Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 228
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 178(6): 1329-1343.e12, 2019 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-31447177

RESUMEN

Assembly of Kaposi's sarcoma-associated herpesvirus (KSHV) begins at a bacteriophage-like portal complex that nucleates formation of an icosahedral capsid with capsid-associated tegument complexes (CATCs) and facilitates translocation of an ∼150-kb dsDNA genome, followed by acquisition of a pleomorphic tegument and envelope. Because of deviation from icosahedral symmetry, KSHV portal and tegument structures have largely been obscured in previous studies. Using symmetry-relaxed cryo-EM, we determined the in situ structure of the KSHV portal and its interactions with surrounding capsid proteins, CATCs, and the terminal end of KSHV's dsDNA genome. Our atomic models of the portal and capsid/CATC, together with visualization of CATCs' variable occupancy and alternate orientation of CATC-interacting vertex triplexes, suggest a mechanism whereby the portal orchestrates procapsid formation and asymmetric long-range determination of CATC attachment during DNA packaging prior to pleomorphic tegumentation/envelopment. Structure-based mutageneses confirm that a triplex deep binding groove for CATCs is a hotspot that holds promise for antiviral development.


Asunto(s)
Proteínas de la Cápside/química , Cápside/metabolismo , Empaquetamiento del ADN , Herpesvirus Humano 8/química , Herpesvirus Humano 8/fisiología , Sarcoma de Kaposi/virología , Ensamble de Virus , Microscopía por Crioelectrón/métodos , ADN Viral/metabolismo , Genoma Viral , Humanos , Modelos Moleculares
2.
J Virol ; : e0065624, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39136460

RESUMEN

The multifunctional tegument protein pUL21 of HSV-2 is phosphorylated in infected cells. We have identified two residues in the unstructured linker region of pUL21, serine 251 and serine 253, as phosphorylation sites. Both phosphorylation sites are absent in HSV-1 pUL21, which likely explains why phosphorylated pUL21 was not detected in cells infected with HSV-1. Cells infected with HSV-2 strain 186 viruses deficient in pUL21 phosphorylation exhibited reductions in both cell-cell spread of virus infection and virus replication. Defects in secondary envelopment of cytoplasmic nucleocapsids were also observed in cells infected with viruses deficient in pUL21 phosphorylation as well as in cells infected with multiple strains of HSV-2 and HSV-1 deleted for pUL21. These results confirm a role for HSV pUL21 in the secondary envelopment of cytoplasmic nucleocapsids and indicate that phosphorylation of HSV-2 pUL21 is required for this activity. Phosphorylation of pUL21 was substantially reduced in cells infected with HSV-2 strain 186 mutants lacking the viral serine/threonine kinase pUL13, indicating a requirement for pUL13 in pUL21 phosphorylation. IMPORTANCE: It is well known that post-translational modification of proteins by phosphorylation can regulate protein function. Here, we determined that phosphorylation of the multifunctional HSV-2 tegument protein pUL21 requires the viral serine/threonine kinase pUL13. In addition, we identified serine residues within HSV-2 pUL21 that can be phosphorylated. Phenotypic analysis of mutant HSV-2 strains with deficiencies in pUL21 phosphorylation revealed reductions in both cell-cell spread of virus infection and virus replication. Deficiencies in pUL21 phosphorylation also compromised the secondary envelopment of cytoplasmic nucleocapsids, a critical final step in the maturation of all herpes virions. Unlike HSV-2 pUL21, phosphorylation of HSV-1 pUL21 was not detected. This fundamental difference between HSV-2 and HSV-1 may underlie our previous observations that the requirements for pUL21 differ between HSV species.

3.
J Virol ; 97(3): e0169622, 2023 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-36815831

RESUMEN

Kaposi's sarcoma-associated herpesvirus (KSHV) is an oncogenic gammaherpesvirus that can replicate in oral epithelial cells to promote viral transmission via saliva. To identify novel regulators of KSHV oral infection, we performed a transcriptome analysis of KSHV-infected primary human gingival epithelial (HGEP) cells, which identified the gene coding for the host transcription factor FOXQ1 as the top induced host gene. FOXQ1 is nearly undetectable in uninfected HGEP and telomerase-immortalized gingival keratinocytes (TIGK) cells but is highly expressed within hours of KSHV infection. We found that while the FOXQ1 promoter lacks activating histone acetylation marks in uninfected oral epithelial cells, these marks accumulate in the FOXQ1 promoter in infected cells, revealing a rapid epigenetic reprogramming event. To evaluate FOXQ1 function, we depleted FOXQ1 in KSHV-infected TIGK cells, which resulted in reduced accumulation of KSHV lytic proteins and viral DNA over the course of 4 days of infection, uncovering a novel lytic cycle-sustaining role of FOXQ1. A screen of KSHV lytic proteins demonstrated that the immediate early proteins ORF45 and replication and transcription activator (RTA) were both sufficient for FOXQ1 induction in oral epithelial cells, indicating active involvement of incoming and rapidly expressed factors in altering host gene expression. ORF45 is known to sustain extracellular signal-regulated kinase (ERK) p90 ribosomal s6 kinase (RSK) pathway activity to promote lytic infection. We found that an ORF45 mutant lacking RSK activation function failed to induce FOXQ1 in TIGK cells, revealing that ORF45 uses a shared mechanism to rapidly induce both host and viral genes to sustain lytic infection in oral epithelial cells. IMPORTANCE The oral cavity is a primary site of initial contact and entry for many viruses. Viral replication in the oral epithelium promotes viral shedding in saliva, allowing interpersonal transmission, as well as spread to other cell types, where chronic infection can be established. Understanding the regulation of KSHV infection in the oral epithelium would allow for the design of universal strategies to target the first stage of viral infection, thereby halting systemic viral pathogenesis. Overall, we uncover a novel positive feedback loop in which immediate early KSHV factors drive rapid host reprogramming of oral epithelial cells to sustain the lytic cycle in the oral cavity.


Asunto(s)
Retroalimentación Fisiológica , Factores de Transcripción Forkhead , Regulación Viral de la Expresión Génica , Herpesvirus Humano 8 , Proteínas Inmediatas-Precoces , Humanos , Células Epiteliales/metabolismo , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Regulación Viral de la Expresión Génica/genética , Herpesvirus Humano 8/fisiología , Proteínas Inmediatas-Precoces/genética , Proteínas Inmediatas-Precoces/metabolismo , Replicación Viral/fisiología , Interacciones Microbiota-Huesped , Línea Celular , Regiones Promotoras Genéticas
4.
Dokl Biochem Biophys ; 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38955911

RESUMEN

The giant tegument nuclei of the acanthocephalans of the classes Archiacanthocephala and Palaeacanthocephala are fragmented at the final stage of cystacanthus formation in the intermediate host, but remain connected with each other during later life. It can be assumed that the fragments of each giant tegument nucleus are united with each other to form an independent network that ensures the vital activity of the tegument, the volume of which increases many times during the period of intensive growth of the parasite in the definitive host.

5.
J Infect Dis ; 228(11): 1491-1495, 2023 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-37340664

RESUMEN

Developing a vaccine to prevent congenital cytomegalovirus (CMV) infection and newborn disability requires an understanding of infection incidence. In a prospective cohort study of 363 adolescent girls (NCT01691820), CMV serostatus, primary infection, and secondary infection were determined in blood and urine samples collected at enrollment and every 4 months for 3 years. Baseline CMV seroprevalence was 58%. Primary infection occurred in 14.8% of seronegative girls. Among seropositive girls, 5.9% had ≥4-fold increase in anti-CMV antibody, and 23.9% shed CMV DNA in urine. Our findings provide insights on infection epidemiology and highlight the need for more standardized markers of secondary infection.


Cytomegalovirus (CMV) can be passed from a woman to her unborn baby during pregnancy, which can result in disabilities in the baby. This can happen after a first infection with the virus during pregnancy, after a subsequent infection with a different strain ("reinfection"), or after "reactivation", which means that a virus present from a previous infection becomes active again. Vaccinating adolescent girls against CMV may be a future strategy to help prevent CMV infection during pregnancy. To provide information to design trials evaluating a CMV vaccine, it is important to know how common primary/secondary CMV infection is in adolescent girls and if this can be measured with available tools. We followed adolescent girls living in Finland, Mexico or the United States for three years. At study start, 58% of these girls showed evidence of previous CMV infection. During the three-year follow-up, a first CMV infection occurred in 15% of girls, and reinfection or reactivation in 6% to 24% of girls (depending on the method used). The obtained estimates of CMV infection rates in adolescent girls provide valuable information for future studies to evaluate CMV vaccines, but standardized markers for secondary infection are needed.


Asunto(s)
Coinfección , Infecciones por Citomegalovirus , Adolescente , Femenino , Humanos , Anticuerpos Antivirales , Citomegalovirus , Incidencia , Estudios Prospectivos , Estudios Seroepidemiológicos
6.
J Gen Virol ; 104(1)2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36748631

RESUMEN

Equine herpesvirus type 1 (EHV-1) UL11 is a 74-amino-acid (aa) protein encoded by ORF51. UL11 is modified by acylation including myristoylation and palmitoylation. Myristoylation of EHV-1 UL11 is assumed to occur on the N-terminal glycine, while palmitoylation is assumed to occur on the seventh and ninth cysteines. ORF51, which encodes the first 24 aa, overlaps ORF50 encoding UL12. We previously demonstrated that UL11 was essential for EHV-1 replication in cultured cells and that UL11 was localized at the Golgi apparatus where herpesviruses obtain their final envelope. It is unclear whether the acylation is related to the localization of EHV-1 UL11 and viral replication. In this study, we investigated the role of UL11 acylation in the intracellular localization and viral growth and replication of EHV-1. We constructed seven UL11 acylation mutant plasmids and seven UL11 acylation mutant BAC DNAs; then, we analysed the localizations of the mutant UL11s and attempted virus rescue. We found that both the N-terminal glycine and the seventh or ninth cysteine, especially N-terminal glycine, were involved in the localization of UL11 and viral replication. Taken together, these results suggest that EHV-1 viral growth requires that UL11 is modified by myristoylation of an N-terminal glycine and by palmitoylation of at least one of the cysteines, and that UL11 is localized at the Golgi apparatus. This study shows that a single amino acid in EHV-1 can determine the fate of viral replication.


Asunto(s)
Herpesvirus Équido 1 , Animales , Caballos , Herpesvirus Équido 1/genética , Glicina/metabolismo , Proteínas Estructurales Virales/metabolismo , Replicación Viral , Línea Celular , Aminoácidos/metabolismo , Cisteína
7.
J Virol ; 96(14): e0051822, 2022 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-35862711

RESUMEN

Protein-protein interactions (PPIs) are crucial for various biological processes. Epstein-Barr virus (EBV) proteins typically form complexes, regulating the replication and persistence of the viral genome in human cells. However, the role of EBV protein complexes under physiological conditions remains unclear. In this study, we performed comprehensive analyses of EBV PPIs in living cells using the NanoBiT system. We identified 195 PPIs, many of which have not previously been reported. Computational analyses of these PPIs revealed that BLRF2, which is only found in gammaherpesviruses, is a central protein in the structural network of EBV tegument proteins. To characterize the role of BLRF2, we generated two BLRF2 knockout EBV clones using CRISPR/Cas9. BLRF2 knockout significantly decreased the production of infectious virus particles, which was partially restored by exogenous BLRF2 expression. In addition, self-association of BLRF2 protein was found, and mutation of the residues crucial for the self-association affected stability of the protein. Our data imply that BLRF2 is a tegument network hub that plays important roles in progeny virion maturation. IMPORTANCE EBV remains a significant public health challenge, causing infectious mononucleosis and several cancer types. Therefore, the better understanding of the molecular mechanisms underlying EBV replication is of high clinical importance. As protein-protein interactions (PPIs) are major regulators of virus-associated pathogenesis, comprehensive analyses of PPIs are essential. Previous studies on PPIs in EBV or other herpesviruses have predominantly employed the yeast two-hybrid (Y2H) system, immunoprecipitation, and pulldown assays. Herein, using a novel luminescence-based method, we identified 195 PPIs, most of which have not previously been reported. Computational and functional analyses using knockout viruses revealed that BLRF2 plays a central role in the EBV life cycle, which makes it a valuable target for drug development.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Herpesvirus Humano 4 , Mapas de Interacción de Proteínas , Proteínas Virales , Infecciones por Virus de Epstein-Barr/virología , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/fisiología , Humanos , Proteínas Virales/genética , Replicación Viral
8.
J Virol ; 96(22): e0107322, 2022 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-36300940

RESUMEN

Tegument, which occupies the space between the nucleocapsid and the envelope, is a unique structure of a herpesvirion. Tegument proteins are major components of tegument and play critical roles in virus life cycle. Murine gammaherpesvirus 68 (MHV-68), a member of the gammaherpesvirus subfamily, is closely related to two human herpesviruses, Kaposi's sarcoma-associated herpesvirus (KSHV) and Epstein-Barr virus (EBV). We have previously shown that MHV-68 ORF33, conserved among all herpesviruses, encodes a tegument protein that is associated with intranuclear capsids and is essential for virion morphogenesis and egress. Another tegument protein ORF45, which is conserved only among gammaherpesviruses, also plays an essential role in virion morphogenesis of MHV-68. In this study, we investigated the underlying mechanism and showed that these two proteins colocalize and interact with each other during virus infection. We mapped the ORF33-interacting domain to the conserved carboxyl-terminal 23 amino acids (C23) of ORF45. Deletion of the C23 coding sequence in the context of viral genome abolished the production of infectious virions. Transmission electron microscopy results demonstrated that C23 of ORF45 are essential for virion tegumentation in the cytoplasm. We further mapped the ORF45-interacting domain to the N-terminal 17 amino acids (N17) of ORF33. Deletion of the N17 coding sequence in the context of viral genome also abolished production of infectious virions, and N17 of ORF33 are also essential for virion tegumentation in the cytoplasm. Taken together, our data strongly indicate that the interaction between ORF45 and ORF33 plays an essential role in cytoplasmic maturation of MHV-68 virions. IMPORTANCE A critical step in viral lytic replication is the assembly of progeny viral particles. Herpesviruses are important pathogens. A herpesvirus particle comprises, from inside to outside, four layers: DNA core, capsid, tegument, and envelope. The tegument layer contains dozens of virally encoded tegument proteins, which play critical roles in virus assembly. Murine gammaherpesvirus 68 (MHV-68) is a tumor-associated herpesvirus and is closely related to Kaposi's sarcoma-associated herpesvirus and Epstein-Barr virus. We previously found that the absence of either tegument protein ORF33 or ORF45 inhibits the translocation of nucleocapsids to the cytoplasm and blocks virion maturation, but the underlying mechanism remained unclear. Here, we showed that ORF33 interacts with ORF45. We mapped their interaction domains and constructed viral mutants with defects in ORF33-ORF45 interaction. Transmission electron microscopy data demonstrated that the assembly of these viral mutants in the cytoplasm is blocked. Our results indicate that ORF33-ORF45 interaction is essential for gammaherpesvirus replication.


Asunto(s)
Proteínas de la Cápside , Proteínas Inmediatas-Precoces , Rhadinovirus , Ensamble de Virus , Animales , Ratones , Citoplasma/metabolismo , Herpesvirus Humano 4 , Herpesvirus Humano 8 , Rhadinovirus/genética , Rhadinovirus/fisiología , Virión/genética , Virión/fisiología , Replicación Viral , Proteínas de la Cápside/metabolismo , Proteínas Inmediatas-Precoces/metabolismo
9.
J Virol ; 96(20): e0133622, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36218358

RESUMEN

Nidogen 1 (NID1) is an important basement membrane protein secreted by many cell types. We previously found that human cytomegalovirus (HCMV) infection rapidly induced chromosome 1 breaks and that the basement membrane protein NID1, encoded near the 1q42 break site, was downregulated. We have now determined that the specific breaks in and of themselves did not regulate NID1, rather interactions between several viral proteins and the cellular machinery and DNA regulated NID1. We screened a battery of viral proteins present by 24 hours postinfection (hpi) when regulation was induced, including components of the incoming virion and immediate early (IE) proteins. Adenovirus (Ad) delivery of the tegument proteins pp71 and UL35 and the IE protein IE1 influenced steady-state (ss) NID1 levels. IE1's mechanism of regulation was unclear, while UL35 influenced proteasomal regulation of ss NID1. Real-time quantitative PCR (RT-qPCR) experiments determined that pp71 downregulated NID1 transcription. Surprisingly, WF28-71, a fibroblast clone that expresses minute quantities of pp71, suppressed NID1 transcription as efficiently as HCMV infection, resulting in the near absence of ss NID1. Sequence analysis of the region surrounding the 1q42 break sites and NID1 promoter revealed CCCTC-binding factor (CTCF) binding sites. Chromatin immunoprecipitation experiments determined that pp71 and CTCF were both bound at these two sites during HCMV infection. Expression of pp71 alone replicated this binding. Binding was observed as early as 1 hpi, and colocalization of pp71 and CTCF occurred as quickly as 15 min postinfection (pi) in infected cell nuclei. In fibroblasts where CTCF was knocked down, Adpp71 infection did not decrease NID1 transcription nor ss NID1 protein levels. Our results emphasize another aspect of pp71 activity during infection and identify this viral protein as a key contributor to HCMV's efforts to eliminate NID1. Further, we show, for the first time, direct interaction between pp71 and the cellular genome. IMPORTANCE We have found that human cytomegalovirus (HCMV) utilizes multiple viral proteins in multiple pathways to regulate a ubiquitous cellular basement membrane protein, nidogen-1 (NID1). The extent of the resources and the redundant methods that the virus has evolved to affect this control strongly suggest that its removal provides a life cycle advantage to HCMV. Our discoveries that one of the proteins that HCMV uses to control NID1, pp71, binds directly to the cellular DNA and can exert control when present in vanishingly small quantities may have broad implications in a wide range of infection scenarios. Dysregulation of NID1 in an immunocompetent host is not known to manifest complications during infection; however, in the naive immune system of a developing fetus, disruption of this developmentally critical protein could initiate catastrophic HCMV-induced birth defects.


Asunto(s)
Citomegalovirus , Proteínas Inmediatas-Precoces , Humanos , Citomegalovirus/fisiología , Proteínas Virales/metabolismo , Factor de Unión a CCCTC/genética , Regulación Viral de la Expresión Génica , Proteínas Inmediatas-Precoces/genética , Proteínas Inmediatas-Precoces/metabolismo , Membrana Basal/metabolismo
10.
J Virol ; 96(24): e0115822, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36453884

RESUMEN

Pseudorabies virus (PRV) is a member of the alphaherpesvirus subfamily and the causative agent of Aujeszky's disease in pigs. Driven by the large economic losses associated with PRV infection, several vaccines and vaccine programs have been developed. To this day, the attenuated Bartha strain, generated by serial passaging, represents the golden standard for PRV vaccination. However, a proteomic comparison of the Bartha virion to wild-type (WT) PRV virions is lacking. Here, we present a comprehensive mass spectrometry-based proteome comparison of the attenuated Bartha strain and three commonly used WT PRV strains: Becker, Kaplan, and NIA3. We report the detection of 40 structural and 14 presumed nonstructural proteins through a combination of data-dependent and data-independent acquisition. Interstrain comparisons revealed that packaging of the capsid and most envelope proteins is largely comparable in-between all four strains, except for the envelope protein pUL56, which is less abundant in Bartha virions. However, distinct differences were noted for several tegument proteins. Most strikingly, we noted a severely reduced incorporation of the tegument proteins IE180, VP11/12, pUS3, VP22, pUL41, pUS1, and pUL40 in Bartha virions. Moreover, and likely as a consequence, we also observed that Bartha virions are on average smaller and more icosahedral compared to WT virions. Finally, we detected at least 28 host proteins that were previously described in PRV virions and noticed considerable strain-specific differences with regard to host proteins, arguing that the potential role of packaged host proteins in PRV replication and spread should be further explored. IMPORTANCE The pseudorabies virus (PRV) vaccine strain Bartha-an attenuated strain created by serial passaging-represents an exceptional success story in alphaherpesvirus vaccination. Here, we used mass spectrometry to analyze the Bartha virion composition in comparison to three established WT PRV strains. Many viral tegument proteins that are considered nonessential for viral morphogenesis were drastically less abundant in Bartha virions compared to WT virions. Interestingly, many of the proteins that are less incorporated in Bartha participate in immune evasion strategies of alphaherpesviruses. In addition, we observed a reduced size and more icosahedral morphology of the Bartha virions compared to WT PRV. Given that the Bartha vaccine strain elicits potent immune responses, our findings here suggest that differences in protein packaging may contribute to its immunogenicity. Further exploration of these observations could aid the development of efficacious vaccines against other alphaherpesvirus vaccines such as HSV-1/2 or EHV-1.


Asunto(s)
Herpesvirus Suido 1 , Seudorrabia , Enfermedades de los Porcinos , Vacunas Virales , Animales , Cápside/metabolismo , Herpesvirus Suido 1/metabolismo , Proteómica , Seudorrabia/prevención & control , Porcinos , Enfermedades de los Porcinos/prevención & control , Enfermedades de los Porcinos/virología , Proteínas Virales/inmunología , Vacunas Atenuadas/inmunología , Vacunas Virales/inmunología
11.
Proc Natl Acad Sci U S A ; 117(29): 17240-17248, 2020 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-32632017

RESUMEN

Probabilistic bet hedging, a strategy to maximize fitness in unpredictable environments by matching phenotypic variability to environmental variability, is theorized to account for the evolution of various fate-specification decisions, including viral latency. However, the molecular mechanisms underlying bet hedging remain unclear. Here, we report that large variability in protein abundance within individual herpesvirus virion particles enables probabilistic bet hedging between viral replication and latency. Superresolution imaging of individual virions of the human herpesvirus cytomegalovirus (CMV) showed that virion-to-virion levels of pp71 tegument protein-the major viral transactivator protein-exhibit extreme variability. This super-Poissonian tegument variability promoted alternate replicative strategies: high virion pp71 levels enhance viral replicative fitness but, strikingly, impede silencing, whereas low virion pp71 levels reduce fitness but promote silencing. Overall, the results indicate that stochastic tegument packaging provides a mechanism enabling probabilistic bet hedging between viral replication and latency.


Asunto(s)
Citomegalovirus/genética , Citomegalovirus/fisiología , Proteínas Virales/metabolismo , Latencia del Virus/genética , Latencia del Virus/fisiología , Evolución Biológica , Infecciones por Citomegalovirus , Regulación Viral de la Expresión Génica , Humanos , Monocitos , Virión/metabolismo , Replicación Viral
12.
Parasitol Res ; 122(10): 2287-2299, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37507540

RESUMEN

Tapeworm infections cause insidious and irreversible effects in the infected individuals and some of them have already shown resistance to available drugs. A search for alternative treatment is urgently required. Phenolic compounds are amongst the most researched natural substances for their medicinal use. The present study aims to determine anthelmintic efficacy of two polyphenols Gallic acid and Catechin against the zoonotic rat tapeworm Hymenolepis diminuta. Both compounds are potent anti-oxidants and play major roles in combating pathogens, while their anthelmintic property according to our knowledge is yet to be explored. The parasite model H. diminuta was procured from intestine of infected rats raised in our laboratory. Two sets of parasites were treated in vitro with 5, 10, 20 and 40 mg/ml concentrations of each Gallic Acid and Catechin separately, another set of parasites were treated with standard dose of Praziquantel in RPMI 1640, while still another set of worms were kept in RPMI 1640 at 37 ± 10C with 1% Dimethyl sulfoxide as control. Motility and structural alterations were the parameters assessed for anthelmintic efficacy of the compounds. After paralysis the worms were processed for morphological, histological, and ultrastructural study and observed under light and electron microscope. Dose-dependent efficacy was observed in both compounds. Shrinkage of suckers, deformed proglottids and architectural alteration of the tegument were observed throughout the body of treated parasites compared to control. Although in terms of time taken for paralysis and mortality Gallic acid was more effective than Catechin, the degree of morphological aberrations caused were almost similar, except histological alteration was more in Catechin treated worms than in Gallic acid. Nevertheless, both Gallic acid and Catechin are suggested to possess anthelmintic efficacy besides other health benefits but extended studies are required to compare their efficacy.


Asunto(s)
Antihelmínticos , Catequina , Himenolepiasis , Hymenolepis diminuta , Hymenolepis , Parásitos , Ratas , Animales , Catequina/farmacología , Catequina/uso terapéutico , Ácido Gálico/farmacología , Antihelmínticos/farmacología , Antihelmínticos/uso terapéutico , Himenolepiasis/parasitología
13.
J Virol ; 95(6)2021 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-33328309

RESUMEN

Autophagy is a catabolic process contributing to intrinsic cellular defense by degrading viral particles or proteins; however, several viruses hijack this pathway for their own benefit. The role of autophagy during human cytomegalovirus (HCMV) replication has not been definitely clarified yet. Utilizing small interfering RNA (siRNA)-based screening, we observed that depletion of many autophagy-related proteins resulted in reduced virus release, suggesting a requirement of autophagy-related factors for efficient HCMV replication. Additionally, we could show that the autophagy-initiating serine/threonine protein kinase ULK1 as well as other constituents of the ULK1 complex were upregulated at early times of infection and stayed upregulated throughout the replication cycle. We demonstrate that indirect interference with ULK1 through inhibition of the upstream regulator AMP-activated protein kinase (AMPK) impaired virus release. Furthermore, this result was verified by direct abrogation of ULK1 kinase activity utilizing the ULK1-specific kinase inhibitors SBI-0206965 and ULK-101. Analysis of viral protein expression in the presence of ULK-101 revealed a connection between the cellular kinase ULK1 and the viral tegument protein pp28 (pUL99), and we identified pp28 as a novel viral substrate of ULK1 by in vitro kinase assays. In the absence of ULK1 kinase activity, large pp28- and pp65-positive structures could be detected in the cytoplasm at late time points of infection. Transmission electron microscopy demonstrated that these structures represent large perinuclear protein accumulations presumably representing aggresomes. Our results indicate that HCMV manipulates ULK1 and further components of the autophagic machinery to ensure the efficient release of viral particles.IMPORTANCE The catabolic program of autophagy represents a powerful immune defense against viruses that is, however, counteracted by antagonizing viral factors. Understanding the exact interplay between autophagy and HCMV infection is of major importance since autophagy-related proteins emerged as promising targets for pharmacologic intervention. Our study provides evidence for a proviral role of several autophagy-related proteins suggesting that HCMV has developed strategies to usurp components of the autophagic machinery for its own benefit. In particular, we observed strong upregulation of the autophagy-initiating protein kinase ULK1 and further components of the ULK1 complex during HCMV replication. In addition, both siRNA-mediated depletion of ULK1 and interference with ULK1 protein kinase activity by two chemically different inhibitors resulted in impaired viral particle release. Thus, we propose that ULK1 kinase activity is required for efficient HCMV replication and thus represents a promising novel target for future antiviral drug development.


Asunto(s)
Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Citomegalovirus/fisiología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Fosfoproteínas/metabolismo , Proteínas Virales/metabolismo , Liberación del Virus , Proteínas Quinasas Activadas por AMP/antagonistas & inhibidores , Autofagia/genética , Homólogo de la Proteína 1 Relacionada con la Autofagia/antagonistas & inhibidores , Homólogo de la Proteína 1 Relacionada con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Cápside/metabolismo , Células Cultivadas , Citoplasma/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , Péptidos y Proteínas de Señalización Intracelular/genética , Fosforilación , Regulación hacia Arriba , Proteínas de la Matriz Viral/metabolismo , Replicación Viral
14.
J Virol ; 95(23): e0126921, 2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34549982

RESUMEN

Viral infection induces host cells to mount a variety of immune responses, which may either limit viral propagation or create conditions conducive to virus replication in some instances. In this regard, activation of the NF-κB transcription factor is known to modulate virus replication. Human herpesvirus 6A (HHV-6A), which belongs to the Betaherpesvirinae subfamily, is frequently found in patients with neuroinflammatory diseases, although its role in disease pathogenesis has not been elucidated. In this study, we found that the HHV-6A-encoded U14 protein activates NF-κB signaling following interaction with the NF-κB complex protein, p65. Through induction of nuclear translocation of p65, U14 increases the expression of interleukin-6 (IL-6), IL-8, and monocyte chemoattractant protein 1 transcripts. We also demonstrated that activation of NF-κB signaling is important for HHV-6A replication, since inhibition of this pathway reduced virus protein accumulation and viral genome copy number. Taken together, our results suggest that HHV-6A infection activates the NF-κB pathway and promotes viral gene expression via late gene products, including U14. IMPORTANCE Human herpesvirus 6A (HHV-6A) is frequently found in patients with neuro-inflammation, although its role in the pathogenesis of this disease has not been elucidated. Most viral infections activate the NF-κB pathway, which causes the transactivation of various genes, including those encoding proinflammatory cytokines. Our results indicate that HHV-6A U14 activates the NF-κB pathway, leading to upregulation of proinflammatory cytokines. We also found that activation of the NF-κB transcription factor is important for efficient viral replication. This study provides new insight into HHV-6A U14 function in host cell signaling and identifies potential cellular targets involved in HHV-6A pathogenesis and replication.


Asunto(s)
Herpesvirus Humano 6/genética , Herpesvirus Humano 6/metabolismo , FN-kappa B/metabolismo , Infecciones por Roseolovirus/inmunología , Transducción de Señal/inmunología , Proteínas Virales/inmunología , Línea Celular , Regulación de la Expresión Génica , Genes Virales , Genoma Viral , Humanos , FN-kappa B/genética , Enfermedades Neuroinflamatorias , Receptor EphB2 , Proteínas Virales/genética , Replicación Viral
15.
Expert Rev Proteomics ; 19(4-6): 247-261, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36331139

RESUMEN

INTRODUCTION: Schistosomes are long-lived blood dwelling helminth parasites using intricate mechanisms to invade, mature, and reproduce inside their vertebrate hosts, whilst simultaneously deploying immune evasion strategies. Their multi-tissue organization and solid body plan presents particular problems for the definition of sub-proteomes. AREAS COVERED: Here, we focus on the two host-parasite interfaces of the adult worm accessible to the immune system, namely the tegument and the alimentary tract, but also on the secretions of the infective cercaria, the migrating schistosomulum and the mature egg. In parallel, we introduce the concepts of "leakyome' and 'disintegrome' to emphasize the importance of interpreting data in the context of schistosome biology so that misleading conclusions about the distinct proteome compositions are avoided. Lastly, we highlight the possible clinical implications of the reviewed proteomic findings for pathogenesis, vaccine design and diagnostics. EXPERT OPINION: Proteomics has provided considerable insights into the biology of schistosomes, most importantly for rational selection of novel vaccine candidates that might confer protective immunity, but also into the pathogenesis of schistosomiasis. However, given the increasing sensitivity of mass spectrometric instrumentation, we stress the need for care in data interpretation since schistosomes do not deviate from the fundamental rules of eukaryotic cell biology.


Asunto(s)
Esquistosomiasis , Vacunas , Animales , Proteómica/métodos , Proteínas del Helminto , Schistosoma , Esquistosomiasis/parasitología , Esquistosomiasis/prevención & control , Proteoma/genética
16.
Exp Parasitol ; 239: 108263, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35598646

RESUMEN

Schistosomiasis is a devastating disease caused by parasitic flatworms of the genus Schistosoma. Praziquantel (PZQ), the current treatment of choice, is ineffective against immature worms and cannot prevent reinfection. The continued reliance on a single drug for treatment increases the risk of the development of PZQ-resistant parasites. Reports of PZQ insusceptibility lends urgency to the need for new therapeutics. Here, we report that Myxoma virus (MYXV), an oncolytic pox virus which is non-pathogenic in all mammals except leporids, infects and replicates in S. mansoni schistosomula, juveniles, and adult male and female worms. MYXV infection results in the shredding of the tegument and reduced egg production in vitro, identifying MYXV as the first viral pathogen of schistosomes. MYXV is currently in preclinical studies to manage multiple human cancers, supporting its use in human therapeutics. Our findings raise the exciting possibility that MYXV virus represents a novel and safe class of potential anthelmintic therapeutics.


Asunto(s)
Antihelmínticos , Myxoma virus , Virus Oncolíticos , Esquistosomiasis mansoni , Animales , Antihelmínticos/farmacología , Femenino , Humanos , Masculino , Mamíferos , Praziquantel/farmacología , Schistosoma mansoni , Esquistosomiasis mansoni/tratamiento farmacológico
17.
Exp Parasitol ; 238: 108282, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35636496

RESUMEN

Larval stages of taeniid Echinococcus granulosus are the infective forms of cystic echinococcosis or hydatidosis, a worldwide zoonosis. The protoscolex that develops into the adult form in the definitive host is enveloped by a complex cellular syncytial tegument, where all metabolic interchange takes place. Little information is available as to the electrical activity of the parasite in this developmental stage. To gain insight into the electrical activity of the parasite at the larval stage, we conducted microelectrode impalements of bovine lung protoscoleces (PSCs) of Echinococcus granulosus in standard saline solution. We observed two distinct intra-parasitic potentials, a transient peak potential, and a stable second potential, most likely representing tegumental and intra-parasitic extracellular space electrical potential differences. These values changed on the developmental status of the parasite, its anatomical regions, or time course after harvesting. Changes in electrical potential differences of the parasite provide an accessible and valuable parameter for the study of transport mechanisms and potential targets for developing novel antiparasitic therapeutics.


Asunto(s)
Equinococosis , Echinococcus granulosus , Animales , Bovinos , Equinococosis/parasitología , Equinococosis/veterinaria , Larva
18.
Traffic ; 20(2): 152-167, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30548142

RESUMEN

Morphogenesis of herpesviral virions is initiated in the nucleus but completed in the cytoplasm. Mature virions contain more than 25 tegument proteins many of which perform both nuclear and cytoplasmic functions suggesting they shuttle between these compartments. While nuclear import of herpesviral proteins was shown to be crucial for viral propagation, active nuclear export and its functional impact are still poorly understood. To systematically analyze nuclear export of tegument proteins present in virions of Herpes simplex virus type 1 (HSV1) and Epstein-Barr virus (EBV), the Nuclear EXport Trapped by RAPamycin (NEX-TRAP) was applied. Nine of the 22 investigated HSV1 tegument proteins including pUL4, pUL7, pUL11, pUL13, pUL21, pUL37d11, pUL47, pUL48 and pUS2 as well as 2 out of 6 EBV orthologs harbor nuclear export activity. A functional leucine-rich nuclear export sequence (NES) recognized by the export factor CRM1/Xpo1 was identified in six of them. The comparison between experimental and bioinformatic data indicates that experimental validation of predicted NESs is required. Mutational analysis of the pUL48/VP16 NES revealed its importance for herpesviral propagation. Together our data suggest that nuclear export is an important feature of the herpesviral life cycle required to co-ordinate nuclear and cytoplasmic processes.


Asunto(s)
Herpesvirus Humano 1/metabolismo , Herpesvirus Humano 4/metabolismo , Señales de Exportación Nuclear , Proteínas de la Matriz Viral/química , Animales , Chlorocebus aethiops , Células HeLa , Herpesvirus Humano 1/fisiología , Herpesvirus Humano 4/fisiología , Humanos , Células Vero , Proteínas de la Matriz Viral/metabolismo , Replicación Viral
19.
J Virol ; 94(23)2020 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-32938770

RESUMEN

The herpes simplex virus (HSV) heterodimer gE/gI and another membrane protein, US9, which has neuron-specific effects, promote the anterograde transport of virus particles in neuronal axons. Deletion of both HSV gE and US9 blocks the assembly of enveloped particles in the neuronal cytoplasm, which explains why HSV virions do not enter axons. Cytoplasmic envelopment depends upon interactions between viral membrane proteins and tegument proteins that encrust capsids. We report that tegument protein UL16 is unstable, i.e., rapidly degraded, in neurons infected with a gE-/US9- double mutant. Immunoprecipitation experiments with lysates of HSV-infected neurons showed that UL16 and three other tegument proteins, namely, VP22, UL11, and UL21, bound either to gE or gI. All four of these tegument proteins were also pulled down with US9. In neurons transfected with tegument proteins and gE/gI or US9, there was good evidence that VP22 and UL16 bound directly to US9 and gE/gI. However, there were lower quantities of these tegument proteins that coprecipitated with gE/gI and US9 from transfected cells than those of infected cells. This apparently relates to a matrix of several different tegument proteins formed in infected cells that bind to gE/gI and US9. In cells transfected with individual tegument proteins, this matrix is less prevalent. Similarly, coprecipitation of gE/gI and US9 was observed in HSV-infected cells but not in transfected cells, which argued against direct US9-gE/gI interactions. These studies suggest that gE/gI and US9 binding to these tegument proteins has neuron-specific effects on virus HSV assembly, a process required for axonal transport of enveloped particles.IMPORTANCE Herpes simplex viruses 1 and 2 and varicella-zoster virus cause significant morbidity and mortality. One basic property of these viruses is the capacity to establish latency in the sensory neurons and to reactivate from latency and then cause disease in peripheral tissues, such as skin and mucosal epithelia. The transport of nascent HSV particles from neuron cell bodies into axons and along axons to axon tips in the periphery is an important component of this reactivation and reinfection. Two HSV membrane proteins, gE/gI and US9, play an essential role in these processes. Our studies help elucidate how HSV gE/gI and US9 promote the assembly of virus particles and sorting of these virions into neuronal axons.


Asunto(s)
Axones/virología , Herpes Simple/virología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Lipoproteínas/metabolismo , Simplexvirus/metabolismo , Proteínas Virales/metabolismo , Transporte Axonal/fisiología , Cápside/metabolismo , Línea Celular , Citoplasma/virología , Herpesvirus Humano 1/fisiología , Herpesvirus Humano 2 , Transporte de Proteínas , Proteínas Reguladoras y Accesorias Virales/metabolismo , Proteínas Estructurales Virales/metabolismo , Virión/metabolismo , Ensamble de Virus
20.
J Virol ; 94(11)2020 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-32213613

RESUMEN

Interferon alpha (IFN-α) and IFN-ß are type I IFNs that are induced by virus infection and are important in the host's innate antiviral response. EBV infection activates multiple cell signaling pathways, resulting in the production of type I IFN which inhibits EBV infection and virus-induced B-cell transformation. We reported previously that EBV tegument protein BGLF2 activates p38 and enhances EBV reactivation. To further understand the role of BGLF2 in EBV infection, we used mass spectrometry to identify cellular proteins that interact with BGLF2. We found that BGLF2 binds to Tyk2 and confirmed this interaction by coimmunoprecipitation. BGLF2 blocked type I IFN-induced Tyk2, STAT1, and STAT3 phosphorylation and the expression of IFN-stimulated genes (ISGs) IRF1, IRF7, and MxA. In contrast, BGLF2 did not inhibit STAT1 phosphorylation induced by IFN-γ. Deletion of the carboxyl-terminal 66 amino acids of BGLF2 reduced the ability of the protein to repress type I IFN signaling. Treatment of gastric carcinoma and Raji cells with IFN-α blocked BZLF1 expression and EBV reactivation; however, expression of BGLF2 reduced the ability of IFN-α to inhibit BZLF1 expression and enhanced EBV reactivation. In summary, EBV BGLF2 interacts with Tyk2, inhibiting Tyk2, STAT1, and STAT3 phosphorylation and impairs type I IFN signaling; BGLF2 also counteracts the ability of IFN-α to suppress EBV reactivation.IMPORTANCE Type I interferons are important for controlling virus infection. We have found that the Epstein-Barr virus (EBV) BGLF2 tegument protein binds to a protein in the type I interferon signaling pathway Tyk2 and inhibits the expression of genes induced by type I interferons. Treatment of EBV-infected cells with type I interferon inhibits reactivation of the virus, while expression of EBV BGLF2 reduces the ability of type I interferon to inhibit virus reactivation. Thus, a tegument protein delivered to cells during virus infection inhibits the host's antiviral response and promotes virus reactivation of latently infected cells. Therefore, EBV BGLF2 might protect virus-infected cells from the type I interferon response in cells undergoing lytic virus replication.


Asunto(s)
Infecciones por Virus de Epstein-Barr/inmunología , Herpesvirus Humano 4/fisiología , Interferón Tipo I/inmunología , Transducción de Señal/inmunología , Proteínas Virales de Fusión/inmunología , Activación Viral/inmunología , Infecciones por Virus de Epstein-Barr/genética , Infecciones por Virus de Epstein-Barr/patología , Células HEK293 , Humanos , Factor 1 Regulador del Interferón/genética , Factor 1 Regulador del Interferón/inmunología , Factor 7 Regulador del Interferón/genética , Factor 7 Regulador del Interferón/inmunología , Interferón Tipo I/genética , Interferón gamma/genética , Interferón gamma/inmunología , Factor de Transcripción STAT1/genética , Factor de Transcripción STAT1/inmunología , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/inmunología , Transducción de Señal/genética , TYK2 Quinasa/genética , TYK2 Quinasa/inmunología , Proteínas Virales de Fusión/genética , Activación Viral/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA