Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 301
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Cell Sci ; 137(8)2024 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-38506228

RESUMEN

Clathrin-mediated endocytosis (CME) is vital for the regulation of plant growth and development through controlling plasma membrane protein composition and cargo uptake. CME relies on the precise recruitment of regulators for vesicle maturation and release. Homologues of components of mammalian vesicle scission are strong candidates to be part of the scission machinery in plants, but the precise roles of these proteins in this process are not fully understood. Here, we characterised the roles of the plant dynamin-related protein 2 (DRP2) family (hereafter DRP2s) and SH3-domain containing protein 2 (SH3P2), the plant homologue to recruiters of dynamins, such as endophilin and amphiphysin, in CME by combining high-resolution imaging of endocytic events in vivo and characterisation of the purified proteins in vitro. Although DRP2s and SH3P2 arrive similarly late during CME and physically interact, genetic analysis of the sh3p123 triple mutant and complementation assays with non-SH3P2-interacting DRP2 variants suggest that SH3P2 does not directly recruit DRP2s to the site of endocytosis. These observations imply that, despite the presence of many well-conserved endocytic components, plants have acquired a distinct mechanism for CME.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Dinaminas , Endocitosis , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Clatrina/metabolismo , Clatrina/genética , Dinaminas/metabolismo , Dinaminas/genética , Endocitosis/genética , Proteínas de Unión al GTP , Mutación/genética
2.
J Biol Chem ; 299(2): 102832, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36581204

RESUMEN

Fibroblast growth factor receptors (FGFRs) initiate signal transduction via the RAS/mitogen-activated protein kinase pathway by their tyrosine kinase activation known to determine cell growth, tissue differentiation, and apoptosis. Recently, many missense mutations have been reported for FGFR3, but we only know the functional effect for a handful of them. Some mutations result in aberrant FGFR3 signaling and are associated with various genetic disorders and oncogenic conditions. Here, we employed micropatterned surfaces to specifically enrich fluorophore-tagged FGFR3 (monomeric GFP [mGFP]-FGFR3) in certain areas of the plasma membrane of living cells. We quantified receptor activation via total internal reflection fluorescence microscopy of FGFR3 signaling at the cell membrane that captured the recruitment of the downstream signal transducer growth factor receptor-bound 2 (GRB2) tagged with mScarlet (GRB2-mScarlet) to FGFR3 micropatterns. With this system, we tested the activation of FGFR3 upon ligand addition (fgf1 and fgf2) for WT and four FGFR3 mutants associated with congenital disorders (G380R, Y373C, K650Q, and K650E). Our data showed that ligand addition increased GRB2 recruitment to WT FGFR3, with fgf1 having a stronger effect than fgf2. For all mutants, we found an increased basal receptor activity, and only for two of the four mutants (G380R and K650Q), activity was further increased upon ligand addition. Compared with previous reports, two mutant receptors (K650Q and K650E) had either an unexpectedly high or low activation state, respectively. This can be attributed to the different methodology, since micropatterning specifically captures signaling events at the plasma membrane. Collectively, our results provide further insight into the functional effects of mutations to FGFR3.


Asunto(s)
Membrana Celular , Proteína Adaptadora GRB2 , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos , Membrana Celular/metabolismo , Factor 1 de Crecimiento de Fibroblastos , Factor 2 de Crecimiento de Fibroblastos , Ligandos , Microscopía Fluorescente , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/metabolismo , Transducción de Señal , Proteína Adaptadora GRB2/metabolismo
3.
J Microsc ; 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38420882

RESUMEN

Nowadays, the use of super-resolution microscopy (SRM) is increasing globally due to its potential application in several fields of life sciences. However, a detailed and comprehensive guide is necessary for understanding a single-frame image's resolution limit. This study was performed to provide information about the structural organisation of isolated cellulose fibres from garlic and agave wastes through fluorophore-based techniques and image analysis algorithms. Confocal microscopy provided overall information on the cellulose fibres' microstructure, while techniques such as total internal reflection fluorescence microscopy facilitated the study of the plant fibres' surface structures at a sub-micrometric scale. Furthermore, SIM and single-molecule localisation microscopy (SMLM) using the PALM reconstruction wizard can resolve the network of cellulose fibres at the nanometric level. In contrast, the mean shift super-resolution (MSSR) algorithm successfully determined nanometric structures from confocal microscopy images. Atomic force microscopy was used as a microscopy technique for measuring the size of the fibres. Similar fibre sizes to those evaluated with SIM and SMLM were found using the MSSR algorithm and AFM. However, the MSSR algorithm must be cautiously applied because the selection of thresholding parameters still depends on human visual perception. Therefore, this contribution provides a comparative study of SRM techniques and MSSR algorithm using cellulose fibres as reference material to evaluate the performance of a mathematical algorithm for image processing of bioimages at a nanometric scale. In addition, this work could act as a simple guide for improving the lateral resolution of single-frame fluorescence bioimages when SRM facilities are unavailable.

4.
Nano Lett ; 23(20): 9657-9663, 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37548909

RESUMEN

Structural colors show diverse advantages such as fade resistance, eco-friendliness, iridescence, and high saturation in comparison with chemical pigments. In this paper, we show tunable structural coloration in colorless water-in-oil-in-water double emulsion droplets via total internal reflection and interference at the microscale concave interfaces. Through experimental work and simulations, we demonstrate that the shell thickness and the eccentricity of the core-shell structures are key to the successful formation of iridescent structural colors. Only eccentric thin-shell water-in-oil-in-water droplets show structural colors. Importantly, structural colors based on water-oil interfaces are readily responsive to a variety of environmental stimuli, such as osmotic pressure, temperature, magnetic fields, and light composition. This work highlights an alternative structural coloration that expands the applications of droplet-based structural colors to aqueous systems.

5.
Nano Lett ; 23(14): 6512-6519, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37405910

RESUMEN

In this work, the impact of metallic and dielectric conducting substrates, gold and indium tin oxide (ITO)-coated glass, on the whispering gallery modes (WGMs) of semiconductor π-conjugated polymer microspheres is investigated. Hyperspectral mapping was performed to obtain the excitation-position-dependent emission spectra of the microspheres. Substrate-dependent quenching of WGMs sensitive to mode polarization was observed and explained. On a glass substrate, both transverse-electric (TE) and transverse-magnetic (TM) WGMs are quenched due to frustrated total internal reflection. On a gold substrate, however, only the TM WGMs are allowed in symmetry to leak into surface plasmons. An atomically flat gold substrate with subwavelength slits was used to experimentally verify the leakage of WGMs into the surface plasmon polaritons (SPPs). This work provides insight into the damping mechanisms of WGMs in microspheres on metallic and dielectric substrates.

6.
J Cell Sci ; 134(20)2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34533188

RESUMEN

Inositol 1,4,5-trisphosphate (IP3) receptors (IP3Rs) play a central role in regulating intracellular Ca2+ signals in response to a variety of internal and external cues. Dysregulation of IP3R signaling is the underlying cause for numerous pathological conditions. It is well established that the activities of IP3Rs are governed by several post-translational modifications, including phosphorylation by protein kinase A (PKA). However, the long-term effects of PKA activation on expression of IP3R subtypes remains largely unexplored. In this report, we investigate the effects of chronic stimulation and tonic activity of PKA on the expression of IP3R subtypes. We demonstrate that expression of the type 1 IP3R (IP3R1) is augmented upon prolonged activation of PKA or upon ectopic overexpression of cyclic AMP-response element-binding protein (CREB) without altering IP3R2 and IP3R3 abundance. By contrast, inhibition of PKA or blocking CREB diminished IP3R1 expression. We also demonstrate that agonist-induced Ca2+-release mediated by IP3R1 is significantly attenuated upon blocking of CREB. Moreover, CREB - by regulating the expression of KRAS-induced actin-interacting protein (KRAP) - ensures correct localization and licensing of IP3R1. Overall, we report a crucial role for CREB in governing both the expression and correct localization of IP3R1. This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Proteína de Unión a Elemento de Respuesta al AMP Cíclico , Inositol , Calcio/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Humanos , Inositol 1,4,5-Trifosfato , Receptores de Inositol 1,4,5-Trifosfato/genética
7.
Small ; 19(14): e2206713, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36631276

RESUMEN

Several techniques have been established to quantify the mechanicals of single molecules. However, most of them show only limited capabilities of parallelizing the measurement by performing many individual measurements simultaneously. Herein, a microfluidics-based single-molecule force spectroscopy method, which achieves sub-nanometer spatial resolution and sub-piconewton sensitivity and is capable of simultaneously quantifying hundreds of single-molecule targets in parallel, is presented. It relies on a combination of total internal reflection microscopy and microfluidics, in which monodisperse fluorescent beads are immobilized on the bottom of a microfluidic channel by macromolecular linkers. Application of a flow generates a well-defined shear force acting on the beads, whereas the nanomechanical linker response is quantified based on the force-induced displacement of individual beads. To handle the high amount of data generated, a cluster analysis which is capable of a semi-automatic identification of measurement artifacts and molecular populations is implemented. The method is validated by probing the mechanical response polyethylene glycol linkers and binding strength of biotin-NeutrAvidin complexes. Two energy barriers (at 3 and 5.7 Å, respectively) in the biotin-NeutrAvidin interaction are resolved and the unfolding behavior of talin's rod domain R3 in the force range between 1 to ≈10 pN is probed.

8.
New Phytol ; 237(6): 1980-1997, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36477856

RESUMEN

New imaging methodologies with high contrast and molecular specificity allow researchers to analyze dynamic processes in plant cells at multiple scales, from single protein and RNA molecules to organelles and cells, to whole organs and tissues. These techniques produce informative images and quantitative data on molecular dynamics to address questions that cannot be answered by conventional biochemical assays. Here, we review selected microscopy techniques, focusing on their basic principles and applications in plant science, discussing the pros and cons of each technique, and introducing methods for quantitative analysis. This review thus provides guidance for plant scientists in selecting the most appropriate techniques to decipher structures and dynamic processes at different levels, from protein dynamics to morphogenesis.


Asunto(s)
Células Vegetales , Proteínas , Microscopía Fluorescente/métodos , Plantas
9.
Neuroendocrinology ; 113(2): 107-119, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-34915491

RESUMEN

Identification of the molecular mechanisms governing neuroendocrine secretion and resulting intercellular communication is one of the great challenges of cell biology to better understand organism physiology and neurosecretion disruption-related pathologies such as hypertension, neurodegenerative, or metabolic diseases. To visualize molecule distribution and dynamics at the nanoscale, many imaging approaches have been developed and are still emerging. In this review, we provide an overview of the pioneering studies using transmission electron microscopy, atomic force microscopy, total internal reflection microscopy, and super-resolution microscopy in neuroendocrine cells to visualize molecular mechanisms driving neurosecretion processes, including exocytosis and associated fusion pores, endocytosis and associated recycling vesicles, and protein-protein or protein-lipid interactions. Furthermore, the potential and the challenges of these different advanced imaging approaches for application in the study of neuroendocrine cell biology are discussed, aiming to guide researchers to select the best approach for their specific purpose around the crucial but not yet fully understood neurosecretion process.


Asunto(s)
Secreciones Corporales , Exocitosis , Exocitosis/fisiología , Diagnóstico por Imagen
10.
Methods ; 204: 428-441, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35304246

RESUMEN

RNA helicases couple nucleotide-driven conformational changes to the unwinding of RNA duplexes. Interaction partners can regulate helicase activity by altering the rate constants of these conformational changes. Single-molecule FRET experiments on donor/acceptor-labeled, immobilized molecules are ideally suited to monitor conformational changes in real time and to extract rate constants for these processes. This article provides guidance on how to design, perform, and analyze single-molecule FRET experiments by TIRF microscopy. It covers the theoretical background of FRET and single-molecule TIRF microscopy, the considerations to prepare proteins of interest for donor/acceptor labeling and surface immobilization, and the principles and procedures of data analysis, including image analysis and the determination of FRET time traces, the extraction of rate constants from FRET time traces, and the general conclusions that can be drawn from these data. A case study, using the DEAD-box protein eIF4A as an example, highlights how single-molecule FRET studies have been instrumental in understanding the role of conformational changes for duplex unwinding and for the regulation of helicase activities. Selected examples illustrate which conclusions can be drawn from the kinetic data obtained, highlight possible pitfalls in data analysis and interpretation, and outline how kinetic models can be related to functionally relevant states.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia , Microscopía , ARN Helicasas DEAD-box/metabolismo , Transferencia Resonante de Energía de Fluorescencia/métodos , ARN/metabolismo , Imagen Individual de Molécula/métodos
11.
Proc Natl Acad Sci U S A ; 117(50): 31591-31602, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33257546

RESUMEN

Clathrin-mediated endocytosis (CME) begins with the nucleation of clathrin assembly on the plasma membrane, followed by stabilization and growth/maturation of clathrin-coated pits (CCPs) that eventually pinch off and internalize as clathrin-coated vesicles. This highly regulated process involves a myriad of endocytic accessory proteins (EAPs), many of which are multidomain proteins that encode a wide range of biochemical activities. Although domain-specific activities of EAPs have been extensively studied, their precise stage-specific functions have been identified in only a few cases. Using single-guide RNA (sgRNA)/dCas9 and small interfering RNA (siRNA)-mediated protein knockdown, combined with an image-based analysis pipeline, we have determined the phenotypic signature of 67 EAPs throughout the maturation process of CCPs. Based on these data, we show that EAPs can be partitioned into phenotypic clusters, which differentially affect CCP maturation and dynamics. Importantly, these clusters do not correlate with functional modules based on biochemical activities. Furthermore, we discover a critical role for SNARE proteins and their adaptors during early stages of CCP nucleation and stabilization and highlight the importance of GAK throughout CCP maturation that is consistent with GAK's multifunctional domain architecture. Together, these findings provide systematic, mechanistic insights into the plasticity and robustness of CME.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Membrana Celular/metabolismo , Clatrina/metabolismo , Invaginaciones Cubiertas de la Membrana Celular/metabolismo , Endocitosis/fisiología , Proteínas Adaptadoras del Transporte Vesicular/genética , Sistemas CRISPR-Cas/genética , Línea Celular , Análisis por Conglomerados , Técnicas de Silenciamiento del Gen , Proteínas Fluorescentes Verdes/química , Proteínas Fluorescentes Verdes/genética , Humanos , Microscopía Intravital/métodos , Sustancias Luminiscentes/química , Microscopía Fluorescente/métodos , Imagen Molecular/métodos , ARN Interferente Pequeño/metabolismo
12.
Proc Natl Acad Sci U S A ; 117(42): 26099-26108, 2020 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-33020274

RESUMEN

While elastic metasurfaces offer a remarkable and very effective approach to the subwavelength control of stress waves, their use in practical applications is severely hindered by intrinsically narrow band performance. In applications to electromagnetic and photonic metamaterials, some success in extending the operating dynamic range was obtained by using nonlocality. However, while electronic properties in natural materials can show significant nonlocal effects, even at the macroscales, in mechanics, nonlocality is a higher-order effect that becomes appreciable only at the microscales. This study introduces the concept of intentional nonlocality as a fundamental mechanism to design passive elastic metasurfaces capable of an exceptionally broadband operating range. The nonlocal behavior is achieved by exploiting nonlocal forces, conceptually akin to long-range interactions in nonlocal material microstructures, between subsets of resonant unit cells forming the metasurface. These long-range forces are obtained via carefully crafted flexible elements, whose specific geometry and local dynamics are designed to create remarkably complex transfer functions between multiple units. The resulting nonlocal coupling forces enable achieving phase-gradient profiles that are functions of the wavenumber of the incident wave. The identification of relevant design parameters and the assessment of their impact on performance are explored via a combination of semianalytical and numerical models. The nonlocal metasurface concept is tested, both numerically and experimentally, by embedding a total-internal-reflection design in a thin-plate waveguide. Results confirm the feasibility of the intentionally nonlocal design concept and its ability to achieve a fully passive and broadband wave control.

13.
Proc Natl Acad Sci U S A ; 117(37): 22815-22822, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32868420

RESUMEN

The sensitive and accurate quantification of protein biomarkers plays important roles in clinical diagnostics and biomedical research. Sandwich ELISA and its variants accomplish the capture and detection of a target protein via two antibodies that tightly bind at least two distinct epitopes of the same antigen and have been the gold standard for sensitive protein quantitation for decades. However, existing antibody-based assays cannot distinguish between signal arising from specific binding to the protein of interest and nonspecific binding to assay surfaces or matrix components, resulting in significant background signal even in the absence of the analyte. As a result, they generally do not achieve single-molecule sensitivity, and they require two high-affinity antibodies as well as stringent washing to maximize sensitivity and reproducibility. Here, we show that surface capture with a high-affinity antibody combined with kinetic fingerprinting using a dynamically binding, low-affinity fluorescent antibody fragment differentiates between specific and nonspecific binding at the single-molecule level, permitting the direct, digital counting of single protein molecules with femtomolar-to-attomolar limits of detection (LODs). We apply this approach to four exemplary antigens spiked into serum, demonstrating LODs 55- to 383-fold lower than commercially available ELISA. As a real-world application, we establish that endogenous interleukin-6 (IL-6) can be quantified in 2-µL serum samples from chimeric antigen receptor T cell (CAR-T cell) therapy patients without washing away excess serum or detection probes, as is required in ELISA-based approaches. This kinetic fingerprinting thus exhibits great potential for the ultrasensitive, rapid, and streamlined detection of many clinically relevant proteins.


Asunto(s)
Unión Proteica/fisiología , Imagen Individual de Molécula/métodos , Anticuerpos/inmunología , Especificidad de Anticuerpos/inmunología , Especificidad de Anticuerpos/fisiología , Biomarcadores/sangre , Ensayo de Inmunoadsorción Enzimática/métodos , Humanos , Cinética , Límite de Detección , Nanotecnología , Proteínas , Reproducibilidad de los Resultados
14.
Sensors (Basel) ; 23(2)2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36679737

RESUMEN

In this paper, a novel optical measurement principle for deformation, especially torsion, is presented. A laser beam is guided via total internal reflection (TIR) in a prism rod. Every single reflection causes an increasing change in the beam path, which can be measured by its effect on the outcoupling position of the laser. With a diameter of the prism rod of 10 mm and a length of 120 mm, the system achieves torsion sensitivities between 350 µm/° and more than 7000 µm/°, depending on the actual torsion angle φ. A decency level of sensitivity is defined for comparison, which is exceeded by a factor of ~55 at φ=0. The presented principle of TIR prism rods can be adapted to measure different load cases. Using two laser beams, bending and torsion can be distinguished and combined load cases analyzed. The resulting system can be integrated into machine elements, such as screws, to perform condition monitoring on mechanically loaded components.


Asunto(s)
Luz , Fenómenos Biomecánicos
15.
Nano Lett ; 22(13): 5495-5502, 2022 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-35727011

RESUMEN

The design and screening of electrocatalysts for gas evolution reactions suffer from little understanding of multiphase processes at the electrode-electrolyte interface. Due to the complexity of the multiphase interface, it is still a great challenge to capture gas evolution dynamics under operando conditions to precisely portray the intrinsic catalytic performance of the interface. Here, we establish a single particle imaging method to real-time monitor a potential-dependent vertical motion or hopping of electrocatalysts induced by electrogenerated gas nanobubbles. The hopping feature of a single particle is closely correlated with intrinsic activities of electrocatalysts and thus is developed as an indicator to evaluate gas evolution performance of various electrocatalysts. This optical indicator diminishes interference from heterogeneous morphologies, non-Faradaic processes, and parasitic side reactions that are unavoidable in conventional electrochemical measurements, therefore enabling precise evaluation and high-throughput screening of catalysts for gas evolution systems.


Asunto(s)
Electrodos , Catálisis
16.
Int J Mol Sci ; 24(12)2023 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-37373425

RESUMEN

As many as 700,000 unique sequences in the human genome are predicted to fold into G-quadruplexes (G4s), non-canonical structures formed by Hoogsteen guanine-guanine pairing within G-rich nucleic acids. G4s play both physiological and pathological roles in many vital cellular processes including DNA replication, DNA repair and RNA transcription. Several reagents have been developed to visualize G4s in vitro and in cells. Recently, Zhen et al. synthesized a small protein G4P based on the G4 recognition motif from RHAU (DHX36) helicase (RHAU specific motif, RSM). G4P was reported to bind the G4 structures in cells and in vitro, and to display better selectivity toward G4s than the previously published BG4 antibody. To get insight into G4P- G4 interaction kinetics and selectivity, we purified G4P and its expanded variants, and analyzed their G4 binding using single-molecule total internal reflection fluorescence microscopy and mass photometry. We found that G4P binds to various G4s with affinities defined mostly by the association rate. Doubling the number of the RSM units in the G4P increases the protein's affinity for telomeric G4s and its ability to interact with sequences folding into multiple G4s.


Asunto(s)
G-Cuádruplex , Humanos , ARN Helicasas DEAD-box/metabolismo , ARN/metabolismo , ADN Helicasas/metabolismo
17.
Molecules ; 28(4)2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36838698

RESUMEN

We investigate the combined effects of surface diffraction and total internal reflection (TIR) in the design of 3-dimensional materials exhibiting distinct structural colour on various facets. We employ mechanical wrinkling to introduce surface diffraction gratings (from the nano to the micron scales) on one face of an elastomeric rectangular parallelepiped-shaped slab and explore the roles, in the perceived colours, of wrinkling pattern, wavelength, the directionality of incident light and observation angles. We propose a simple model that satisfactorily accounts for all experimental observations. Employing polydimethylsiloxane (PDMS), which readily swells in the presence of various liquids and gases, we demonstrate that such multifaceted colours can respond to their environment. By coupling a right angle triangular prism with a surface grating, we demonstrate the straightforward fabrication of a so-called GRISM (GRating + prISM). Finally, using a range of examples, we outline possibilities for a predictive material design using multi-axial wrinkling patterns and more complex polyhedra.


Asunto(s)
Gases , Elasticidad
18.
Traffic ; 21(9): 603-616, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32657003

RESUMEN

Clathrin mediated endocytosis (CME) has been extensively studied in living cells by quantitative total internal reflection fluorescence microscopy (TIRFM). Fluorescent protein fusions to subunits of the major coat proteins, clathrin light chains or the heterotetrameric adaptor protein (AP2) complexes, have been used as fiduciary markers of clathrin coated pits (CCPs). However, the functionality of these fusion proteins has not been rigorously compared. Here, we generated stable cells lines overexpressing mRuby-CLCa and/or µ2-eGFP, σ2-eGFP, two markers currently in use, or a novel marker generated by inserting eGFP into the unstructured hinge region of the α subunit (α-eGFP). Using biochemical and TIRFM-based assays, we compared the functionality of the AP2 markers. All of the eGFP-tagged subunits were efficiently incorporated into AP2 and displayed greater accuracy in image-based CCP analyses than mRuby-CLCa. However, overexpression of either µ2-eGFP or σ2-eGFP impaired transferrin receptor uptake. In addition, µ2-eGFP reduced the rates of CCP initiation and σ2-eGFP perturbed AP2 incorporation into CCPs and CCP maturation. In contrast, CME and CCP dynamics were unperturbed in cells overexpressing α-eGFP. Moreover, α-eGFP was a more sensitive and accurate marker of CCP dynamics than mRuby-CLCa. Thus, our work establishes α-eGFP as a robust, fully functional marker for CME.


Asunto(s)
Clatrina , Invaginaciones Cubiertas de la Membrana Celular , Complejo 2 de Proteína Adaptadora/metabolismo , Subunidades alfa de Complejo de Proteína Adaptadora/metabolismo , Clatrina/metabolismo , Invaginaciones Cubiertas de la Membrana Celular/metabolismo , Endocitosis , Unión Proteica
19.
Semin Cell Dev Biol ; 107: 112-125, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32317144

RESUMEN

In eukaryotic cells, protein sorting is a highly regulated mechanism important for many physiological events. After synthesis in the endoplasmic reticulum and trafficking to the Golgi apparatus, proteins sort to many different cellular destinations including the endolysosomal system and the extracellular space. Secreted proteins need to be delivered directly to the cell surface. Sorting of secreted proteins from the Golgi apparatus has been a topic of interest for over thirty years, yet there is still no clear understanding of the machinery that forms the post-Golgi carriers. Most evidence points to these post-Golgi carriers being tubular pleomorphic structures that bud from the trans-face of the Golgi. In this review, we present the background studies and highlight the key components of this pathway, we then discuss the machinery implicated in the formation of these carriers, their translocation across the cytosol, and their fusion at the plasma membrane.


Asunto(s)
Membrana Celular/metabolismo , Aparato de Golgi/metabolismo , Animales , Humanos , Metabolismo de los Lípidos , Fusión de Membrana , Transporte de Proteínas , Vías Secretoras
20.
J Biol Chem ; 296: 100161, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33288678

RESUMEN

Small heat shock proteins (sHsps) are a family of ubiquitous intracellular molecular chaperones; some sHsp family members are upregulated under stress conditions and play a vital role in protein homeostasis (proteostasis). It is commonly accepted that these chaperones work by trapping misfolded proteins to prevent their aggregation; however, fundamental questions regarding the molecular mechanism by which sHsps interact with misfolded proteins remain unanswered. The dynamic and polydisperse nature of sHsp oligomers has made studying them challenging using traditional biochemical approaches. Therefore, we have utilized a single-molecule fluorescence-based approach to observe the chaperone action of human alphaB-crystallin (αBc, HSPB5). Using this approach we have, for the first time, determined the stoichiometries of complexes formed between αBc and a model client protein, chloride intracellular channel 1. By examining the dispersity and stoichiometries of these complexes over time, and in response to different concentrations of αBc, we have uncovered unique and important insights into a two-step mechanism by which αBc interacts with misfolded client proteins to prevent their aggregation.


Asunto(s)
Canales de Cloruro/química , Transferencia Resonante de Energía de Fluorescencia/métodos , Imagen Individual de Molécula/métodos , Cadena B de alfa-Cristalina/química , Sitios de Unión , Carbocianinas/química , Canales de Cloruro/genética , Canales de Cloruro/metabolismo , Clonación Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Colorantes Fluorescentes/química , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Humanos , Unión Proteica , Pliegue de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Rodaminas/química , Soluciones , Coloración y Etiquetado/métodos , Ácidos Sulfónicos/química , Cadena B de alfa-Cristalina/genética , Cadena B de alfa-Cristalina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA