Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Molecules ; 21(6)2016 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-27322222

RESUMEN

The goal of this paper was to design several sodium carboxymethylcellulose hydrogels containing a BCS class II model drug and to evaluate their flow and thixotropic properties. The rheological measurements were performed at two temperatures (23 °C and 37 °C), using a rotational viscometer. The hydrogels were stirred at different time intervals (10 s, 2, 5, 10 and 20 min at 23 °C, and 10 s, 2 and 5 min at 37 °C), with a maximum rotational speed of 60 rpm, and the corresponding forward and backward rheograms were recorded as shear stress vs. shear rate. For all hydrogels, the rheological data obtained at both temperatures showed a decrease of viscosity with the increase of the shear rate, highlighting a pseudoplastic behaviour. The flow profiles viscosity vs. shear rate were quantified through power law model, meanwhile the flow curves shear stress vs. shear rate were assessed by applying the Herschel-Bulkley model. The thixotropic character was evaluated through different descriptors: thixotropic area, thixotropic index, thixotropic constant and destructuration thixotropic coefficient. The gel-forming polymer concentration and the rheological experiments temperature significantly influence the flow and thixotropic parameters values of the designed hydrogels. The rheological characteristics described have an impact on the drug release microenvironment and determine the stasis time at the application site.


Asunto(s)
Carboximetilcelulosa de Sodio/química , Hidrogeles/química , Polímeros/química , Reología , Resistencia al Corte , Temperatura , Viscosidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA