RESUMEN
The cephalic phase insulin response (CPIR) is classically defined as a head receptor-induced early release of insulin during eating that precedes a postabsorptive rise in blood glucose. Here we discuss, first, the various stimuli that elicit the CPIR and the sensory signaling pathways (sensory limb) involved; second, the efferent pathways that control the various endocrine events associated with eating (motor limb); and third, what is known about the central integrative processes linking the sensory and motor limbs. Fourth, in doing so, we identify open questions and problems with respect to the CPIR in general. Specifically, we consider test conditions that allow, or may not allow, the stimulus to reach the potentially relevant taste receptors and to trigger a CPIR. The possible significance of sweetness and palatability as crucial stimulus features and whether conditioning plays a role in the CPIR are also discussed. Moreover, we ponder the utility of the strict classical CPIR definition based on what is known about the effects of vagal motor neuron activation and thereby acetylcholine on the ß-cells, together with the difficulties of the accurate assessment of insulin release. Finally, we weigh the evidence of the physiological and clinical relevance of the cephalic contribution to the release of insulin that occurs during and after a meal. These points are critical for the interpretation of the existing data, and they support a sharper focus on the role of head receptors in the overall insulin response to eating rather than relying solely on the classical CPIR definition.
Asunto(s)
Insulina , Papilas Gustativas , Humanos , Insulina/metabolismo , Gusto/fisiología , Glucemia/metabolismo , Transducción de SeñalRESUMEN
Chemical senses, including olfaction, pheromones, and taste, are crucial for the survival of most animals. There has long been a debate about whether different types of senses might influence each other. For instance, primates with a strong sense of vision are thought to have weakened olfactory abilities, although the oversimplified trade-off theory is now being questioned. It is uncertain whether such interactions between different chemical senses occur during evolution. To address this question, we examined four receptor gene families related to olfaction, pheromones, and taste: olfactory receptor (OR), vomeronasal receptor type 1 and type 2 (V1R and V2R), and bitter taste receptor (T2R) genes in Hystricomorpha, which is morphologically and ecologically the most diverse group of rodents. We also sequenced and assembled the genome of the grasscutter, Thryonomys swinderianus. By examining 16 available genome assemblies alongside the grasscutter genome, we identified orthologous gene groups among hystricomorph rodents for these gene families to separate the gene gain and loss events in each phylogenetic branch of the Hystricomorpha evolutionary tree. Our analysis revealed that the expansion or contraction of the four gene families occurred synchronously, indicating that when one chemical sense develops or deteriorates, the others follow suit. The results also showed that V1R/V2R genes underwent the fastest evolution, followed by OR genes, and T2R genes were the most evolutionarily stable. This variation likely reflects the difference in ligands of V1R/V2Rs, ORs, and T2Rs: species-specific pheromones, environment-based scents, and toxic substances common to many animals, respectively.
Asunto(s)
Evolución Molecular , Familia de Multigenes , Filogenia , Receptores Odorantes , Roedores , Órgano Vomeronasal , Animales , Receptores Acoplados a Proteínas G/genética , Receptores Odorantes/genética , Receptores de Feromonas/genética , Receptores de Feromonas/metabolismo , Roedores/genética , Olfato/genética , Gusto/genética , Órgano Vomeronasal/metabolismoRESUMEN
The vertebrate sense of taste allows rapid assessment of the nutritional quality and potential presence of harmful substances prior to ingestion. Among the five basic taste qualities, salty, sour, sweet, umami, and bitter, bitterness is associated with the presence of putative toxic substances and elicits rejection behaviors in a wide range of animals including humans. However, not all bitter substances are harmful, some are thought to be health-beneficial and nutritious. Among those compound classes that elicit a bitter taste although being non-toxic and partly even essential for humans are bitter peptides and L-amino acids. Using functional heterologous expression assays, we observed that the 5 dominant human bitter taste receptors responsive to bitter peptides and amino acids are activated by bile acids, which are notorious for their extreme bitterness. We further demonstrate that the cross-reactivity of bitter taste receptors for these two different compound classes is evolutionary conserved and can be traced back to the amphibian lineage. Moreover, we show that the cross-detection by some receptors relies on "structural mimicry" between the very bitter peptide L-Trp-Trp-Trp and bile acids, whereas other receptors exhibit a phylogenetic conservation of this trait. As some bile acid-sensitive bitter taste receptor genes fulfill dual-roles in gustatory and non-gustatory systems, we suggest that the phylogenetic conservation of the rather surprising cross-detection of the two substance classes could rely on a gene-sharing-like mechanism in which the non-gustatory function accounts for the bitter taste response to amino acids and peptides.
Asunto(s)
Ácidos y Sales Biliares , Péptidos , Receptores Acoplados a Proteínas G , Gusto , Ácidos y Sales Biliares/metabolismo , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Animales , Gusto/fisiología , Péptidos/metabolismo , Filogenia , Células HEK293 , Aminoácidos/metabolismo , Membrana Celular/metabolismoRESUMEN
Experimental or traumatic nerve injury causes the degeneration of associated taste buds. Unlike most sensory systems, the sectioned nerve and associated taste buds can then regenerate, restoring neural responses to tastants. It was previously unknown whether injury-induced immune factors mediate this process. The proinflammatory cytokines, interleukin (IL)-1α and IL-1ß, and their requisite receptor are strongly expressed by anterior taste buds innervated by the chorda tympani nerve. We tested taste bud regeneration and functional recovery in mice lacking the IL-1 receptor. After axotomy, the chorda tympani nerve regenerated but was initially unresponsive to tastants in both WT and Il1r KO mice. In the absence of Il1r signaling, however, neural taste responses remained minimal even >8 weeks after injury in both male and female mice, whereas normal taste function recovered by 3 weeks in WT mice. Failed recovery was because of a 57.8% decrease in regenerated taste buds in Il1r KO compared with WT axotomized mice. Il1a gene expression was chronically dysregulated, and the subset of regenerated taste buds were reinnervated more slowly and never reached full volume as progenitor cell proliferation lagged in KO mice. Il1r signaling is thus required for complete taste bud regeneration and the recovery of normal taste transmission, likely by impairing taste progenitor cell proliferation. This is the first identification of a cytokine response that promotes taste recovery. The remarkable plasticity of the taste system makes it ideal for identifying injury-induced mechanisms mediating successful regeneration and recovery.SIGNIFICANCE STATEMENT Taste plays a critical role in nutrition and quality of life. The adult taste system is highly plastic and able to regenerate following the disappearance of most taste buds after experimental nerve injury. Several growth factors needed for taste bud regeneration have been identified, but we demonstrate the first cytokine pathway required for the recovery of taste function. In the absence of IL-1 cytokine signaling, taste bud regeneration is incomplete, preventing the transmission of taste activity to the brain. These results open a new direction in revealing injury-specific mechanisms that could be harnessed to promote the recovery of taste perception after trauma or disease.
Asunto(s)
Papilas Gustativas , Masculino , Femenino , Ratones , Animales , Papilas Gustativas/fisiología , Gusto/fisiología , Axotomía , Calidad de Vida , Regeneración Nerviosa/fisiología , Nervio de la Cuerda del Tímpano/lesiones , Nervio de la Cuerda del Tímpano/fisiología , CitocinasRESUMEN
OBJECTIVE: Poorly controlled diabetes frequently exacerbates lung infection, thereby complicating treatment strategies. Recent studies have shown that exendin-4 exhibits not only hypoglycemic but also anti-inflammatory properties. This study aimed to explore the role of exendin-4 in lung infection with diabetes, as well as its association with NOD1/NF-κB and the T1R2/T1R3 sweet taste receptor. METHODS: 16HBE human bronchial epithelial cells cultured with 20 mM glucose were stimulated with lipopolysaccharide (LPS) isolated from Pseudomonas aeruginosa (PA). Furthermore, SpragueâDawley rats were fed a high-fat diet, followed by intraperitoneal injection of streptozotocin and intratracheal instillation of PA. The levels of TNF-α, IL-1ß and IL-6 were evaluated using ELISAs and RTâqPCR. The expression of T1R2, T1R3, NOD1 and NF-κB p65 was assayed using western blotting and immunofluorescence staining. Pathological changes in the lungs of the rats were observed using hematoxylin and eosin (H&E) staining. RESULTS: At the same dose of LPS, the 20 mM glucose group produced more proinflammatory cytokines (TNF-α, IL-1ß and IL-6) and had higher levels of T1R2, T1R3, NOD1 and NF-κB p65 than the normal control group (with 5.6 mM glucose). However, preintervention with exendin-4 significantly reduced the levels of the aforementioned proinflammatory cytokines and signaling molecules. Similarly, diabetic rats infected with PA exhibited increased levels of proinflammatory cytokines in their lungs and increased expression of T1R2, T1R3, NOD1 and NF-κB p65, and these effects were reversed by exendin-4. CONCLUSIONS: Diabetic hyperglycemia can exacerbate inflammation during lung infection, promote the increase in NOD1/NF-κB, and promote T1R2/T1R3. Exendin-4 can ameliorate PA-related pneumonia with diabetes and overexpression of NOD1/NF-κB. Additionally, exendin-4 suppresses T1R2/T1R3, potentially through its hypoglycemic effect or through a direct mechanism. The correlation between heightened expression of T1R2/T1R3 and an intensified inflammatory response in lung infection with diabetes requires further investigation.
Asunto(s)
Diabetes Mellitus Experimental , Exenatida , Proteína Adaptadora de Señalización NOD1 , Infecciones por Pseudomonas , Pseudomonas aeruginosa , Ratas Sprague-Dawley , Animales , Exenatida/farmacología , Exenatida/uso terapéutico , Humanos , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/metabolismo , Masculino , Infecciones por Pseudomonas/tratamiento farmacológico , Proteína Adaptadora de Señalización NOD1/metabolismo , Proteína Adaptadora de Señalización NOD1/genética , Citocinas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , FN-kappa B/metabolismo , Pulmón/patología , Pulmón/efectos de los fármacos , Pulmón/microbiología , Línea Celular , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Ratas , Lipopolisacáridos , Péptidos/farmacología , Péptidos/uso terapéuticoRESUMEN
Taste plays a fundamental role in an animal's ability to detect nutrients and transmits key dietary information to the brain, which is crucial for its growth and survival. Providing alternative terrestrial ingredients early in feeding influences the growth of rainbow trout (RT, Oncorhynchus mykiss). Thus, the present study aimed to assess the influence, via long-term feeding (from the first feeding to 8 months), of alternative plant ingredients (V diet for vegetable diet v. C diet for a control diet) in RT on the mechanism of fat sensing at the gustatory level. After the feeding trial, we studied the pathways of the fat-sensing mechanism in tongue tissue and the integrated response in the brain. To this end, we analysed the expression pattern of free fatty acid receptors (ffar) 1 and 2, markers of calcium-signalling pathways (phospholipase Cß, Orai, Stim or Serca), the serotonin level (a key neurotransmitter in taste buds) and the expression pattern of appetite-regulating neuropeptides in the hypothalamus (central area of appetite regulation). The results revealed that the V diet modified the expression pattern of ffar1 and paralogs of ffar2 genes in tongue tissue, along with differential regulation of calcium-signalling pathways and a defect in serotonin level and brain turnover, without influencing neuropeptide expression. This study is the first to support that changes in feeding behaviour of RT fed a V diet could be due to the difference in nutrient sensing and a decrease in hedonic sensation. We revealed that RT have similar fat-detection mechanisms as mammals.
Asunto(s)
Oncorhynchus mykiss , Animales , Oncorhynchus mykiss/metabolismo , Ácidos Grasos no Esterificados , Verduras , Calcio/metabolismo , Serotonina/metabolismo , Dieta/veterinaria , MamíferosRESUMEN
Enteroendocrine cells (EECs) and vagal afferent neurons constitute functional sensory units of the gut, which have been implicated in bottom-up modulation of brain functions. Sodium oligomannate (GV-971) has been shown to improve cognitive functions in murine models of Alzheimer's disease (AD) and recently approved for the treatment of AD patients in China. In this study, we explored whether activation of the EECs-vagal afferent pathways was involved in the therapeutic effects of GV-971. We found that an enteroendocrine cell line RIN-14B displayed spontaneous calcium oscillations due to TRPA1-mediated calcium entry; perfusion of GV-971 (50, 100 mg/L) concentration-dependently enhanced the calcium oscillations in EECs. In ex vivo murine jejunum preparation, intraluminal infusion of GV-971 (500 mg/L) significantly increased the spontaneous and distension-induced discharge rate of the vagal afferent nerves. In wild-type mice, administration of GV-971 (100 mg· kg-1 ·d-1, i.g. for 7 days) significantly elevated serum serotonin and CCK levels and increased jejunal afferent nerve activity. In 7-month-old APP/PS1 mice, administration of GV-971 for 12 weeks significantly increased jejunal afferent nerve activity and improved the cognitive deficits in behavioral tests. Sweet taste receptor inhibitor Lactisole (0.5 mM) and the TRPA1 channel blocker HC-030031 (10 µM) negated the effects of GV-971 on calcium oscillations in RIN-14B cells as well as on jejunal afferent nerve activity. In APP/PS1 mice, co-administration of Lactisole (30 mg ·kg-1 ·d-1, i.g. for 12 weeks) attenuated the effects of GV-971 on serum serotonin and CCK levels, vagal afferent firing, and cognitive behaviors. We conclude that GV-971 activates sweet taste receptors and TRPA1, either directly or indirectly, to enhance calcium entry in enteroendocrine cells, resulting in increased CCK and 5-HT release and consequent increase of vagal afferent activity. GV-971 might activate the EECs-vagal afferent pathways to modulate cognitive functions.
Asunto(s)
Células Enteroendocrinas , Yeyuno , Canal Catiónico TRPA1 , Nervio Vago , Animales , Masculino , Ratones , Vías Aferentes/efectos de los fármacos , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/genética , Señalización del Calcio/efectos de los fármacos , Línea Celular , Colecistoquinina/metabolismo , Modelos Animales de Enfermedad , Células Enteroendocrinas/metabolismo , Células Enteroendocrinas/efectos de los fármacos , Yeyuno/efectos de los fármacos , Yeyuno/metabolismo , Yeyuno/inervación , Ratones Endogámicos C57BL , Ratones Transgénicos , Presenilina-1/genética , Serotonina/metabolismo , Canal Catiónico TRPA1/metabolismo , Nervio Vago/efectos de los fármacos , Nervio Vago/metabolismoRESUMEN
Patients with diabetes exhibit altered taste sensitivity, but its details have not been clarified yet. Here, we examined alteration of sweet taste sensitivity with development of glucose intolerance in Otsuka Long-Evans Tokushima Fatty (OLETF) rats as a model of non-insulin-dependent diabetes mellitus. Compared to the cases of Long Evans Tokushima Otsuka (LETO) rats as a control, glucose tolerance of OLETF rats decreased with aging, resulting in development of diabetes at 36-weeks-old. In brief-access tests with a mixture of sucrose and quinine hydrochloride, OLETF rats at 25 or more-weeks-old seemed to exhibit lower sweet taste sensitivity than age-matched LETO ones, but the lick ratios of LETO, but not OLETF, rats for the mixture and quinine hydrochloride solutions decreased and increased, respectively, aging-dependently. Expression of sweet taste receptors, T1R2 and T1R3, in circumvallate papillae (CP) was almost the same in LETO and OLETF rats at 10- and 40-weeks-old, while expression levels of a bitter taste receptor, T2R16, were greater in 40-weeks-old rats than in 10-weeks-old ones in both strains. There was no apparent morphological alteration in taste buds in CP between 10- and 40-weeks-old LETO and OLETF rats. Metagenomic analysis of gut microbiota revealed strain- and aging-dependent alteration of mucus layer-regulatory microbiota. Collectively, we concluded that the apparent higher sweet taste sensitivity in 25 or more-weeks-old OLETF rats than in age-matched LETO rats was due to the aging-dependent increase of bitter taste sensitivity in LETO rats with alteration of the gut microbiota.
Asunto(s)
Diabetes Mellitus Tipo 2 , Intolerancia a la Glucosa , Humanos , Ratas , Animales , Ratas Endogámicas OLETF , Gusto , Peso Corporal , Disgeusia , Quinina/farmacología , Prueba de Tolerancia a la Glucosa , Diabetes Mellitus Tipo 2/metabolismo , Ratas Long-Evans , Glucemia/análisisRESUMEN
The evolution of taste perception is usually associated with the ecology and dietary changes of organisms. However, the association between feeding ecology and taste receptor evolution is unclear in some lineages of vertebrate animals. One example is the sweet taste receptor gene Tas1r2 Previous analysis of partial sequences has revealed that Tas1r2 has undergone equally strong purifying selection between insectivorous and frugivorous bats. To test whether the sweet taste function is also important in bats with contrasting diets, we examined the complete coding sequences of both sweet taste receptor genes (Tas1r2 and Tas1r3) in 34 representative bat species. Although these two genes are highly conserved between frugivorous and insectivorous bats at the sequence level, our behavioral experiments revealed that an insectivorous bat (Myotis ricketti) showed no preference for natural sugars, whereas the frugivorous species (Rousettus leschenaultii) showed strong preferences for sucrose and fructose. Furthermore, while both sweet taste receptor genes are expressed in the taste tissue of insectivorous and frugivorous bats, our cell-based assays revealed striking functional divergence: the sweet taste receptors of frugivorous bats are able to respond to natural sugars whereas those of insectivorous bats are not, which is consistent with the behavioral preference tests, suggesting that functional evolution of sweet taste receptors is closely related to diet. This comprehensive study suggests that using sequence conservation alone could be misleading in inferring protein and physiological function and highlights the power of combining behavioral experiments, expression analysis, and functional assays in molecular evolutionary studies.
Asunto(s)
Ageusia/genética , Quirópteros/fisiología , Dieta , Genoma , Receptores Acoplados a Proteínas G/genética , Percepción del Gusto/genética , Ageusia/metabolismo , Animales , Quirópteros/clasificación , Evolución Molecular , Cadena Alimentaria , Frutas , Expresión Génica , Insectos , Filogenia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Selección Genética , Gusto/genéticaRESUMEN
BACKGROUND: Accumulating evidence supports that the Western diet (WD), a diet high in saturated fat and sugary drinks, contributes to the pathogenesis of anxiety disorders, which are the most prevalent mental disorders worldwide. However, the underlying mechanisms by which WD causes anxiety remain unclear. Abundant expression of taste receptor type 1 member 3 (TAS1R3) has been identified in the hypothalamus, a key brain area involved in sensing peripheral nutritional signals and regulating anxiety. Thus, we investigated the influence of excessive WD intake on anxiety and mechanisms by which WD intake affects anxiety development using wild-type (WT) and Tas1r3 deficient (Tas1r3-/-) mice fed a normal diet (ND) or WD for 12 weeks. RESULTS: WD increased anxiety in male WT mice, whereas male Tas1r3-/- mice were protected from WD-induced anxiety, as assessed by open field (OF), elevated plus maze (EPM), light-dark box (LDB), and novelty-suppressed feeding (NSF) tests. Analyzing the hypothalamic transcriptome of WD-fed WT and Tas1r3-/- mice, we found 1,432 genes significantly up- or down-regulated as a result of Tas1r3 deficiency. Furthermore, bioinformatic analysis revealed that the CREB/BDNF signaling-mediated maintenance of neuronal regeneration, which can prevent anxiety development, was enhanced in WD-fed Tas1r3-/- mice compared with WD-fed WT mice. Additionally, in vitro studies further confirmed that Tas1r3 knockdown prevents the suppression of Creb1 and of CREB-mediated BDNF expression caused by high levels of glucose, fructose, and palmitic acid in hypothalamic neuronal cells. CONCLUSIONS: Our results imply that TAS1R3 may play a key role in WD-induced alterations in hypothalamic functions, and that inhibition of TAS1R3 overactivation in the hypothalamus could offer therapeutic targets to alleviate the effects of WD on anxiety.
Asunto(s)
Ansiedad , Dieta Occidental , Receptores Acoplados a Proteínas G , Animales , Masculino , Ratones , Ansiedad/genética , Factor Neurotrófico Derivado del Encéfalo , Dieta Occidental/efectos adversos , Ratones Endogámicos C57BL , Receptores Acoplados a Proteínas G/genéticaRESUMEN
In recent decades, taste sensors have been increasingly utilized to assess the taste of oral medicines, particularly focusing on bitterness, a major obstacle to patient acceptance and adherence. This objective and safe method holds promise for enhancing the development of patient-friendly medicines in pharmaceutical companies. This review article introduces its application in measuring the intensity of bitterness in medicine, confirming the achievement of taste masking, distinguishing taste differences between branded and generic medicines, and identifying substances to suppress bitterness in target medicines. Another application of the sensor is to predict a significant increase in bitterness when medicine is taken with certain foods/beverages or concomitant medication. Additionally, to verify the sensor's predictability, a significant correlation has been demonstrated between the output of a bitter-sensitive sensor designed for drug bitterness (BT0) and the bitterness responses of the human taste receptor hT2R14 from BitterDB (huji.ac.il). As a recent advancement, a novel taste sensor equipped with lipid/polymer membranes modified by 3-Br-2,6-dihydroxybenzoic acid (2,6-DHBA), based on the concept of allostery, is introduced. This sensor successfully predicts the bitterness of non-charged pharmaceuticals with xanthine skeletons, such as caffeine or related compounds. Finally, the future prospects of taste sensors are discussed.
Asunto(s)
Técnicas Biosensibles , Gusto , Humanos , Gusto/fisiología , Gusto/efectos de los fármacos , Técnicas Biosensibles/métodos , Técnicas Biosensibles/instrumentación , Receptores Acoplados a Proteínas G/metabolismo , Preparaciones Farmacéuticas/análisisRESUMEN
In the realm of colon carcinoma, significant genetic and epigenetic diversity is observed, underscoring the necessity for tailored prognostic features that can guide personalized therapeutic strategies. In this study, we explored the association between the type 2 bitter taste receptor (TAS2Rs) family-related genes and colon cancer using RNA-sequencing and clinical datasets from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO). Our preliminary analysis identified seven TAS2Rs genes associated with survival using univariate Cox regression analysis, all of which were observed to be overexpressed in colon cancer. Subsequently, based on these seven TAS2Rs prognostic genes, two colon cancer molecular subtypes (Cluster A and Cluster B) were defined. These subtypes exhibited distinct prognostic and immune characteristics, with Cluster A characterized by low immune cell infiltration and less favorable outcomes, while Cluster B was associated with high immune cell infiltration and better prognosis. Finally, we developed a robust scoring system using a gradient boosting machine (GBM) approach, integrated with the gene-pairing method, to predict the prognosis of colon cancer patients. This machine learning model could improve our predictive accuracy for colon cancer outcomes, underscoring its value in the precision oncology framework.
Asunto(s)
Neoplasias del Colon , Regulación Neoplásica de la Expresión Génica , Receptores Acoplados a Proteínas G , Humanos , Neoplasias del Colon/genética , Neoplasias del Colon/mortalidad , Neoplasias del Colon/patología , Pronóstico , Receptores Acoplados a Proteínas G/genética , Biomarcadores de Tumor/genética , Femenino , Aprendizaje Automático , Perfilación de la Expresión Génica , MasculinoRESUMEN
Complete elucidation of members of the gustatory receptor (Gr) family in lepidopteran insects began in the silkworm Bombyx mori. Grs of lepidopteran insects were initially classified into four subfamilies based on the results of phylogenetic studies and analyses of a few ligands. However, with further ligand analysis, it has become clear that plant secondary metabolites are important targets not only for Grs in the bitter subfamily but also for the Drosophila melanogaster Gr43a orthologue subfamily and Grs in the sugar subfamily. Gene knockout experiments showed that B. mori Gr6 (BmGr6) and BmGr9 are involved in the recognition of the feeding-promoting compounds chlorogenic acid and isoquercetin in mulberry leaves by the maxillary palps, suggesting that these Grs are responsible for palpation-dependent host recognition without biting. On the other hand, BmGr expression was also confirmed in nonsensory organs. Midgut enteroendocrine cells that produce specific neuropeptides were shown to express specific BmGrs, suggesting that BmGrs are involved in the induction of endocrine secretion in response to changes in the midgut contents. Furthermore, gene knockout experiments indicated that BmGr6 is indeed involved in the secretion of myosuppressin. On the other hand, BmGr9 was shown to induce signal transduction that is not derived from the intracellular signaling cascade mediated by G proteins but from the fructose-regulated cation channel of BmGr9 itself. Cryogenic electron microscopy revealed the mechanism by which the ion channel of the BmGr9 homotetramer opens upon binding of fructose to the ligand-binding pocket. Research on BmGrs has contributed greatly to our understanding of the functions and roles of Grs in insects.
Asunto(s)
Bombyx , Proteínas de Insectos , Receptores de Superficie Celular , Animales , Bombyx/genética , Bombyx/metabolismo , Bombyx/fisiología , Receptores de Superficie Celular/metabolismo , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/química , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética , Proteínas de Insectos/química , Transducción de Señal , FilogeniaRESUMEN
The human palate can discern multiple tastes; however, it predominantly perceives five fundamental flavors: sweetness, saltiness, sourness, bitterness, and umami. Sweetness is primarily mediated through the sweet taste receptor, a membrane-bound heterodimeric structure comprising T1R2-T1R3. However, unraveling the structural and mechanistic intricacies of the sweet taste receptor has proven challenging. This study aimed to address this knowledge gap by expressing an extracellular N-terminal domain encompassing the cysteine-rich domain of human hT1R3 (hT1R3-TMD) in Escherichia coli. The expressed protein was obtained as inclusion bodies, purified by metal affinity chromatography, and refolded using the dilution-refolding method. Through rigorous analysis, we confirmed the successful refolding of hT1R3-TMD and elucidated its structural characteristics using circular dichroism spectroscopy. Notably, the refolded protein was found to exist as either a monomer or a dimer, depending on its concentration. A tryptophan fluorescence quenching assay revealed that the dissociation constants for sucrose, sucralose, and brazzein were >9500 µM, 2380 µM and 14.3 µM, respectively. Our findings highlight the utility of this E. coli expression system for producing functional hT1R3-TMD for investigations and demonstrate the efficacy of the tryptophan fluorescence quenching assay in revealing complex interactions between sweet taste receptors and various sweeteners.
Asunto(s)
Escherichia coli , Receptores Acoplados a Proteínas G , Proteínas Recombinantes , Sacarosa , Edulcorantes , Triptófano , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/química , Edulcorantes/química , Edulcorantes/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Triptófano/metabolismo , Triptófano/química , Sacarosa/metabolismo , Sacarosa/análogos & derivados , Sacarosa/química , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Dominios Proteicos , Replegamiento Proteico , Dicroismo Circular , Proteínas de PlantasRESUMEN
BACKGROUND: Long-term intake of a Western diet (WD), characterized by a high-fat content and sugary drinks, is hypothesized to contribute to the development of inflammatory bowel disease (IBD). Despite the identified clinical association, the molecular mechanisms by which dietary changes contribute to IBD development remain unknown. Therefore, we examined the influence of long-term intake of a WD on intestinal inflammation and the mechanisms by which WD intake affects IBD development. METHODS: Mice fed normal diet or WD for 10 weeks, and bowel inflammation was evaluated through pathohistological and infiltrated inflammatory cell assessments. To understand the role of intestinal taste receptor type 1 member 3 (TAS1R3) in WD-induced intestinal inflammation, cultured enteroendocrine cells harboring TAS1R3, subjected to RNA interference or antagonist treatment, and Tas1r3-deficient mice were used. RNA-sequencing, flow cytometry, 16S metagenomic sequencing, and bioinformatics analyses were performed to examine the involved mechanisms. To demonstrate their clinical relevance, intestinal biopsies from patients with IBD and mice with dextran sulfate sodium-induced colitis were analyzed. RESULTS: Our study revealed for the first time that intestinal TAS1R3 is a critical mediator of WD-induced intestinal inflammation. WD-fed mice showed marked TAS1R3 overexpression with hallmarks of serious bowel inflammation. Conversely, mice lacking TAS1R3 failed to exhibit inflammatory responses to WD. Mechanistically, intestinal transcriptome analysis revealed that Tas1r3 deficiency suppressed mTOR signaling, significantly increasing the expression of PPARγ (a major mucosal defense enhancer) and upregulating the expression of PPARγ target-gene (tight junction protein and antimicrobial peptide). The gut microbiota of Tas1r3-deficient mice showed expansion of butyrate-producing Clostridia. Moreover, an increased expression of host PPARγ-signaling pathway proteins was positively correlated with butyrate-producing microbes, suggesting that intestinal TAS1R3 regulates the relationship between host metabolism and gut microflora in response to dietary factors. In cultured intestinal cells, regulation of the TAS1R3-mTOR-PPARγ axis was critical for triggering an inflammatory response via proinflammatory cytokine production and secretion. Abnormal regulation of the axis was observed in patients with IBD. CONCLUSIONS: Our findings suggest that the TAS1R3-mTOR-PPARγ axis in the gut links Western diet consumption with intestinal inflammation and is a potential therapeutic target for IBD.
Asunto(s)
Colitis , Enfermedades Inflamatorias del Intestino , Ratones , Animales , Gusto , Dieta Occidental/efectos adversos , PPAR gamma , Colitis/inducido químicamente , Colitis/metabolismo , Inflamación/metabolismo , Enfermedades Inflamatorias del Intestino/patología , Serina-Treonina Quinasas TOR/efectos adversos , Butiratos/efectos adversos , Ratones Endogámicos C57BL , Modelos Animales de EnfermedadRESUMEN
Animals use sour taste to avoid spoiled food and to choose foods containing vitamins and minerals. To investigate the response to sour taste substances during vitamin C (ascorbic acid; AA) deficiency, we conducted behavioral, neural, anatomical, and molecular biological experiments with osteogenic disorder Shionogi/Shi Jcl-od/od rats, which lack the ability to synthesize AA. Rats had higher 3 mM citric acid and 10 mM AA preference scores when AA-deficient than when replete. Licking rates for sour taste solutions [AA, citric acid, acetic acid, tartaric acid, and HCl] were significantly increased during AA deficiency relative to pre- and postdeficiency. Chorda tympani nerve recordings were conducted to evaluate organic acid taste responses in the AA-deficient and replete rats. Nerve responses to citric acid, acetic acid, and tartaric acid were significantly diminished in AA-deficient rats relative to replete controls. There was no significant difference in the number of fungiform papillae taste buds per unit area in the AA-deficient rats relative to the replete rats. However, mRNA expression levels of Gnat3 (NM_173139.1), Trpm5 (NM_001191896.1), Tas1r1 (NM_053305.1), Car4 (NM_019174.3), and Gad1 (NM_017007.1) in fungiform papillae taste bud cells from AA-deficient rats were significantly lower than those in replete rats. Our data suggest that AA deficiency decreases avoidance of acids and reduces chorda tympani nerve responses to acids. AA deficiency downregulates some taste-related genes in fungiform papillae taste bud cells. However, the results also reveal that the mRNA expression of some putative sour taste receptors in fungiform papillae taste bud cells is not affected by AA deficiency.
Asunto(s)
Deficiencia de Ácido Ascórbico , Papilas Gustativas , Ratas , Animales , Nervio de la Cuerda del Tímpano , Gusto/fisiología , Papilas Gustativas/fisiología , Ácido Ascórbico/farmacología , ARN MensajeroRESUMEN
The sweet taste receptor (STR) is a G protein-coupled receptor (GPCR) responsible for mediating cellular responses to sweet stimuli. Early evidence suggests that elements of the STR signaling system are present beyond the tongue in metabolically active tissues, where it may act as an extraoral glucose sensor. This study aimed to delineate expression of the STR in extraoral tissues using publicly available RNA-sequencing repositories. Gene expression data was mined for all genes implicated in the structure and function of the STR, and control genes including highly expressed metabolic genes in relevant tissues, other GPCRs and effector G proteins with physiological roles in metabolism, and other GPCRs with expression exclusively outside the metabolic tissues. Since the physiological role of the STR in extraoral tissues is likely related to glucose sensing, expression was then examined in diseases related to glucose-sensing impairment such as type 2 diabetes. An aggregate co-expression network was then generated to precisely determine co-expression patterns among the STR genes in these tissues. We found that STR gene expression was negligible in human pancreatic and adipose tissues, and low in intestinal tissue. Genes encoding the STR did not show significant co-expression or connectivity with other functional genes in these tissues. In addition, STR expression was higher in mouse pancreatic and adipose tissues, and equivalent to human in intestinal tissue. Our results suggest that STR expression in mice is not representative of expression in humans, and the receptor is unlikely to be a promising extraoral target in human cardiometabolic disease.
Asunto(s)
Enfermedades Cardiovasculares , Diabetes Mellitus Tipo 2 , Papilas Gustativas , Ratones , Humanos , Animales , Gusto/fisiología , Diabetes Mellitus Tipo 2/genética , Papilas Gustativas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Perfilación de la Expresión Génica , Glucosa/metabolismo , Enfermedades Cardiovasculares/metabolismoRESUMEN
Bitterness is perceived in humans by 25 subtypes of bitter taste receptors (hTAS2R) that range from broadly tuned to more narrowly tuned receptors. hTAS2R5 is one of the most narrowly tuned bitter taste receptors in humans. In this study, we review the literature on this receptor and show there is no consensus about its role. We then compare the possible role of hTAS2R5 with that of the proteins of the TAS2R family in rat, mouse, and pig. A phylogenetic tree of all mammalian TAS2R domain-containing proteins showed that human hTAS2R5 has no ortholog in pig, mouse, or rat genomes. By comparing the agonists that are common to hTAS2R5 and other members of the family, we observed that hTAS2R39 is the receptor that shares most agonists with hTAS2R5. In mouse, some of these agonists activate mTas2r105 and mTas2r144, which are distant paralogs of hTAS2R5. mTas2r144 seems to be the receptor that is most similar to hTAS2R5 because they are both activated by the same agonists and have affinities in the same range of values. Then, we can conclude that hTAS2R5 has a unique functional specificity in humans as it is activated by selective agonists and that its closest functional homolog in mouse is the phylogenetically distant mTas2r144.
Asunto(s)
Receptores Acoplados a Proteínas G/genética , Gusto/genética , Animales , Genómica/métodos , Humanos , Filogenia , Gusto/fisiología , Papilas Gustativas/metabolismoRESUMEN
Odorant receptors (ORs) and taste receptors (TRs) are expressed primarily in the nose and tongue in which they transduce electrical signals to the brain. Advances in deciphering the dietary component-sensing mechanisms in the nose and tongue prompted research on the role of gut chemosensory cells. Acting as the pivotal interface between the body and dietary cues, gut cells "smell" and "taste" dietary components and metabolites by taking advantage of chemoreceptors-ORs and TRs, to maintain physiological homeostasis. Here, we reviewed this novel field, highlighting the latest discoveries pertinent to gut ORs and TRs responding to dietary components, their impacts on gut hormone secretion, and the mechanisms involved. Recent studies indicate that gut cells sense dietary components including fatty acid, carbohydrate, and phytochemical by activating relevant ORs, thereby modulating GLP-1, PYY, CCK, and 5-HT secretion. Similarly, gut sweet, umami, and bitter receptors can regulate the gut hormone secretion and maintain homeostasis in response to dietary components. A deeper understanding of the favorable influence of dietary components on gut hormone secretion via gut ORs and TRs, coupled with the facts that gut hormones are involved in diverse physiological or pathophysiological phenomena, may ultimately lead to a promising treatment for various human diseases.
RESUMEN
OBJECTIVES: Overconsumption of non-nutritive sweeteners is associated with obesity, whereas the underlying mechanisms remain controversial. This study aimed to investigate the effects of long-term consumption of nutritive or non-nutritive sweeteners with or without high fat diet on sweet taste receptor expression in nutrient-sensing tissues and energy regulation dependent on sweet-sensing. METHODS: 50 Male Sprague-Dawley rats (140-160 g) were assigned to 10 groups (n = 5/group). All received fructose at 2.5% or 10%, sucralose at 0.01% or 0.015% or water with a normal chow diet or high fat diet for 12 weeks. Food and drink intake were monitored daily. Oral glucose tolerance test and intraperitoneal glucose tolerance test were performed at week 10 and 11 respectively. Serum was obtained for measurement of biochemical parameters. Tongue, duodenum, jejunum, ileum, colon and hypothalamus were rapidly removed to assess gene expression. RESULTS: Long-term consumption of sweeteners impaired glucose tolerance, increased calorie intake and body weight. A significant upregulation of sweet taste receptor expression was observed in all the four intestinal segments in groups fed 0.01% sucralose or 0.015% sucralose, most strikingly in the ileum, accompanied by elevated serum glucagon-like peptide-1 levels and up-regulated expression of sodium-dependent glucose cotransporter 1 and glucose transporter 2. A significant down-regulation in the tongue and hypothalamus was observed in groups fed 10% fructose or 0.015% sucralose, with alterations in hypothalamic appetite signals. The presence of high fat diet differentially modulates sweet taste perception in nutrient-sensing tissues. CONCLUSIONS: Long-term consumption of whether nutritive sweeteners or non-nutritive sweeteners combined with high fat diet contribute to dysregulation of sweet taste receptor expression in oral, intestinal and central nervous tissues.