they share a conserved inactive conformation in their activation loop that resembles the autoinhibited insulin receptor kinase (IRK). They also have inaccessible ATP-binding pockets, occluded by aromatic residues that mimic a cofactor-bound state. Structural comparisons revealed significant domain plasticity and alternative interactions that substitute for absent conserved motifs. The pseudokinases also showed dynamic properties that were strikingly similar to those of IRK. Despite the inaccessible ATP site, screening identified ATP-competitive type-II inhibitors for ROR1. Our results set the stage for an emerging therapeutic modality of "conformational disruptors" to inhibit or modulate non-catalytic functions of pseudokinases deregulated in disease.


Asunto(s)
Moléculas de Adhesión Celular/química , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Tirosina Quinasas Receptoras/química , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/química , Secuencia de Aminoácidos , Animales , Baculoviridae/genética , Baculoviridae/metabolismo , Sitios de Unión , Moléculas de Adhesión Celular/antagonistas & inhibidores , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Línea Celular , Clonación Molecular , Cristalografía por Rayos X , Expresión Génica , Humanos , Ratones , Modelos Moleculares , Células Precursoras de Linfocitos B/citología , Células Precursoras de Linfocitos B/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Inhibidores de Proteínas Quinasas/química , Proteínas Tirosina Quinasas Receptoras/antagonistas & inhibidores , Proteínas Tirosina Quinasas Receptoras/genética , Proteínas Tirosina Quinasas Receptoras/metabolismo , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/antagonistas & inhibidores , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/genética , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/metabolismo , Receptores de la Familia Eph/antagonistas & inhibidores , Receptores de la Familia Eph/química , Receptores de la Familia Eph/genética , Receptores de la Familia Eph/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Células Sf9 , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Spodoptera , Homología Estructural de Proteína , Especificidad por Sustrato
4.
Proc Natl Acad Sci U S A ; 121(18): e2320421121, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38662551

RESUMEN

Here, we report recurrent focal deletions of the chr14q32.31-32 locus, including TRAF3, a negative regulator of NF-κB signaling, in de novo diffuse large B cell lymphoma (DLBCL) (24/324 cases). Integrative analysis revealed an association between TRAF3 copy number loss with accumulation of NIK, the central noncanonical (NC) NF-κB kinase, and increased NC NF-κB pathway activity. Accordingly, TRAF3 genetic ablation in isogenic DLBCL model systems caused upregulation of NIK and enhanced NC NF-κB downstream signaling. Knockdown or pharmacological inhibition of NIK in TRAF3-deficient cells differentially impaired their proliferation and survival, suggesting an acquired onco-addiction to NC NF-κB. TRAF3 ablation also led to exacerbated secretion of the immunosuppressive cytokine IL-10. Coculturing of TRAF3-deficient DLBCL cells with CD8+ T cells impaired the induction of Granzyme B and interferon (IFN) γ, which were restored following neutralization of IL-10. Our findings corroborate a direct relationship between TRAF3 genetic alterations and NC NF-κB activation, and highlight NIK as a potential therapeutic target in a defined subset of DLBCL.


Asunto(s)
Linfoma de Células B Grandes Difuso , FN-kappa B , Transducción de Señal , Factor 3 Asociado a Receptor de TNF , Factor 3 Asociado a Receptor de TNF/metabolismo , Factor 3 Asociado a Receptor de TNF/genética , Linfoma de Células B Grandes Difuso/genética , Linfoma de Células B Grandes Difuso/metabolismo , Humanos , FN-kappa B/metabolismo , Quinasa de Factor Nuclear kappa B , Línea Celular Tumoral , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proliferación Celular
5.
CA Cancer J Clin ; 69(4): 280-304, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31099893

RESUMEN

Ovarian cancer is the second most common cause of gynecologic cancer death in women around the world. The outcomes are complicated, because the disease is often diagnosed late and composed of several subtypes with distinct biological and molecular properties (even within the same histological subtype), and there is inconsistency in availability of and access to treatment. Upfront treatment largely relies on debulking surgery to no residual disease and platinum-based chemotherapy, with the addition of antiangiogenic agents in patients who have suboptimally debulked and stage IV disease. Major improvement in maintenance therapy has been seen by incorporating inhibitors against poly (ADP-ribose) polymerase (PARP) molecules involved in the DNA damage-repair process, which have been approved in a recurrent setting and recently in a first-line setting among women with BRCA1/BRCA2 mutations. In recognizing the challenges facing the treatment of ovarian cancer, current investigations are enlaced with deep molecular and cellular profiling. To improve survival in this aggressive disease, access to appropriate evidence-based care is requisite. In concert, realizing individualized precision medicine will require prioritizing clinical trials of innovative treatments and refining predictive biomarkers that will enable selection of patients who would benefit from chemotherapy, targeted agents, or immunotherapy. Together, a coordinated and structured approach will accelerate significant clinical and academic advancements in ovarian cancer and meaningfully change the paradigm of care.


Asunto(s)
Carcinoma Epitelial de Ovario/terapia , Neoplasias Ováricas/terapia , Medicina de Precisión , Antineoplásicos/uso terapéutico , Carcinoma Epitelial de Ovario/epidemiología , Carcinoma Epitelial de Ovario/patología , Carcinoma Epitelial de Ovario/prevención & control , Procedimientos Quirúrgicos de Citorreducción , Femenino , Humanos , Terapia Molecular Dirigida , Recurrencia Local de Neoplasia/terapia , Estadificación de Neoplasias , Neoplasias Ováricas/epidemiología , Neoplasias Ováricas/patología , Neoplasias Ováricas/prevención & control , Segunda Cirugía
6.
Semin Cancer Biol ; 99: 24-44, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38309540

RESUMEN

Autophagy, a self-degradative process vital for cellular homeostasis, plays a significant role in adipose tissue metabolism and tumorigenesis. This review aims to elucidate the complex interplay between autophagy, obesity, and cancer development, with a specific emphasis on how obesity-driven changes affect the regulation of autophagy and subsequent implications for cancer risk. The burgeoning epidemic of obesity underscores the relevance of this research, particularly given the established links between obesity, autophagy, and various cancers. Our exploration delves into hormonal influence, notably INS (insulin) and LEP (leptin), on obesity and autophagy interactions. Further, we draw attention to the latest findings on molecular factors linking obesity to cancer, including hormonal changes, altered metabolism, and secretory autophagy. We posit that targeting autophagy modulation may offer a potent therapeutic approach for obesity-associated cancer, pointing to promising advancements in nanocarrier-based targeted therapies for autophagy modulation. However, we also recognize the challenges inherent to these approaches, particularly concerning their precision, control, and the dual roles autophagy can play in cancer. Future research directions include identifying novel biomarkers, refining targeted therapies, and harmonizing these approaches with precision medicine principles, thereby contributing to a more personalized, effective treatment paradigm for obesity-mediated cancer.


Asunto(s)
Neoplasias , Obesidad , Humanos , Obesidad/complicaciones , Obesidad/metabolismo , Tejido Adiposo/metabolismo , Resultado del Tratamiento , Autofagia/fisiología , Neoplasias/etiología , Neoplasias/metabolismo
7.
Cancer Metastasis Rev ; 43(1): 197-228, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38329598

RESUMEN

Cancer is a complex disease displaying a variety of cell states and phenotypes. This diversity, known as cancer cell plasticity, confers cancer cells the ability to change in response to their environment, leading to increased tumor diversity and drug resistance. This review explores the intricate landscape of cancer cell plasticity, offering a deep dive into the cellular, molecular, and genetic mechanisms that underlie this phenomenon. Cancer cell plasticity is intertwined with processes such as epithelial-mesenchymal transition and the acquisition of stem cell-like features. These processes are pivotal in the development and progression of tumors, contributing to the multifaceted nature of cancer and the challenges associated with its treatment. Despite significant advancements in targeted therapies, cancer cell adaptability and subsequent therapy-induced resistance remain persistent obstacles in achieving consistent, successful cancer treatment outcomes. Our review delves into the array of mechanisms cancer cells exploit to maintain plasticity, including epigenetic modifications, alterations in signaling pathways, and environmental interactions. We discuss strategies to counteract cancer cell plasticity, such as targeting specific cellular pathways and employing combination therapies. These strategies promise to enhance the efficacy of cancer treatments and mitigate therapy resistance. In conclusion, this review offers a holistic, detailed exploration of cancer cell plasticity, aiming to bolster the understanding and approach toward tackling the challenges posed by tumor heterogeneity and drug resistance. As articulated in this review, the delineation of cellular, molecular, and genetic mechanisms underlying tumor heterogeneity and drug resistance seeks to contribute substantially to the progress in cancer therapeutics and the advancement of precision medicine, ultimately enhancing the prospects for effective cancer treatment and patient outcomes.


Asunto(s)
Plasticidad de la Célula , Neoplasias , Humanos , Plasticidad de la Célula/genética , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/patología , Resistencia a Antineoplásicos/genética , Transición Epitelial-Mesenquimal/genética , Transducción de Señal
8.
Gastroenterology ; 167(5): 867-884, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38759843

RESUMEN

Gastrointestinal (GI) cancers are the leading cause of new cancer cases and cancer-related deaths worldwide. The treatment strategies for patients with GI tumors have focused on oncogenic molecular profiles associated with tumor cells. Recent evidence has demonstrated that the tumor cell functions are modulated by its microenvironment, compromising fibroblasts, extracellular matrices, microbiome, immune cells, and the enteric nervous system. Along with the tumor microenvironment components, alterations in key metabolic pathways have emerged as a hallmark of tumor cells. From these perspectives, this review will highlight the functions of different cellular components of the GI tumor microenvironment and their implications for treatment. Furthermore, we discuss the major metabolic reprogramming in GI tumor cells and how understanding metabolic rewiring could lead to new therapeutic strategies. Finally, we briefly summarize the targeted agents currently being studied in GI cancers. Understanding the complex interplay between tumor cell-intrinsic and -extrinsic factors during tumor progression is critical for developing new therapeutic strategies.


Asunto(s)
Neoplasias Gastrointestinales , Metabolómica , Terapia Molecular Dirigida , Microambiente Tumoral , Humanos , Microambiente Tumoral/inmunología , Neoplasias Gastrointestinales/tratamiento farmacológico , Neoplasias Gastrointestinales/patología , Neoplasias Gastrointestinales/inmunología , Neoplasias Gastrointestinales/metabolismo , Animales , Factores Inmunológicos/uso terapéutico , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología
9.
Eur J Immunol ; 54(1): e2249947, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37816494

RESUMEN

B lymphocytes have become a very popular therapeutic target in a number of autoimmune indications due to their newly appreciated roles, and approachability, in these diseases. Many of the therapies now applied in autoimmunity were initially developed to deplete malignant B cells. These strategies have also been found to benefit patients suffering from such autoimmune diseases as multiple sclerosis, type I diabetes, systemic lupus erythematosus, and rheumatoid arthritis, to name a few. These observations have supported the expansion of research addressing the mechanistic contributions of B cells in these diseases, as well as blossoming of therapeutics that target them. This review seeks to summarize cutting-edge modalities for targeting B cells, including monoclonal antibodies, bispecific antibodies, antibody-drug conjugates, chimeric antigen receptor-T cells, and small molecule inhibitors. Efforts to refine B-cell targeted therapy to eliminate only pathogenic autoreactive cells will be addressed as well as the potential for future B-cell-based cellular therapeutics. Finally, we also address approaches that seek to silence B-cell function without depletion.


Asunto(s)
Enfermedades Autoinmunes , Neoplasias , Humanos , Autoinmunidad , Anticuerpos Monoclonales/farmacología , Linfocitos B , Neoplasias/tratamiento farmacológico
10.
Mol Ther ; 32(4): 1125-1143, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38311851

RESUMEN

The CTNNB1 gene, encoding ß-catenin, is frequently mutated in hepatocellular carcinoma (HCC, ∼30%) and in hepatoblastoma (HB, >80%), in which DLK1/DIO3 locus induction is correlated with CTNNB1 mutations. Here, we aim to decipher how sustained ß-catenin activation regulates DLK1/DIO3 locus expression and the role this locus plays in HB and HCC development in mouse models deleted for Apc (ApcΔhep) or Ctnnb1-exon 3 (ß-cateninΔExon3) and in human CTNNB1-mutated hepatic cancer cells. We identified an enhancer site bound by TCF-4/ß-catenin complexes in an open conformation upon sustained ß-catenin activation (DLK1-Wnt responsive element [WRE]) and increasing DLK1/DIO3 locus transcription in ß-catenin-mutated human HB and mouse models. DLK1-WRE editing by CRISPR-Cas9 approach impaired DLK1/DIO3 locus expression and slowed tumor growth in subcutaneous CTNNB1-mutated tumor cell grafts, ApcΔhep HB and ß-cateninΔExon3 HCC. Tumor growth inhibition resulted either from increased FADD expression and subsequent caspase-3 cleavage in the first case or from decreased expression of cell cycle actors regulated by FoxM1 in the others. Therefore, the DLK1/DIO3 locus is an essential determinant of FoxM1-dependent cell proliferation during ß-catenin-driven liver tumorigenesis. Targeting the DLK1-WRE enhancer to silence the DLK1/DIO3 locus might thus represent an interesting therapeutic strategy to restrict tumor growth in primary liver cancers with CTNNB1 mutations.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Humanos , Ratones , beta Catenina/genética , beta Catenina/metabolismo , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Carcinogénesis/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Cateninas/genética , Cateninas/metabolismo , Proliferación Celular/genética , Neoplasias Hepáticas/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Regulación hacia Arriba
11.
Mol Cell Proteomics ; 22(3): 100503, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36682716

RESUMEN

Acute myeloid leukemia (AML) is the most common and aggressive form of acute leukemia, with a 5-year survival rate of just 24%. Over a third of all AML patients harbor activating mutations in kinases, such as the receptor tyrosine kinases FLT3 (receptor-type tyrosine-protein kinase FLT3) and KIT (mast/stem cell growth factor receptor kit). FLT3 and KIT mutations are associated with poor clinical outcomes and lower remission rates in response to standard-of-care chemotherapy. We have recently identified that the core kinase of the non-homologous end joining DNA repair pathway, DNA-PK (DNA-dependent protein kinase), is activated downstream of FLT3; and targeting DNA-PK sensitized FLT3-mutant AML cells to standard-of-care therapies. Herein, we investigated DNA-PK as a possible therapeutic vulnerability in KIT mutant AML, using isogenic FDC-P1 mouse myeloid progenitor cell lines transduced with oncogenic mutant KIT (V560G and D816V) or vector control. Targeted quantitative phosphoproteomic profiling identified phosphorylation of DNA-PK in the T2599/T2605/S2608/S2610 cluster in KIT mutant cells, indicative of DNA-PK activation. Accordingly, proliferation assays revealed that KIT mutant FDC-P1 cells were more sensitive to the DNA-PK inhibitors M3814 or NU7441, compared with empty vector controls. DNA-PK inhibition combined with inhibition of KIT signaling using the kinase inhibitors dasatinib or ibrutinib, or the protein phosphatase 2A activators FTY720 or AAL(S), led to synergistic cell death. Global phosphoproteomic analysis of KIT-D816V cells revealed that dasatinib and M3814 single-agent treatments inhibited extracellular signal-regulated kinase and AKT (RAC-alpha serine/threonine-protein kinase)/MTOR (serine/threonine-protein kinase mTOR) activity, with greater inhibition of both pathways when used in combination. Combined dasatinib and M3814 treatment also synergistically inhibited phosphorylation of the transcriptional regulators MYC and MYB. This study provides insight into the oncogenic pathways regulated by DNA-PK beyond its canonical role in DNA repair and demonstrates that DNA-PK is a promising therapeutic target for KIT mutant cancers.


Asunto(s)
Proteína Quinasa Activada por ADN , Leucemia Mieloide Aguda , Animales , Ratones , Apoptosis , Línea Celular Tumoral , Dasatinib , ADN , Proteína Quinasa Activada por ADN/genética , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/tratamiento farmacológico , Mutación , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Tirosina Quinasas Receptoras , Serina , Transducción de Señal , Treonina , Serina-Treonina Quinasas TOR , Tirosina
12.
Mol Cancer ; 23(1): 148, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39048965

RESUMEN

Ubiquitination, a pivotal posttranslational modification of proteins, plays a fundamental role in regulating protein stability. The dysregulation of ubiquitinating and deubiquitinating enzymes is a common feature in various cancers, underscoring the imperative to investigate ubiquitin ligases and deubiquitinases (DUBs) for insights into oncogenic processes and the development of therapeutic interventions. In this review, we discuss the contributions of the ubiquitin-proteasome system (UPS) in all hallmarks of cancer and progress in drug discovery. We delve into the multiple functions of the UPS in oncology, including its regulation of multiple cancer-associated pathways, its role in metabolic reprogramming, its engagement with tumor immune responses, its function in phenotypic plasticity and polymorphic microbiomes, and other essential cellular functions. Furthermore, we provide a comprehensive overview of novel anticancer strategies that leverage the UPS, including the development and application of proteolysis targeting chimeras (PROTACs) and molecular glues.


Asunto(s)
Enzimas Desubicuitinizantes , Neoplasias , Complejo de la Endopetidasa Proteasomal , Ubiquitinación , Humanos , Neoplasias/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Animales , Complejo de la Endopetidasa Proteasomal/metabolismo , Enzimas Desubicuitinizantes/metabolismo , Proteolisis , Ubiquitina/metabolismo , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología , Procesamiento Proteico-Postraduccional , Terapia Molecular Dirigida , Ubiquitina-Proteína Ligasas/metabolismo
13.
Mol Cancer ; 23(1): 189, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39242496

RESUMEN

Liver cancer is a global health challenge, causing a significant social-economic burden. Hepatocellular carcinoma (HCC) is the predominant type of primary liver cancer, which is highly heterogeneous in terms of molecular and cellular signatures. Early-stage or small tumors are typically treated with surgery or ablation. Currently, chemotherapies and immunotherapies are the best treatments for unresectable tumors or advanced HCC. However, drug response and acquired resistance are not predictable with the existing systematic guidelines regarding mutation patterns and molecular biomarkers, resulting in sub-optimal treatment outcomes for many patients with atypical molecular profiles. With advanced technological platforms, valuable information such as tumor genetic alterations, epigenetic data, and tumor microenvironments can be obtained from liquid biopsy. The inter- and intra-tumoral heterogeneity of HCC are illustrated, and these collective data provide solid evidence in the decision-making process of treatment regimens. This article reviews the current understanding of HCC detection methods and aims to update the development of HCC surveillance using liquid biopsy. Recent critical findings on the molecular basis, epigenetic profiles, circulating tumor cells, circulating DNAs, and omics studies are elaborated for HCC diagnosis. Besides, biomarkers related to the choice of therapeutic options are discussed. Some notable recent clinical trials working on targeted therapies are also highlighted. Insights are provided to translate the knowledge into potential biomarkers for detection and diagnosis, prognosis, treatment response, and drug resistance indicators in clinical practice.


Asunto(s)
Biomarcadores de Tumor , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Biopsia Líquida/métodos , Manejo de la Enfermedad , Pronóstico , Epigénesis Genética , Animales , Microambiente Tumoral
14.
Cancer ; 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39347617

RESUMEN

Comprehensive biomarker testing is a crucial requirement for the optimal treatment of advanced-stage non-small cell lung cancer (NSCLC), with emerging relevance in the adjuvant treatment setting. To advance its goal of ensuring optimal therapy for persons diagnosed with lung cancer, the American Cancer Society National Lung Cancer Roundtable (ACS NLCRT) held The Summit on Optimizing Lung Cancer Biomarkers in Practice in September 2020 to align its partners toward the goal of ensuring comprehensive biomarker testing for all eligible patients with NSCLC. The ACS NLCRT's Strategic Plan for Advancing Comprehensive Biomarker Testing in NSCLC, a product of the summit, comprises actions to promote comprehensive biomarker testing for all eligible patients. The approach is multifaceted, including policy-level advocacy and the development and dissemination of targeted educational materials, clinical decision tools, and guides to patients, physicians, and payers aimed at ameliorating barriers to testing experienced by each of these groups. PLAIN LANGUAGE SUMMARY: The ACS NLCRT works to improve care for patients with lung cancer. The ACS NLCRT supports comprehensive biomarker testing as essential to determine treatment options for all eligible patients with non-small cell lung cancer. Many factors lead to some patients not receiving optimal biomarker testing. The ACS NLCRT held a collaborative summit and developed a strategic plan to achieve and promote comprehensive biomarker testing for all patients. These plans include developing educational materials and physician tools and advocating for national policies in support of biomarker testing.

15.
Ann Oncol ; 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-39112111

RESUMEN

BACKGROUND: Genomic tumour profiling has a crucial role in the management of patients with solid cancers, as it helps selecting and prioritising therapeutic interventions based on prognostic and predictive biomarkers, as well as identifying markers of hereditary cancers. Harmonised approaches to interpret the results of genomic testing are needed to support physicians in their decision making, prevent inequalities in precision medicine and maximise patient benefit from available cancer management options. METHODS: The European Society for Medical Oncology (ESMO) Translational Research and Precision Medicine Working Group assembled a group of international experts to propose recommendations for preparing clinical genomic reports for solid cancers. These recommendations aim to foster best practices in integrating genomic testing within clinical settings. After review of available evidence, several rounds of surveys and focused discussions were conducted to reach consensus on the recommendation statements. Only consensus recommendations were reported. Recommendation statements were graded in two tiers based on their clinical importance: level A (required to maintain common standards in reporting) and level B (optional but necessary to achieve ideal practice). RESULTS: Genomics reports should present key information in a front page(s) followed by supplementary information in one or more appendices. Reports should be structured into sections: (i) patient and sample details; (ii) assay and data analysis characteristics; (iii) sample-specific assay performance and quality control; (iv) genomic alterations and their functional annotation; (v) clinical actionability assessment and matching to potential therapy indications; and (vi) summary of the main findings. Specific recommendations to prepare each of these sections are made. CONCLUSIONS: We present a set of recommendations aimed at structuring genomics reports to enhance physician comprehension of genomic profiling results for solid cancers. Communication between ordering physicians and professionals reporting genomic data is key to minimise uncertainties and to optimise the impact of genomic tests in patient care.

16.
Am J Physiol Heart Circ Physiol ; 326(4): H986-H1005, 2024 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-38363212

RESUMEN

The arterial system is integral to the proper function of all other organs and tissues. Arterial function is impaired with aging, and arterial dysfunction contributes to the development of numerous age-related diseases, including cardiovascular diseases. The gut microbiome has emerged as an important regulator of both normal host physiological function and impairments in function with aging. The purpose of this review is to summarize more recently published literature demonstrating the role of the gut microbiome in supporting normal arterial development and function and in modulating arterial dysfunction with aging in the absence of overt disease. The gut microbiome can be altered due to a variety of exposures, including physiological aging processes. We explore mechanisms by which the gut microbiome may contribute to age-related arterial dysfunction, with a focus on changes in various gut microbiome-related compounds in circulation. In addition, we discuss how modulating circulating levels of these compounds may be a viable therapeutic approach for improving artery function with aging. Finally, we identify and discuss various experimental considerations and research gaps/areas of future research.


Asunto(s)
Enfermedades Cardiovasculares , Microbioma Gastrointestinal , Humanos , Arterias
17.
Small ; 20(7): e2303506, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37806770

RESUMEN

Aseptic loosening of prostheses is a highly researched topic, and wear particle-induced macrophage polarization is a significant cause of peri-prosthetic osteolysis. Exosomes derived from bone marrow mesenchymal stem cells (BMSCs-Exos) promote M2 polarization and inhibit M1 polarization of macrophages. However, clinical application problems such as easy clearance and lack of targeting exist. Exosomes derived from M2 macrophages (M2-Exos) have good biocompatibility, immune escape ability, and natural inflammatory targeting ability. M2-Exos and BMSCs-Exos fused exosomes (M2-BMSCs-Exos) are constructed, which targeted the osteolysis site and exerted the therapeutic effect of both exosomes. M2-BMSCs-Exos achieved targeted osteolysis after intravenous administration inhibiting M1 polarization and promoting M2 polarization to a greater extent at the targeted site, ultimately playing a key role in the prevention and treatment of aseptic loosening of prostheses. In conclusion, M2-BMSCs-Exos can be used as a precise and reliable molecular drug for peri-prosthetic osteolysis. Fused exosomes M2-BMSCs-Exos  were originally proposed and successfully prepared, and exosome fusion technology provides a new theoretical basis and solution for the clinical application of therapeutic exosomes.


Asunto(s)
Exosomas , Células Madre Mesenquimatosas , Osteólisis , Humanos , Administración Intravenosa , Macrófagos
18.
Invest New Drugs ; 2024 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-39305365

RESUMEN

Despite available treatments for acute lymphoblastic leukemia (ALL), the disease's high clinical variability necessitates new therapeutic strategies, particularly for patients with high-risk features. The tumor suppressor protein p53, encoded by the TP53 gene and known as the guardian of the genome, plays a crucial role in preventing tumor development. Over 90% of ALL cases initially harbor wild-type TP53. Reactivation of p53, which is encoded from the wild type TP53 but lost its function for several reasons, is an attractive therapeutic approach in cancer treatment. p53 can be activated in a non-genotoxic manner by targeting its primary repressor, the MDM2 protein. Clinical trials involving MDM2 inhibitors are currently being conducted in a growing body of investigation, reflecting of the interest in incorporating these treatments into cancer treatment strategies. Early-phase clinical trials have demonstrated the promise of idasanutlin (RG7388), one of the developed compounds. It is a second-generation MDM2-p53 binding antagonist with enhanced potency, selectivity, and bioavailability. The aim of this study is to evaluate the efficacy of RG7388 as a therapeutic strategy for ALL and to investigate its potential impact on improving treatment outcomes for high-risk patients. RG7388 potently decreased the viability in five out of six ALL cell lines with diverse TP53 mutation profiles, whereas only one cell line exhibited high resistance. RG7388 induced a pro-apoptotic gene expression signature with upregulation of p53-target genes involved in the intrinsic and extrinsic pathways of apoptosis. Consequently, RG7388 led to a concentration-dependent increase in caspase-3/7 activity and cleaved poly (ADP-ribose) polymerase. In this research, RG7388 was investigated with pre-clinical methods in ALL cells as a novel treatment strategy. This study suggests further functional research and in-vivo evaluation, and it highlights the prospect of treating p53-functional ALL with MDM2 inhibitors.

19.
Curr Top Microbiol Immunol ; 444: 279-304, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38231223

RESUMEN

Gastric cancer is the fifth most common cancer and the fourth leading cause of cancer-associated death in the world. Endoscopic resection can be the treatment in selected cases of very early gastric cancer. Surgery is recommended for tumors that do not meet the criteria for endoscopic resection or for tumors with lymph node invasion but without distant metastases. Gastrectomy should include D2 lymphadenectomy without splenectomy. Perioperative or adjuvant chemotherapy improves survival and is recommended in locally advanced gastric cancer (>T1 and/or with lymph nodes positive). In locally advanced cancer with microsatellite instability (MSI), immunotherapy should be considered. Advanced unresectable or metastatic gastric cancer has a poor prognosis. The basis of the treatment is cytotoxic chemotherapy, with platinum and fluoropyrimidine doublet in the first line. Targeted therapies can be combined with chemotherapy. Trastuzumab (anti-HER2) is recommended in the first line in HER2-positive cancer. Ramucirumab (anti-VEGFR2) is recommended in the second line, in addition to paclitaxel chemotherapy. Zolbetuximab (anti-Claudine 18.2) should also be considered in the first line in Claudine 18.2-positive cancer. Immunotherapy can also be associated with chemotherapy in the first line of PD-L1-positive cancer. In HER2-positive and PD-L1-positive cancer, adjunction of trastuzumab and immunotherapy should be considered. In advanced and metastatic cancer with microsatellite instability (MSI), immunotherapy should be the first choice depending on its availability. Important progress has been made in recent years in the treatment of gastric cancer, especially due to a better understanding of molecular characteristics and heterogeneity of this disease. New targets and therapeutic approaches are being developed, which will very likely lead to changes in the management of gastric cancer.


Asunto(s)
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/genética , Antígeno B7-H1 , Inestabilidad de Microsatélites , Trastuzumab
20.
J Biomed Sci ; 31(1): 78, 2024 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-39128983

RESUMEN

Helicobacter pylori infection is involved in gastric diseases such as peptic ulcer and adenocarcinoma. Approved antibiotherapies still fail in 10 to 40% of the infected patients and, in this scenario, targeted nanotherapeutics emerged as powerful allies for H. pylori eradication. Nano/microparticles conjugated with H. pylori binding molecules were developed to eliminate H. pylori by either (i) blocking essential mechanisms of infection, such as adhesion to gastric mucosa or (ii) binding and killing H. pylori through the release of drugs within the bacteria or at the site of infection. Glycan antigens (as Lewis B and sialyl-Lewis X), pectins, lectins, phosphatidylethanolamine and epithelial cell membranes were conjugated with nano/microparticles to successfully block H. pylori adhesion. Urea-coated nanoparticles were used to improve drug delivery inside bacteria through H. pylori UreI channel. Moreover, nanoparticles coated with antibodies against H. pylori and loaded with sono/photosensitizers, were promising for their application as targeted sono/photodynamic therapies. Further, non-specific H. pylori nano/microparticles, but only active in the acidic gastric environment, coated with binders to bacterial membrane, extracellular polymeric substances or to high temperature requirement A protease, were evaluated. In this review, an overview of the existing nanotherapeutics targeting H. pylori will be given and their rational, potential to counteract infection, as well as level of development will be presented and discussed.


Asunto(s)
Infecciones por Helicobacter , Helicobacter pylori , Helicobacter pylori/efectos de los fármacos , Infecciones por Helicobacter/tratamiento farmacológico , Humanos , Nanopartículas/uso terapéutico , Sistemas de Liberación de Medicamentos/métodos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA