Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Ecotoxicol Environ Saf ; 207: 111280, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-32937227

RESUMEN

As a top-selling neonicotinoid insecticide widely used in the field, thiamethoxam is an environmental pollutant because of the accumulation in ecosystem and has also been reported that it has potential risks to the health of mammals even humans. In order to understand the binding mechanism of thiamethoxam with biological receptors, spectroscopic techniques and theoretical simulations was used to explore the specific interactions between thiamethoxam and proteins. Interestingly, the results indicated that hydrophobic interaction as the main driving force, thiamethoxam formed a single binding site complex with proteins spontaneously, resulting in a decrease in the esterase-like activity of human serum albumin. The results of computer simulation showed that there were hydrophobic, electrostatic and hydrogen bonding interactions between thiamethoxam and receptors. The results of experiment and computer simulation were mutually confirmed, so a model was established for the interaction between the two which uncovered the structural characteristics of the binding site. This research provided new insights for the structure optimization of thiamethoxam, as well as gave an effective reference for evaluating the risk of thiamethoxam systemically in the future.


Asunto(s)
Insecticidas/química , Modelos Químicos , Albúmina Sérica Bovina/química , Albúmina Sérica Humana/química , Tiametoxam/química , Animales , Sitios de Unión , Unión Competitiva , Simulación por Computador , Ecosistema , Esterasas/química , Esterasas/metabolismo , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Ligandos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Unión Proteica , Albúmina Sérica Bovina/metabolismo , Albúmina Sérica Humana/metabolismo , Espectrometría de Fluorescencia , Warfarina/química
2.
Macromol Rapid Commun ; 41(19): e2000349, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32830421

RESUMEN

Chiral nanoarchitectures usually possess unique and intriguing properties. However, the construction of 2D chiral nanopatterns through polymer self-assembly is a challenge. Reported herein is the formation of chiral stripe nanopatterns through surface self-assembly of polypeptide-based rod-coil block copolymers on microstripes. The nanostripes align oblique to the boundary of the microstripes, resulting in the chirality of the nanopatterns. The chirality of the nanopatterns is closely related to the width of the microstripes, i.e., a narrower width results in higher chirality. Besides, the chiral sense of the nanopatterns can be regulated by the chirality of the polypeptide blocks. This work demonstrates the transmission of chirality from polymer to nanoarchitecture on a confined surface, which can guide the preparation of nanopatterns with tuned chiral features.


Asunto(s)
Micelas , Polímeros , Péptidos
3.
Sensors (Basel) ; 20(4)2020 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-32059394

RESUMEN

Chiroptical responses have been an essential tool over the last decades for chemical structural elucidation due to their exceptional sensitivity to geometry and intermolecular interactions. In recent times, there has been an increasing interest in the search for more efficient sensing by the rational design of tailored chiroptical systems. In this review article, advances made in chiroptical systems towards their implementation in sensing applications are summarized. Strategies to generate chiroptical responses are illustrated. Theoretical approaches to assist in the design of these systems are discussed. The development of efficient chiroptical reporters in different states of matter, essential for the implementation in sensing devises, is reviewed. In the last part, remarkable examples of chiroptical sensing applications are highlighted.

4.
J Comput Chem ; 39(29): 2432-2438, 2018 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-30351490

RESUMEN

Recycle of thorium is an essential process in the thorium-uranium closed fuel cycle of molten salt reactor (MSR). Pyrochemical treatment of spent nuclear fuel using chloride molten salts as medium has been considered as a promising method. In this article, we performed molecular dynamics simulations on the ThCl4 LiCl molten salts using a polarizable force field parameterized by us from first-principles calculations. The microscopic structures and macroscopic properties at different compositions were investigated using the developed force field to understand the structure/property relationship in the mixture. The differences between ThCl4 LiCl and ThF4 LiF MSs are compared to understand the behaviors of Th4+ in the fluoride-chloride mixed media. In the molten fluorides, the coordination number of Th4+ is larger, and the resulting more shared anions lead to lower ThF dissociation barrier and shorter lifetime of the Th4+ first solvation shell. Our results also indicate the Pauling's structural rules for crystals can be used to rationalize the local structures in molten salts. © 2018 Wiley Periodicals, Inc.

5.
J Comput Chem ; 39(15): 889-900, 2018 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-29330902

RESUMEN

The conformational structures and properties of the anticancer drug docetaxel (DTX) are studied theoretically. A total of 3888 trial structures were initially generated by all combinations of internal single-bond rotamers and screened with the B3LYP/3-21G* method. A total of 31 unique conformers were further optimized at the B3LYP/6-311G* method. Their relative energies, dipole moments, rotational constants, and harmonic vibrational frequencies were predicted. Single-point relative energies were then determined at the M06-L/6-311G(2df,p) level. The UV spectrum of the lowest-lying DTX conformer in methanol was investigated with the TD-CAM-B3LYP/6-311 + G(2df,p) method. The 31 unique DTX structures are mainly docked at three different sites within ß-tubulin. Based on the results of molecular docking and double-float MD simulations, the lowest-lying DTX conformer consistently exhibits good docking performance with ß-tubulin. We identified the residues LYS299, ARG215, GLN294, LEU275, THR216, GLU290, PRO274, and THR276 on ß-tubulin as active sites forming a binding pocket responsible for locking DTX within ß-tubulin to make the combination more stable. The RMSD values show that the predicted complexes are favorable, and the SASA analysis shows that the hydrophilic properties of DTX are better than paclitaxel. © 2018 Wiley Periodicals, Inc.


Asunto(s)
Antineoplásicos/química , Teoría Funcional de la Densidad , Docetaxel/química , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Conformación Molecular
6.
Chemosphere ; 352: 141456, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38367878

RESUMEN

Hydrogen peroxide (H2O2) stands as one of the foremost utilized oxidizing agents in modern times. The established method for its production involves the intricate and costly anthraquinone process. However, a promising alternative pathway is the electrochemical hydrogen peroxide production, accomplished through the oxygen reduction reaction via a 2-electron pathway. This method not only simplifies the production process but also upholds environmental sustainability, especially when compared to the conventional anthraquinone method. In this review paper, recent works from the literature focusing on the 2-electron oxygen reduction reaction promoted by carbon electrocatalysts are summarized. The practical applications of these materials in the treatment of effluents contaminated with different pollutants (drugs, dyes, pesticides, and herbicides) are presented. Water treatment aiming to address these issues can be achieved through advanced oxidation electrochemical processes such as electro-Fenton, solar-electro-Fenton, and photo-electro-Fenton. These processes are discussed in detail in this work and the possible radicals that degrade the pollutants in each case are highlighted. The review broadens its scope to encompass contemporary computational simulations focused on the 2-electron oxygen reduction reaction, employing different models to describe carbon-based electrocatalysts. Finally, perspectives and future challenges in the area of carbon-based electrocatalysts for H2O2 electrogeneration are discussed. This review paper presents a forward-oriented viewpoint of present innovations and pragmatic implementations, delineating forthcoming challenges and prospects of this ever-evolving field.


Asunto(s)
Contaminantes Ambientales , Contaminantes Químicos del Agua , Carbono , Peróxido de Hidrógeno , Electrodos , Oxidación-Reducción , Oxígeno , Antraquinonas
7.
ACS Nano ; 17(1): 127-136, 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36534396

RESUMEN

Understanding the growth mechanisms of multielement two-dimensional (2D) crystals is challenging because of the unbalanced stoichiometry and possible reconstruction of their edges. Here, we present a systematic theoretical study on the chemical vapor deposition (CVD) growth mechanism of MoS2. We found that the growth kinetics of MoS2 highly depends on its edge reconstruction determined by concentrations of Mo and S in the growth environment. Based on the calculated energies of nucleation and propagation of various MoS2 edges, we predicted the transition of a MoS2 island growth from a regime of a triangle enclosed by Mo-terminated zigzag edges that are passivated by 50% S (Mo-II edges), to a regime of continuous evolution within a triangle, hexagon, and inverted triangle with 75%-S-terminated edges (S-III edges) and Mo-II edges, and finally to a regime of triangles with Mo-terminated zigzag edges that are passivated by 100% S (Mo-III edges) by tuning the growth condition from Mo-rich to S-rich, which provides a reasonable explanation to many experimental observations. This study provides a general guideline on theoretical studies of 2D crystals' growth mechanisms, deepens our understanding on the growth mechanism of multielement 2D crystals, and is beneficial for the controllable synthesis of various 2D crystals.

8.
J Colloid Interface Sci ; 642: 736-746, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37037079

RESUMEN

Carbon morphology significantly affects the capacitive performance of porous carbons. Biomass-derived porous carbons are usually restricted by inferior capacitive performance owing to their inherently three-dimensional (3D) blocked morphologies. Fabricating two-dimensional (2D) sheet-like morphology is expected to expose more inner space for better electrochemical performance, however, it needs to overcome the self-aggregation of biomass. The comprehensive understanding of how 2D morphology boosts capacitive performance remains challenging. Herein, we provide a morphology-regulating strategy to prepare 2D and 3D porous carbons and investigate the morphology effect on charge storage capability via both experimental data and theoretical simulations. 2D carbon exhibits better capacitance than 3D carbon in both electric double-layer capacitors (254 versus 211F g-1) and zinc-ion hybrid supercapacitors (320 versus 232F g-1), because the 2D carbon morphology not only improves the pore accessibility for higher double-layer capacitance, but also facilitates the exposure of active functional groups for more pseudocapacitance. Moreover, 2D morphology shortens pore length, leading to better anti-self-discharge capability. This study is beneficial to understanding the relationship between carbon morphology and capacitive performance and provides a facile strategy to upgrade biomass-derived porous carbons via morphology engineering.

9.
Adv Sci (Weinh) ; 10(22): e2301020, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37191279

RESUMEN

Traditional trial-and-error experiments and theoretical simulations have difficulty optimizing catalytic processes and developing new, better-performing catalysts. Machine learning (ML) provides a promising approach for accelerating catalysis research due to its powerful learning and predictive abilities. The selection of appropriate input features (descriptors) plays a decisive role in improving the predictive accuracy of ML models and uncovering the key factors that influence catalytic activity and selectivity. This review introduces tactics for the utilization and extraction of catalytic descriptors in ML-assisted experimental and theoretical research. In addition to the effectiveness and advantages of various descriptors, their limitations are also discussed. Highlighted are both 1) newly developed spectral descriptors for catalytic performance prediction and 2) a novel research paradigm combining computational and experimental ML models through suitable intermediate descriptors. Current challenges and future perspectives on the application of descriptors and ML techniques to catalysis are also presented.

10.
J Colloid Interface Sci ; 652(Pt B): 2180-2185, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37709610

RESUMEN

We report that isolated Cu atoms anchored on MnO2 nanowires (Cu1/MnO2) can be an effective catalyst towards the electrocatalytic NO2--to-NH3 reduction (NO2RR). A combination of experiments and theoretical calculations reveals that isolated Cu sites can effectively activate NO2-, lower the energy barrier of *NO→*NOH rate-determining step and suppress the competitive hydrogen evolution, thus facilitating both activity and selectivity towards the NO2RR. As a result, Cu1/MnO2 shows the maximum NH3-Faradaic efficiency of 93.3% with a corresponding NH3 yield rate of 439.8 µmol h-1 cm-2 at -0.7 V vs. RHE, together with an excellent electrocatalytic durability.

11.
J Colloid Interface Sci ; 649: 724-730, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37385037

RESUMEN

Electrochemical NO3--to-NH3 reduction (NO3RR) emerges as an appealing strategy to alleviate contaminated NO3- and generate valuable NH3 simultaneously. However, substantial research efforts are still needed to advance the development of efficient NO3RR catalysts. Herein, atomically Mo-doped SnO2-x with enriched O-vacancies (Mo-SnO2-x) is reported as a high-efficiency NO3RR catalyst, delivering the highest NH3-Faradaic efficiency of 95.5% with a corresponding NH3 yield rate of 5.3 mg h-1 cm-2 at -0.7 V (RHE). Experimental and theoretical investigations reveal that d-p coupled Mo-Sn pairs constructed on Mo-SnO2-x can synergistically enhance the electron transfer efficiency, activate the NO3- and reduce the protonation barrier of rate-determining step (*NO→*NOH), thereby drastically boosting the NO3RR kinetics and energetics.

12.
Chem Asian J ; 17(9): e202200075, 2022 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-35266290

RESUMEN

The introduction of a self-adaptive molecular switch is an appealing strategy to achieve complete charge separation (CS) in donor-acceptor (D-A) systems. Here, we designed donor-switch-acceptor (D-S-A) systems using a platinum(II) terpyridyl complex as the acceptor, dimethyldihydropyrene/cyclophanediene (DHP/CPD) as the bridge, and methoxybenzene, thieno[3,2-b]thiophene, 2,2'-bifuran, and 4,8-dimethoxybenzo[1,2-b:4,5-b']difuran as donors, respectively. We then systematically studied the whole opto-electronic conversion process of the donor-DHP/CPD-acceptor (D-DHP/CPD-A) systems based on time-dependent density functional theory, time-dependent ultrafast electron evolution, and electron transport property calculations. We first found that the substitution of -CH3 by -H and -CN groups in DHP/CPD can enlarge the range of the adsorption wavenumber in opto-electric conversion. Then the light absorption induces the cationization of DHP switch, largely accelerating the forth-isomerization to CPD form. Once the D-CPD-A molecule is formed, the poor conjugation can realize the complete CS state by inhibiting the radiative and nonradiative charge recombinations. Finally, the repeatable and complete CS can be achieved through the automatic back-isomerization of CPD to DHP. The present work provides valuable insights into design of D-S-A systems for practical utilization of molecule-based solar harvesting.

13.
Chem Asian J ; 17(16): e202200463, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35723224

RESUMEN

Molecular photoswitch can effectively regulate charge separation (CS) and charge recombination (CR) in donor-acceptor (D-A) systems. However, deformation of the donor-switch-acceptor (D-S-A) systems caused by the switch isomerization will destroy the geometrical stability of the battery. Here we take the planar platinum(II) terpyridyl complex of [Pt(t Bu3 tpy)(-C≡C-Ph)n ]+ as the typical D-A model, designed six D-S-A systems using different photoswitches (dimethyldihydropyrene, fulgimide, arylazopyrazole, N-salicylideneaniline, spiropyran, and dithienylethene, denoted as D-S-A 1-6 hereafter). Our investigations show that the D-S-A 1-6 can absorb visible light of 799 nm, 673 nm, 527 nm, 568 nm, 616 nm, and 629 nm, facilitating electrons transfer from the donor and the switch to the acceptor through the Switch-on channel. Then cationic character of the photoswitch can undergo much more rapid isomerization than the neutral form due to the lower energy barrier. The Switch-off isomer breaks the conjugation of the D-S-A system, effectively turning off the CT channel and forming the CS state. Based on the evaluated conjugated backbone twist (CBT) angle, we found that D-S-A 1, 2, 4, 6 exhibit little configurational change and can be good candidates as the organic solar cell. The proposed D-S-A design controlled by the molecular switch may help to develop a solution for solar-harvesting practical applications.

14.
Small Methods ; 6(4): e2200163, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35266646

RESUMEN

In recent years, CsPbX3 (X = Cl, Br, I) perovskite quantum dots (QDs) have been considered as the most promising materials for light-emitting diodes (LEDs). However, the advances of CsPbX3 quantum dot-based light emitting diodes (QLEDs) still lagged behind inorganic III-V LEDs and other organic LEDs. Herein, a strategy to improve the performances of perovskite QLEDs is reported by utilizing the localized surface plasmon resonance (LSPR) effects of Au nanospheres (NSs). It is accomplished by introducing a Au NS layer into the electron transport layer of Ca2+ -CsPbBr3 QLEDs, where the diameter and spacing of Au NSs and the interaction distance between the Ca2+ -CsPbBr3 QD and Au NS layers are modulated, according to the theoretical simulation of Finite-difference time-domain. As a result, the photoluminescence quantum yield of Ca2+ -CsPbBr3 QD layer is improved from 31.5% to 73.3%. Finally, the luminance of Ca2+ -CsPbBr3 QLEDs is improved from 16824 to 63931 cd m-2 and external quantum efficiency (EQE) is improved from 4.2% to 10.5%. The radiative transition rate can be remarkably modulated from 0.7 × 107 to 6.6 × 107 s-1 . The enhancement in luminance and EQE are the best values in the LSPR modified perovskite QLEDs and the strategy offered in this work fits with other LEDs and optoelectrical devices.

15.
ACS Appl Mater Interfaces ; 14(6): 8048-8057, 2022 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-35119827

RESUMEN

The resurgence of visible light photocatalysis for carbon dioxide reduction reaction (CO2RR) has resulted in the generation of various homogeneous and heterogeneous paradigms. Herein, a new system has been established by incorporating dual catalytic sites into porous coordination polymer toward the photocatalysis of CO2RR. A functional ligand, 5,10,15,20-tetrakis[4'-(terpyridinyl)phenyl]porphyrin (TTPP), has been used to assemble discrete divalent nickel ions into the coordination polymer (TTPP-Ni) through metal bis(terpyridine) nodes. Both the porphyrin and terpyridine moieties prefer to bind with nickel ions, giving rise to TTPP-Ni with dual active catalytic sites. By controlling different molar ratios of ligand and metal and the reaction temperature, four samples including TTPP-Ni-n (n = 1, 2, 3, and 4) with different molar ratios of nickel porphyrin and nickel bis(terpyridine) subunits have been fabricated. The predesigned two-dimensional chemical structures of TTPP-Ni samples have been fully characterized using powder X-ray diffraction, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and IR and UV-vis spectroscopies. The photocatalytic activities of these coordination polymers have been screened using [Ru(bpy)3]Cl2·6H2O as a photosensitizer together with triisopropanolamine as the sacrificial electron donor in CH3CN and H2O. Among these photocatalysts, TTPP-Ni-3 and TTPP-Ni-4 with almost saturated metal sites are able to display extraordinary photocatalytic performance including a CO generation rate of ca. 3900 µmol g-1 h-1 and 98% selectivity. The mechanism associated with dual active sites has been rationalized on the basis of theoretical simulations.

16.
Pharmaceutics ; 14(11)2022 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-36432688

RESUMEN

Fluorescent organic nanoparticles (FONs) are a large family of nanostructures constituted by organic components that emit light in different spectral regions upon excitation, due to the presence of organic fluorophores. FONs are of great interest for numerous biological and medical applications, due to their high tunability in terms of composition, morphology, surface functionalization, and optical properties. Multifunctional FONs combine several functionalities in a single nanostructure (emission of light, carriers for drug-delivery, functionalization with targeting ligands, etc.), opening the possibility of using the same nanoparticle for diagnosis and therapy. The preparation, characterization, and application of these multifunctional FONs require a multidisciplinary approach. In this review, we present FONs following a tutorial approach, with the aim of providing a general overview of the different aspects of the design, preparation, and characterization of FONs. The review encompasses the most common FONs developed to date, the description of the most important features of fluorophores that determine the optical properties of FONs, an overview of the preparation methods and of the optical characterization techniques, and the description of the theoretical approaches that are currently adopted for modeling FONs. The last part of the review is devoted to a non-exhaustive selection of some recent biomedical applications of FONs.

17.
Chem Asian J ; 16(20): 3230-3235, 2021 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-34411460

RESUMEN

Transition metal@Nx Cy -graphene (TM@Nx Cy -GR) materials have been widely used as redox reaction catalysts in the field of fuel cells due to their low cost and high performance. In the present work, we systematically investigate the effect of different metal and defect types on the electro-magnetic properties of TM@Nx Cy -GR materials using first principles calculations. Our simulations show that TM@N3 -GR (the minimum defect size) and TM@N7 -GR (the maximum defect size) materials always possess metallic property regardless the metal type. However, doping different TM can regulate the medium defects (TM@N2 C2 -GR-I and TM@N2 C2 -GR-II) among metallicity, half-metallicity and semi-conductivity. In addition, we found that different TM and defect type largely affects the magnetic moment. The spin density and projected density of state calculations show that the net charges of the defect structure are mainly located near the hole, and the magnetic regulation comes from the coupling of TM-d orbital with carbon (nitrogen)-s(p) orbitals. The present study provides abundant valuable information for the TM@Nx Cy -GR materials designs and applicants in the future.

18.
ACS Appl Mater Interfaces ; 13(51): 61047-61054, 2021 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-34904829

RESUMEN

Development of high-performance heterogeneous catalytic materials is important for the rapid upgrade of chemicals, which remains a challenge. Here, the benzene oxidation reaction was used to demonstrate the effectiveness of the atomic interface strategy to improve catalytic performance. The developed B,N-cocoordinated Cu single atoms anchored on carbon nanosheets (Cu1/B-N) with the Cu-N2B1 atomic interface was prepared by the pyrolysis of a precoordinated Cu precursor. Benefiting from the unique atomic Cu-N2B1 interfacial structure, the designed Cu1/B-N exhibited considerable activity in the oxidation of benzene, which was much higher than Cu1/N-C, Cu NPs/N-C, and N-C catalysts. A theoretical study showed that the enhanced catalytic performance resulted from the optimized adsorption of intermediates, which originated from the manipulation of the electronic structure of Cu single atoms induced by B atom coordination in the Cu-N2B1 atomic interface. This study provides an innovative approach for the rational design of high-performance heterogeneous catalytic materials at the atomic level.

19.
ACS Nano ; 15(8): 13662-13673, 2021 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-34355555

RESUMEN

Transition-metal selenides are attractive cathode materials for rechargeable aluminum batteries (RABs) because of their high specific capacity, superior electrical properties, and low cost. To overcome the associated challenges of low structural stability and poor reaction kinetics, a spatial isolation strategy was applied to develop RAB cathodes comprising ultrafine CoSe2 particles embedded in nitrogen-doped porous carbon nanosheet (NPCS)/MXene hybrid materials; the two-dimensional NPCS structures were derived from the self-assembly of metal frameworks on MXene surfaces. This synthetic strategy enabled control over the particle size of the active materials, even at high pyrolysis temperature, thereby allowing investigations into the effect of size on the electrochemical behavior. Spectroscopic analysis revealed that the CoSe2-NPCS electrode exhibited a high discharge capacity (436 mAh g-1 at 1 A g-1), excellent rate capability (122 mA h g-1 at 5 A g-1), and long-term cycling stability (212 mAh g-1 after 500 cycles at 1 A g-1). Theoretical calculations regarding the Co adsorption affinities at various N-doping sites elucidated the synergistic effects of N-C/MXene hybrids for boosting the reaction kinetics and Co adsorption behavior in this system. This work offers an effective material engineering approach for designing electrodes with high rate stability for high-energy RABs.

20.
Adv Mater ; 33(48): e2106353, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34569108

RESUMEN

The sodium (potassium)-metal anodes combine low-cost, high theoretical capacity, and high energy density, demonstrating promising application in sodium (potassium)-metal batteries. However, the dendrites' growth on the surface of Na (K) has impeded their practical application. Herein, density functional theory (DFT) results predict Na2 Te/K2 Te is beneficial for Na+ /K+ transport and can effectively suppress the formation of the dendrites because of low Na+ /K+ migration energy barrier and ultrahigh Na+ /K+ diffusion coefficient of 3.7 × 10-10 cm2 s-1 /1.6 × 10-10 cm2 s-1 (300 K), respectively. Then a Na2 Te protection layer is prepared by directly painting the nanosized Te powder onto the sodium-metal surface. The Na@Na2 Te anode can last for 700 h in low-cost carbonate electrolytes (1 mA cm-2 , 1 mAh cm-2 ), and the corresponding Na3 V2 (PO4 )3 //Na@Na2 Te full cell exhibits high energy density of 223 Wh kg-1 at an unprecedented power density of 29687 W kg-1 as well as an ultrahigh capacity retention of 93% after 3000 cycles at 20 C. Besides, the K@K2 Te-based potassium-metal full battery also demonstrates high power density of 20 577 W kg-1 with energy density of 154 Wh kg-1 . This work opens up a new and promising avenue to stabilize sodium (potassium)-metal anodes with simple and low-cost interfacial layers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA