Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Plant J ; 118(4): 1119-1135, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38308390

RESUMEN

Salicylic acid (SA) is known to enhance salt tolerance in plants. However, the mechanism of SA-mediated response to high salinity in halophyte remains unclear. Using electrophysiological and molecular biological methods, we investigated the role of SA in response to high salinity in mangrove species, Kandelia obovata, a typical halophyte. Exposure of K. obovata roots to high salinity resulted in a rapid increase in endogenous SA produced by phenylalanine ammonia lyase pathway. The application of exogenous SA improved the salt tolerance of K. obovata, which depended on the NADPH oxidase-mediated H2O2. Exogenous SA and H2O2 increased Na+ efflux and reduced K+ loss by regulating the transcription levels of Na+ and K+ transport-related genes, thus reducing the Na+/K+ ratio in the salt-treated K. obovata roots. In addition, exogenous SA-enhanced antioxidant enzyme activity and its transcripts, and the expressions of four genes related to AsA-GSH cycle as well, then alleviated oxidative damages in the salt-treated K. obovata roots. However, the above effects of SA could be reversed by diphenyleneiodonium chloride (the NADPH oxidase inhibitor) and paclobutrazol (a SA biosynthesis inhibitor). Collectively, our results demonstrated that SA-induced salt tolerance of K. obovata depends on NADPH oxidase-generated H2O2 that affects Na+/K+ and redox homeostasis in response to high salinity.


Asunto(s)
Homeostasis , Peróxido de Hidrógeno , NADPH Oxidasas , Oxidación-Reducción , Raíces de Plantas , Potasio , Ácido Salicílico , Tolerancia a la Sal , Sodio , Peróxido de Hidrógeno/metabolismo , NADPH Oxidasas/metabolismo , NADPH Oxidasas/genética , Ácido Salicílico/metabolismo , Ácido Salicílico/farmacología , Potasio/metabolismo , Tolerancia a la Sal/genética , Sodio/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/fisiología , Raíces de Plantas/metabolismo , Plantas Tolerantes a la Sal/genética , Plantas Tolerantes a la Sal/metabolismo , Plantas Tolerantes a la Sal/fisiología , Regulación de la Expresión Génica de las Plantas , Rhizophoraceae/fisiología , Rhizophoraceae/genética , Rhizophoraceae/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
Planta ; 259(5): 123, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622376

RESUMEN

MAIN CONCLUSION: Pigeonpea has potential to foster sustainable agriculture and resilience in evolving climate change; understanding bio-physiological and molecular mechanisms of heat and drought stress tolerance is imperative to developing resilience cultivars. Pigeonpea is an important legume crop that has potential resilience in the face of evolving climate scenarios. However, compared to other legumes, there has been limited research on abiotic stress tolerance in pigeonpea, particularly towards drought stress (DS) and heat stress (HS). To address this gap, this review delves into the genetic, physiological, and molecular mechanisms that govern pigeonpea's response to DS and HS. It emphasizes the need to understand how this crop combats these stresses and exhibits different types of tolerance and adaptation mechanisms through component traits. The current article provides a comprehensive overview of the complex interplay of factors contributing to the resilience of pigeonpea under adverse environmental conditions. Furthermore, the review synthesizes information on major breeding techniques, encompassing both conventional methods and modern molecular omics-assisted tools and techniques. It highlights the potential of genomics and phenomics tools and their pivotal role in enhancing adaptability and resilience in pigeonpea. Despite the progress made in genomics, phenomics and big data analytics, the complexity of drought and heat tolerance in pigeonpea necessitate continuous exploration at multi-omic levels. High-throughput phenotyping (HTP) is crucial for gaining insights into perplexed interactions among genotype, environment, and management practices (GxExM). Thus, integration of advanced technologies in breeding programs is critical for developing pigeonpea varieties that can withstand the challenges posed by climate change. This review is expected to serve as a valuable resource for researchers, providing a deeper understanding of the mechanisms underlying abiotic stress tolerance in pigeonpea and offering insights into modern breeding strategies that can contribute to the development of resilient varieties suited for changing environmental conditions.


Asunto(s)
Sequías , Fabaceae , Fitomejoramiento , Fabaceae/genética , Genómica/métodos , Respuesta al Choque Térmico
3.
Plant Cell Environ ; 47(2): 511-526, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37869766

RESUMEN

Brassinosteroid (BR) has been shown to modulate plant tolerance to various stresses. S-nitrosoglutathione reductase (GSNOR) is involved in the plant response to environment stress by fine-turning the level of nitric oxide (NO). However, whether GSNOR is involved in BR-regulated Na+ /K+ homeostasis to improve the salt tolerance in halophyte is unknown. Here, we firstly reported that high salinity increases the expression of BR-biosynthesis genes and the endogenous levels of BR in mangrove Kandelia obovata. Then, salt-induced BR triggers the activities and gene expressions of GSNOR and antioxidant enzymes, thereafter decrease the levels of malondialdehyde, hydrogen peroxide. Subsequently, BR-mediated GSNOR negatively regulates NO contributions to the reduction of reactive oxygen species generation and induction of the gene expression related to Na+ and K+ transport, leading to the decrease of Na+ /K+ ratio in the roots of K. obovata. Finally, the applications of exogenous BR, NO scavenger, BR biosynthetic inhibitor and GSNOR inhibitor further confirm the function of BR. Taken together, our result provides insight into the mechanism of BR in the response of mangrove K. obovata to high salinity via GSNOR and NO signaling pathway by reducing oxidative damage and modulating Na+ /K+ homeostasis.


Asunto(s)
Óxido Nítrico , Rhizophoraceae , Óxido Nítrico/metabolismo , Oxidorreductasas/metabolismo , Brasinoesteroides/farmacología , Brasinoesteroides/metabolismo , Rhizophoraceae/genética , Rhizophoraceae/metabolismo , Tolerancia a la Sal , Transducción de Señal
4.
Immunity ; 43(1): 41-51, 2015 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-26187414

RESUMEN

The cytosolic helicase retinoic acid-inducible gene-I (RIG-I) initiates immune responses to most RNA viruses by detecting viral 5'-triphosphorylated RNA (pppRNA). Although endogenous mRNA is also 5'-triphosphorylated, backbone modifications and the 5'-ppp-linked methylguanosine ((m7)G) cap prevent immunorecognition. Here we show that the methylation status of endogenous capped mRNA at the 5'-terminal nucleotide (N1) was crucial to prevent RIG-I activation. Moreover, we identified a single conserved amino acid (H830) in the RIG-I RNA binding pocket as the mediator of steric exclusion of N1-2'O-methylated RNA. H830A alteration (RIG-I(H830A)) restored binding of N1-2'O-methylated pppRNA. Consequently, endogenous mRNA activated the RIG-I(H830A) mutant but not wild-type RIG-I. Similarly, knockdown of the endogenous N1-2'O-methyltransferase led to considerable RIG-I stimulation in the absence of exogenous stimuli. Studies involving yellow-fever-virus-encoded 2'O-methyltransferase and RIG-I(H830A) revealed that viruses exploit this mechanism to escape RIG-I. Our data reveal a new role for cap N1-2'O-methylation in RIG-I tolerance of self-RNA.


Asunto(s)
ARN Helicasas DEAD-box/genética , Tolerancia Inmunológica/genética , Procesamiento Postranscripcional del ARN/genética , ARN/genética , Virus de la Fiebre Amarilla/enzimología , Secuencia de Aminoácidos , Animales , Células Cultivadas , Proteína 58 DEAD Box , Activación Enzimática/genética , Activación Enzimática/inmunología , Histidina/genética , Humanos , Metilación , Metiltransferasas/genética , Ratones , Estructura Terciaria de Proteína , ARN/química , ARN/inmunología , ARN Viral/inmunología , Receptores Inmunológicos , Virus de la Fiebre Amarilla/genética
5.
Environ Res ; 260: 119596, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39009212

RESUMEN

The treatment efficiency of acidic phenol-containing wastewater is hindered by the absence of efficient acid-resistant phenol-degrading bacteria, and the acid-resistant mechanism of such bacteria remains poorly studied. In this study, the acid-resistant strain Hly3 was used as a research model to investigate its ability to degrade phenol and its underlying mechanism of acid resistance. Strain Hly3 exhibited robust acid resistance, capable of surviving in extremely acidic environments (pH 3) and degrading 1700 mg L-1 phenol in 72 h. Through the physiological response analysis of strain Hly3 to pH, the results indicated: firstly, the strain could reduce the relative permeability of the cell membrane and increase EPS secretion to prevent H+ from entering the cell (shielding effect); secondly, the strain could accumulate more buffering substances to neutralize the intracellular H+ (neutralization effect); thirdly, the strain could expel H+ from the cell by enhancing H+-ATPase activity (pumping effect); finally, the strain produced more active scavengers to reduce the toxicity of acid stress on cells (antioxidant effect). Subsequently, combining liquid chromatography-mass spectrometry (LC-MS) technology with exogenous addition experiments, it was verified that the acid resistance mechanism of microorganisms is achieved through the activation of acid-resistant response systems by glutamine, thereby enhancing functions such as shielding, neutralization, efflux, and antioxidation. This study elucidated the acid resistance mechanism of Acinetobacter pittii, providing a theoretical basis and guidance for the treatment of acidic phenol-containing wastewater.


Asunto(s)
Acinetobacter , Fenol , Acinetobacter/metabolismo , Fenol/metabolismo , Concentración de Iones de Hidrógeno , Biodegradación Ambiental , Contaminantes Químicos del Agua/metabolismo , Contaminantes Químicos del Agua/toxicidad , Aguas Residuales/microbiología , Ácidos/metabolismo
6.
Environ Res ; 251(Pt 2): 118722, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38499223

RESUMEN

The key to the resource recycling of saline wastes in form of polyhydroxyalkanoates (PHA) is to enrich mixed cultures with salt tolerance and PHA synthesis ability. However, the comparison of saline sludge from different sources and the salt tolerance mechanisms of salt-tolerant PHA producers need to be clarified. In this study, three kinds of activated sludge from different salinity environments were selected as the inoculum to enrich salt-tolerant PHA producers under aerobic dynamic feeding (ADF) mode with butyric acid dominated mixed volatile fatty acid as the substrate. The maximum PHA content (PHAm) reached 0.62 ± 0.01, 0.62 ± 0.02, and 0.55 ± 0.03 g PHA/g VSS at salinity of 0.5%, 0.8%, and 1.8%, respectively. Microbial community analysis indicated that Thauera, Paracoccus, and Prosthecobacter were dominant salt-tolerant PHA producers at low salinity, Thauera, NS9_marine, and SM1A02 were dominant salt-tolerant PHA producers at high salinity. High salinity and ADF mode had synergistic effects on selection and enrichment of salt-tolerant PHA producers. Combined correlation network with redundancy analysis indicated that trehalose synthesis genes and betaine related genes had positive correlation with PHAm, while extracellular polymeric substances (EPS) content had negative correlation with PHAm. The compatible solutes accumulation and EPS secretion were the main salt tolerance mechanisms of the PHA producers. Therefore, adding compatible solutes is an effective strategy to improve PHA synthesis in saline environment.


Asunto(s)
Polihidroxialcanoatos , Salinidad , Tolerancia a la Sal , Polihidroxialcanoatos/biosíntesis , Polihidroxialcanoatos/metabolismo , Aguas del Alcantarillado/microbiología , Bacterias/metabolismo
7.
Microb Cell Fact ; 22(1): 180, 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37700284

RESUMEN

BACKGROUND: Saccharomyces cerevisiae has been used in the biosynthesis of acid products such as organic acids owing to its acid tolerance. Improving the acid tolerance of S. cerevisiae is beneficial for expanding its application range. Our previous study isolated the TAMC strain that was tolerant to a pH 2.3 through adaptive laboratory evolution; however, its mechanism underlying tolerance to low pH environment remains unclear. RESULTS: In this study, through visual observation and order analysis of plasma membrane and membrane microdomains, we revealed that the membrane microdomains of TAMC strain play an indispensable role in acid tolerance. Transcriptomic analysis showed an increase in the expression of genes related to key components of membrane microdomains in TAMC strain. Furthermore, an obvious reduction was observed in the acid tolerance of the strain with sterol C-24 methyltransferase encoding gene ERG6 knockout for inhibiting membrane microdomain formation. Finally, colocalization analysis of H+-ATPase PMA1 and plasma membrane protein PMP1 showed that disruption of membrane microdomains could inhibit the formation of the H+-ATPase complex. CONCLUSIONS: Membrane microdomains could provide a platform for forming H+-ATPase complexes to facilitate intracellular H+ homeostasis, and thereby improve cell acid resistance. This study proposed a novel acid tolerance mechanism, providing a new direction for the rational engineering of acid-tolerant strains.


Asunto(s)
Perfilación de la Expresión Génica , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Membrana Celular , Técnicas de Inactivación de Genes , Microdominios de Membrana
8.
Fish Shellfish Immunol ; 142: 109121, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37802264

RESUMEN

Tilapia is one of the most economically important freshwater fish farmed in China. Streptococcosis outbreaks have been extensively documented in farmed tilapia species. Hybrid tilapia (Oreochromis niloticus ♀ × O. aureus ♂) exhibit greater disease resistance than Nile tilapia (O. niloticus) and blue tilapia (O. aureus). However, the molecular mechanism underlying the enhanced tolerance of hybrid tilapia is still poorly understood. In this study, comparative transcriptome analysis was performed to reveal the different tolerance mechanisms to Streptococcus agalactiae in the three tilapia lines. In total, 1982, 2355, and 2076 differentially expressed genes were identified at 48 h post-infection in hybrid tilapia, Nile tilapia, and blue tilapia, respectively. Functional enrichment analysis indicated that numerous metabolic and immune-related pathways were activated in all three tilapia lines. The differential expression of specific genes associated with phagosome, focal adhesion, cytokine-cytokine receptor interaction, and toll-like receptor signaling pathways contributed to the resistance of hybrid tilapia. Notably, immune response genes in hybrid tilapia, such as P38, TLR5, CXCR3, CXCL12, PSTPIP1, and TFR, were generally suppressed under normal conditions but selectively induced following pathogen challenge. These results expand our knowledge of the molecular mechanisms underlying S. agalactiae tolerance in hybrid tilapia and provide valuable insights for tilapia breeding programs.


Asunto(s)
Cíclidos , Enfermedades de los Peces , Infecciones Estreptocócicas , Tilapia , Animales , Tilapia/genética , Cíclidos/genética , Transcriptoma , Streptococcus agalactiae/fisiología , Perfilación de la Expresión Génica/veterinaria
9.
Appl Microbiol Biotechnol ; 107(7-8): 2611-2626, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36882645

RESUMEN

Streptomyces albulus is a well-established cell factory for ε-poly-L-lysine (ε-PL) production. It has been reported that ε-PL biosynthesis is strictly regulated by pH and that ε-PL can accumulate at approximately pH 4.0, which is outside of the general pH range for natural product production by Streptomyces species. However, how S. albulus responds to low pH is not clear. In this study, we attempted to explore the response of S. albulus to low-pH stress at the physiological and global gene transcription levels. At the physiological level, S. albulus maintained intracellular pH homeostasis at ~pH 7.5, increased the unsaturated fatty acid ratio, extended the fatty acid chain length, enhanced ATP accumulation, increased H+-ATPase activity, and accumulated the basic amino acids L-lysine and L-arginine. At the global gene transcription level, carbohydrate metabolism, oxidative phosphorylation, macromolecule protection and repair, and the acid tolerance system were found to be involved in combating low-pH stress. Finally, we preliminarily evaluated the effect of the acid tolerance system and cell membrane fatty acid synthesis on low-pH tolerance via gene manipulation. This work provides new insight into the adaptation mechanism of Streptomyces to low-pH stress and a new opportunity for constructing robust S. albulus strains for ε-PL production. KEY POINTS: • S. albulus consistently remained pH i at ~7.4 regardless of the environmental pH. • S. albulus combats low-pH stress by modulating lipid composition of cell membrane. • Overexpression of cfa in S. albulus could improve low-pH tolerance and ɛ-PL titer.


Asunto(s)
Polilisina , Streptomyces , Transcriptoma , Streptomyces/metabolismo , Concentración de Iones de Hidrógeno , Fermentación
10.
Appl Microbiol Biotechnol ; 107(1): 327-339, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36418543

RESUMEN

Lignocellulosic biomass is considered the most abundant and renewable feedstock for biobased butyric acid production. However, the furan derivatives (FAs, mainly furfural and 5-hydroxymethylfurfural) generated from the pretreatment of lignocellulose severely inhibit the growth of Clostridium tyrobutyricum, which is the best strain for producing butyric acid. The tolerance mechanism of C. tyrobutyricum to FAs has not been investigated thus far. Here, the response of C. tyrobutyricum ATCC 25755 to FA challenge was first evaluated by using comprehensive transcriptional analysis. The results indicated that the genes related to membrane transport, heat shock proteins, and transcriptional regulation were upregulated under FA stress. However, the expression of almost all genes encoding reductases was not changed, and only the ad gene CTK_RS02625 and the bud gene CTK_RS07810 showed a significant increase of ~ 1.05-fold. Then, the enzyme activity assays indicated that BUD could catalyze the reduction of FAs with relatively low activity and that AD could not participate in the conversion of FAs, indicating that the inability to rapidly convert FAs to their low-toxicity alcohols may be the main reason for the low FA tolerance of C. tyrobutyricum. This research provides insights into the development of FA-tolerant strains, thereby enhancing the bioconversion of lignocellulosic biomass to butyric acid. KEY POINTS: • The response of C. tyrobutyricum to FAs was evaluated for the first time. • Genes encoding membrane transporters and heat shock proteins were triggered by FAs. • A lack of effective FA reductases leads to low FA tolerance in C. tyrobutyricum.


Asunto(s)
Clostridium tyrobutyricum , Clostridium tyrobutyricum/genética , Clostridium tyrobutyricum/metabolismo , Ácido Butírico/metabolismo , Fermentación , Perfilación de la Expresión Génica , Proteínas de Choque Térmico/genética , Furanos/metabolismo
11.
World J Microbiol Biotechnol ; 40(2): 49, 2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-38133718

RESUMEN

Yeast cells are often subjected to various types of weak acid stress in the process of industrial production, food processing, and preservation, resulting in growth inhibition and reduced fermentation performance. Under acidic conditions, weak acids enter the near-neutral yeast cytoplasm and dissociate into protons and anions, leading to cytoplasmic acidification and cell damage. Although some yeast strains have developed the ability to survive weak acids, the complexity and diversity of stresses during industrial production still require the application of appropriate strategies for phenotypes improvement. In this review, we summarized current knowledge concerning weak acid stress response and resistance, which may suggest important targets for further construction of more robust strains. We also highlight current feasible strategies for improving the weak acid resistance of yeasts, such as adaptive laboratory evolution, transcription factors engineering, and cell membrane/wall engineering. Moreover, the challenges and perspectives associated with improving the competitiveness of industrial strains are also discussed. This review provides effective strategies for improving the industrial phenotypes of yeast from multiple dimensions in future studies.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Levaduras/fisiología , Proteínas de Saccharomyces cerevisiae/genética , Ácidos , Fermentación
12.
Ecotoxicol Environ Saf ; 243: 113960, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-35985200

RESUMEN

Hydrangea is a potential remediation plant for lead (Pb) pollution. Plant roots communicate with soil through the release of root exudates. It is crucial to study rhizoremediation mechanisms to understand the response of root exudates to contamination stress. Here, we investigated the physiological responses and metabolomic profiling of two Hydrangea species, a horticultural cultivar (Hydrangea macrophylla (Thunb.) Ser.) and a wild type (Hydrangea strigosa Rehd.), under Pb-free and Pb-stressed conditions for 50 days. The results showed that Pb treatment adversely affected the biomass and root growth of the two species. H. strigosa was a Pb-tolerant species with higher superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) activities and more ascorbic acid (AsA) content in roots. Metabolomic profiling showed that 181 and 169 compounds were identified in H. macrophylla and H. strigosa root exudates, respectively, among which 18 showed significant differences between H. macrophylla and H. strigosa under Pb exposure. H. strigosa showed significantly (P < 0.05) higher secretion of sucrose, glycolic acid, and nonanoic acid than H. macrophylla after Pb treatment. Pb stress promoted fatty acid metabolism in H. strigosa, suppressed amino acid metabolism in H. macrophylla, and promoted a higher carbohydrate metabolism in H. strigosa compared with H. macrophylla. This study provides a possible mechanism for the high Pb absorption potential of Hydrangea.


Asunto(s)
Hydrangea , Metabolismo de los Hidratos de Carbono , Hydrangea/química , Hydrangea/metabolismo , Plomo/metabolismo , Plomo/toxicidad , Suelo , Superóxido Dismutasa/metabolismo
13.
Int J Phytoremediation ; 24(12): 1259-1266, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35037542

RESUMEN

Pistia stratiotes can not only effectively remediate eutrophic water, but also displays strong absorption and bioaccumulation abilities for heavy metals. However, it has not been well-understood how the plant resists the combined stress of heavy metals. In these experiments, the morphophysiological traits, the ascorbate-glutathione (AsA-GSH) cycle, the glyoxalase system, and the contents of zinc (Zn) and cadmium (Cd) were investigated under Zn and Cd co-pollution. The AsA-GSH cycle and glyoxalase system could coordinately alleviate the oxidative and carbonyl stress, which was identified as an important tolerance mechanism. With Zn50Cd1, Zn50Cd10, Zn100Cd1, and Zn100Cd10 treatments for 18 days, 90.75-93.69% of Zn and 88.13-96.96% Cd accumulated in the roots. Treatments with Zn50Cd50, and Zn100Cd50 for 18 days resulted in a decrease of stress tolerance and chlorophyll content in leaves, an increase in plasma membrane permeability, a massive accumulation of methylglyoxal (MG), and visible toxic symptoms. Additionally, the bioaccumulation factor (BCF) for roots and shoots and the translocation factor (TF) were >1, and the content of Cd in shoots was no <100 mg·kg-1. This indicated P. stratiotes was a Cd hyperaccumulator and have great potential for the phytoremediation of heavy metal contaminated water.Novelty statement Pistia stratiotes, a cadmium hyperaccumulator, has great application potential for the phytoremediation of zinc and cadmium co-polluted water.


Asunto(s)
Araceae , Metales Pesados , Contaminantes Químicos del Agua , Araceae/metabolismo , Biodegradación Ambiental , Cadmio/metabolismo , Metales Pesados/metabolismo , Raíces de Plantas/metabolismo , Agua/metabolismo , Contaminantes Químicos del Agua/metabolismo , Zinc/metabolismo
14.
Int J Mol Sci ; 24(1)2022 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-36614098

RESUMEN

Salt stress is one of the abiotic stress factors that affect the normal growth and development of higher plants and algae. However, few research studies have focused on calcium stress, especially in algae. In this study, the mechanism of tolerance to high calcium stress of a Parachlorella kessleri strain was explored by the method of transcriptomics combined with physiological and morphological analysis. Concentrations of CaCl2 100 times (3.6 g/L) and 1000 times (36 g/L) greater than the standard culture were set up as stresses. The results revealed the algae could cope with high calcium stress mainly by strengthening photosynthesis, regulating osmotic pressure, and inducing antioxidant defense. Under the stress of 3.6 g/L CaCl2, the algae grew well with normal cell morphology. Although the chlorophyll content was significantly reduced, the photosynthetic efficiency was well maintained by up-regulating the expression of some photosynthesis-related genes. The cells reduced oxidative damage by inducing superoxide dismutase (SOD) activities and selenoprotein synthesis. A large number of free amino acids were produced to regulate the osmotic potential. When in higher CaCl2 stress of 36 g/L, the growth and chlorophyll content of algae were significantly inhibited. However, the algae still slowly grew and maintained the same photosynthetic efficiency, which resulted from significant up-regulation of massive photosynthesis genes. Antioxidant enzymes and glycerol were found to resist oxidative damage and osmotic stress, respectively. This study supplied algal research on CaCl2 stress and provided supporting data for further explaining the mechanism of plant salt tolerance.


Asunto(s)
Antioxidantes , Chlorophyta , Antioxidantes/metabolismo , Cloruro de Calcio/farmacología , Calcio/metabolismo , Fotosíntesis , Clorofila/metabolismo , Estrés Fisiológico/genética , Chlorophyta/metabolismo , Perfilación de la Expresión Génica
15.
Int J Mol Sci ; 23(21)2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36361744

RESUMEN

Copper (Cu) is an essential micronutrient for humans, animals, and plants, and it participates in various morphological, physiological, and biochemical processes. Cu is a cofactor for a variety of enzymes, and it plays an important role in photosynthesis, respiration, the antioxidant system, and signal transduction. Many studies have demonstrated the adverse effects of excess Cu on crop germination, growth, photosynthesis, and antioxidant activity. This review summarizes the biological functions of Cu, the toxicity of excess Cu to plant growth and development, the roles of Cu transport proteins and chaperone proteins, and the transport process of Cu in plants, as well as the mechanisms of detoxification and tolerance of Cu in plants. Future research directions are proposed, which provide guidelines for related research.


Asunto(s)
Cobre , Plantas , Humanos , Cobre/metabolismo , Plantas/genética , Plantas/metabolismo , Antioxidantes/farmacología , Fotosíntesis , Germinación , Estrés Fisiológico
16.
World J Microbiol Biotechnol ; 38(4): 59, 2022 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-35187581

RESUMEN

The fermentation performance of yeast is the key of beer production. High gravity brewing is a commonly used technique in industrial lager beer production and it is environmentally friendly. Therefore, there has been extensive effort toward improving high gravity brewing. In this study, through transcriptomic and metabolomic analysis of two homologous lager yeasts, genes that relate to stress tolerance in high gravity brewing were screened. The results showed EMP pathway and multiple amino acid metabolism pathway were the most enriched pathways, and pyruvate might be the core metabolite. Overexpression and knockdown strains were constructed to verify the genes' functions. The overexpression of MAN2, PCL1 and PFK26 genes were beneficial to fermentation without significantly changes in flavor profiles. The relative intracellular ATP levels can help us understand the change of metabolic flux such as enhancement of sugar consumption. This work is helpful to reveal the stress tolerance mechanism of high gravity brewing and breed yeast strains with improved performance.


Asunto(s)
Hipergravedad , Cerveza , Fermentación , Transcriptoma , Levaduras
17.
Ecotoxicol Environ Saf ; 218: 112285, 2021 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-33957421

RESUMEN

The present research is an appraisal of anatomical and ultrastructural alterations in aquatic fern, Ceratopteris pteridoides under cadmium (Cd) exposure. Plants were cultured hydroponically for 12 consecutive days in different Cd treatments: 10 µM L-1 (CDT1), 20 µM L-1 (CDT2), 40 µM L-1 (CDT3) and 60 µM L-1 (CDT4). Anatomical and ultrastructural changes of different vegetative tissues of C. pteridoides were investigated using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Cd stress significantly (P < 0.05) decreased water content percentage (WC%), relative growth rate (RGR) and root activity in C. pteridoides, especially at highest Cd concentration (treatment CDT4). Significant (P < 0.05) drop of stress tolerance indices (STI) was noticed in C. pteridoides under treatment CDT4. Anatomical study of the Cd-treated C. pteridoides showed stomatal closure of leaves, reduction of diameter in xylem tracheids of stem and root, and decrease of intercellular spaces. Furthermore, ultrastructural alterations of leaf, stem, and root cells were evident with a damaged membrane system of chloroplast and mitochondria, disorganization of chloroplastic components, accumulation of large starch grains and plastoglobules, and formation of multivesicular bodies. The deposition of electron-dense material in the cell wall of root cells can be regarded as an important tolerance mechanism of C. pteridoides under Cd stress. Fourier transform infrared (FTIR) spectroscopy analysis of Cd-treated C. pteridoides biomass illustrated Cd-binding interaction with O-H, N-H, C-H, C≡C, CË­O, PË­O, -C-OH and CS functional groups of different metabolites.

18.
Int J Mol Sci ; 22(23)2021 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-34884769

RESUMEN

Abiotic stresses, including drought, extreme temperatures, salinity, and waterlogging, are the major constraints in crop production. These abiotic stresses are likely to be amplified by climate change with varying temporal and spatial dimensions across the globe. The knowledge about the effects of abiotic stressors on major cereal and legume crops is essential for effective management in unfavorable agro-ecologies. These crops are critical components of cropping systems and the daily diets of millions across the globe. Major cereals like rice, wheat, and maize are highly vulnerable to abiotic stresses, while many grain legumes are grown in abiotic stress-prone areas. Despite extensive investigations, abiotic stress tolerance in crop plants is not fully understood. Current insights into the abiotic stress responses of plants have shown the potential to improve crop tolerance to abiotic stresses. Studies aimed at stress tolerance mechanisms have resulted in the elucidation of traits associated with tolerance in plants, in addition to the molecular control of stress-responsive genes. Some of these studies have paved the way for new opportunities to address the molecular basis of stress responses in plants and identify novel traits and associated genes for the genetic improvement of crop plants. The present review examines the responses of crops under abiotic stresses in terms of changes in morphology, physiology, and biochemistry, focusing on major cereals and legume crops. It also explores emerging opportunities to accelerate our efforts to identify desired traits and genes associated with stress tolerance.


Asunto(s)
Aclimatación/fisiología , Grano Comestible/fisiología , Fabaceae/fisiología , Poaceae/fisiología , Estrés Fisiológico/fisiología , Agricultura , Cambio Climático , Sequías , Clima Extremo , Oryza/fisiología , Salinidad , Temperatura , Triticum/fisiología , Zea mays/fisiología
19.
J Sci Food Agric ; 101(2): 379-387, 2021 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-32623727

RESUMEN

Tea is the one of the most popular non-alcoholic caffeinated beverages in the world. Tea is produced from the tea plant (Camellia sinensis (L.) O. Kuntze), which is known to accumulate fluoride. This article systematically analyzes the literature concerning fluoride absorption, transportation and fluoride tolerance mechanisms in tea plants. Fluoride bioavailability and exposure levels in tea infusions are also reviewed. The circulation of fluoride within the tea plantation ecosystems is in a positive equilibrium, with greater amounts of fluoride introduced to tea orchards than removed. Water extractable fluoride and magnesium chloride (MgCl2 ) extractable fluoride in plantation soil are the main sources of absorption by tea plant root via active trans-membrane transport and anion channels. Most fluoride is readily transported through the xylem as F- /F-Al complexes to leaf cell walls and vacuole. The findings indicate that tea plants employ cell wall accumulation, vacuole compartmentalization, and F-Al complexes to co-detoxify fluoride and aluminum, a possible tolerance mechanism through which tea tolerates higher levels of fluoride than most plants. Furthermore, dietary and endogenous factors influence fluoride bioavailability and should be considered when exposure levels of fluoride in commercially available dried tea leaves are interpreted. The relevant current challenges and future perspectives are also discussed. © 2020 Society of Chemical Industry.


Asunto(s)
Camellia sinensis/química , Fluoruros/análisis , Fluoruros/metabolismo , Aluminio/análisis , Aluminio/metabolismo , Disponibilidad Biológica , Transporte Biológico , Camellia sinensis/metabolismo , Pared Celular/química , Pared Celular/metabolismo , Exposición Dietética/efectos adversos , Exposición Dietética/análisis , Humanos , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Medición de Riesgo , Suelo/química , Té/química
20.
Crit Rev Biotechnol ; 40(4): 522-538, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32212873

RESUMEN

With the high tolerance for acetic acid and abundant multifunctional enzymes, acetic acid bacteria (AAB), as valuable biocatalysts, exhibit great advantages during industrial acetic acid production and value-added chemical fermentation. However, low biomass and a low production rates arising from acid stress remains major hurdles in industrial processes. Engineering AAB with excellent properties is expected to obtain economically viable production and facilitates their biotechnological applications. Here, the investigation of acetic acid-tolerance mechanisms and metabolic features is discussed, and effective targets are provided for the metabolic engineering of AAB. Next, we review the advances in improving AAB and compare these advances with improvement to other model acid-tolerant microorganisms. Furthermore, future directions involving the combination of systems biology and synthetic biology to achieve efficient biomanufacturing in AAB are highlighted.


Asunto(s)
Ácido Acético/metabolismo , Reactores Biológicos , Ingeniería Metabólica/métodos , Bacterias/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA