Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 155
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 180(3): 502-520.e19, 2020 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-31983537

RESUMEN

The tumor microenvironment (TME) is critical for tumor progression. However, the establishment and function of the TME remain obscure because of its complex cellular composition. Using a mouse genetic system called mosaic analysis with double markers (MADMs), we delineated TME evolution at single-cell resolution in sonic hedgehog (SHH)-activated medulloblastomas that originate from unipotent granule neuron progenitors in the brain. First, we found that astrocytes within the TME (TuAstrocytes) were trans-differentiated from tumor granule neuron precursors (GNPs), which normally never differentiate into astrocytes. Second, we identified that TME-derived IGF1 promotes tumor progression. Third, we uncovered that insulin-like growth factor 1 (IGF1) is produced by tumor-associated microglia in response to interleukin-4 (IL-4) stimulation. Finally, we found that IL-4 is secreted by TuAstrocytes. Collectively, our studies reveal an evolutionary process that produces a multi-lateral network within the TME of medulloblastoma: a fraction of tumor cells trans-differentiate into TuAstrocytes, which, in turn, produce IL-4 that stimulates microglia to produce IGF1 to promote tumor progression.


Asunto(s)
Astrocitos/metabolismo , Carcinogénesis/metabolismo , Transdiferenciación Celular , Neoplasias Cerebelosas/metabolismo , Meduloblastoma/metabolismo , Comunicación Paracrina , Animales , Linaje de la Célula , Neoplasias Cerebelosas/patología , Modelos Animales de Enfermedad , Femenino , Proteínas Hedgehog/metabolismo , Xenoinjertos , Humanos , Factor I del Crecimiento Similar a la Insulina/genética , Factor I del Crecimiento Similar a la Insulina/metabolismo , Interleucina-4/genética , Interleucina-4/metabolismo , Masculino , Meduloblastoma/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/metabolismo , Microambiente Tumoral
2.
Mol Cell ; 76(3): 453-472.e8, 2019 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-31519520

RESUMEN

MYOD-directed fibroblast trans-differentiation into skeletal muscle provides a unique model to investigate how one transcription factor (TF) reconfigures the three-dimensional chromatin architecture to control gene expression, which is otherwise achieved by the combinatorial activities of multiple TFs. Integrative analysis of genome-wide high-resolution chromatin interactions, MYOD and CTCF DNA-binding profile, and gene expression, revealed that MYOD directs extensive re-wiring of interactions involving cis-regulatory and structural genomic elements, including promoters, enhancers, and insulated neighborhoods (INs). Re-configured INs were hot-spots of differential interactions, whereby MYOD binding to highly constrained sequences at IN boundaries and/or inside INs led to alterations of promoter-enhancer interactions to repress cell-of-origin genes and to activate muscle-specific genes. Functional evidence shows that MYOD-directed re-configuration of chromatin interactions temporally preceded the effect on gene expression and was mediated by direct MYOD-DNA binding. These data illustrate a model whereby a single TF alters multi-loop hubs to drive somatic cell trans-differentiation.


Asunto(s)
Transdiferenciación Celular , Reprogramación Celular , Ensamble y Desensamble de Cromatina , Cromatina/metabolismo , Fibroblastos/metabolismo , Desarrollo de Músculos , Proteína MioD/metabolismo , Mioblastos Esqueléticos/metabolismo , Animales , Sitios de Unión , Línea Celular , Transdiferenciación Celular/genética , Cromatina/genética , Femenino , Regulación del Desarrollo de la Expresión Génica , Humanos , Ratones , Desarrollo de Músculos/genética , Proteína MioD/genética , Conformación de Ácido Nucleico , Fenotipo , Unión Proteica , Relación Estructura-Actividad , Transcripción Genética
3.
Kidney Blood Press Res ; 49(1): 137-143, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38266504

RESUMEN

INTRODUCTION: The process of vascular calcification has severe clinical consequences in a number of diseases, including diabetes, atherosclerosis, and end-stage renal disease. In the present study, we investigated the effect of policosanol (Poli), genistein (Gen), and vitamin D (VitD) separately and in association to evaluate the possible synergistic action on inorganic phosphate (Pi)-induced calcification of vascular smooth muscle cells (VSMCs). METHODS: Primary human VSMCs were cultured with either growth medium or growth medium supplemented with calcium and phosphorus (calcification medium) in combination with Poli, Gen, and VitD. Alizarin Red staining, mineralization, and the protein expression of RUNX2 and superoxide dismutase-2 (SOD2) were investigated. RESULTS: All three substances tested were effective at reducing osteogenic differentiation of VSMCs in a dose-dependent manner. Poli+Gen, Poli+VitD, Gen+VitD treatment induced a greater inhibition of calcification and RUNX2 expression compared to single compounds treatments. Moreover, the association of Poli+Gen+VitD (Reduplaxin®) was more effective at inhibiting VSMCs mineralization and preventing the increase in RUNX2 expression induced by calcification medium but not modified SOD2 expression. CONCLUSIONS: The association of Pol, Gen, and VitD (Reduplaxin®) has an additive inhibitory effect on the calcification process of VSMCs induced in vitro by a pro-calcifying medium.


Asunto(s)
Alcoholes Grasos , Genisteína , Músculo Liso Vascular , Calcificación Vascular , Vitamina D , Humanos , Vitamina D/farmacología , Alcoholes Grasos/farmacología , Células Cultivadas , Calcificación Vascular/prevención & control , Calcificación Vascular/inducido químicamente , Calcificación Vascular/tratamiento farmacológico , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/citología , Genisteína/farmacología , Genisteína/uso terapéutico , Superóxido Dismutasa/metabolismo , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo
4.
Acta Biochim Biophys Sin (Shanghai) ; 56(3): 440-451, 2024 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-38006215

RESUMEN

Hypertrophic scar (HS) is one of the most common sequelae of patients, especially after burns and trauma. The roles of regulatory long noncoding RNAs (lncRNAs) in mediating HS remain underexplored. Human hypertrophic scar-derived fibroblasts (HSFBs) have been shown to exert more potent promoting effects on extracellular matrix (ECM) accumulation than normal skin-derived fibroblasts (NSFBs) and are associated with enhanced HS formation. The purpose of this study is to search for lncRNAs enriched in HSFBs and investigate their roles and mechanisms. LncRNA MSTRG.59347.16 is one of the most highly expressed lncRNAs in HS detected by lncRNA-seq and qRT-PCR and named as hypertrophic scar fibroblast-associated lncRNA (HSFAS). HSFAS overexpression significantly induces fibroblast proliferation, migration, and myofibroblast trans-differentiation and inhibits apoptosis in HSFBs, while knockdown of HSFAS results in augmented apoptosis and attenuated proliferation, migration, and myofibroblast trans-differentiation of HSFBs. Mechanistically, HSFAS suppresses the expression of A disintegrin and metalloproteinase with thrombospondin motifs 8 (ADAMTS8). ADAMTS8 knockdown rescues downregulated HSFAS-mediated fibroblast proliferation, migration, myofibroblast trans-differentiation and apoptosis. Thus, our findings uncover a previously unknown lncRNA-dependent regulatory pathway for fibroblast function. Targeted intervention in the HSFAS-ADAMTS8 pathway is a potential therapy for HS.


Asunto(s)
Cicatriz Hipertrófica , ARN Largo no Codificante , Humanos , Cicatriz Hipertrófica/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Fibroblastos/metabolismo , Apoptosis/genética , Proliferación Celular/genética , Transdiferenciación Celular/genética , Proteínas ADAMTS/metabolismo
5.
Glia ; 71(7): 1648-1666, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36960578

RESUMEN

Reactive astrocytes can be transformed into new neurons. Vascular endothelial growth factor (VEGF) promotes the transformation of reactive astrocytes into neurons in ischemic brain. Therefore, in this study, the molecular mechanism of VEGF's effect on ischemia/hypoxia-induced astrocyte to neuron transformation was investigated in the models of rat middle cerebral artery occlusion (MCAO) and in astrocyte culture with oxygen and glucose deprivation (OGD). We found that VEGF enhanced ischemia-induced Pax6, a neurogenic fate determinant, expression and Erk phosphorylation in reactive astrocytes and reduced infarct volume of rat brain at 3 days after MCAO, which effects could be blocked by administration of U0126, a MAPK/Erk inhibitor. In cultured astrocytes, VEGF also enhanced OGD-induced Erk phosphorylation and Pax6 expression, which was blocked by U0126, but not wortmannin, a PI3K/Akt inhibitor, or SB203580, a MAPK/p38 inhibitor, suggesting VEGF enhanced Pax6 expression via activation of MAPK/Erk pathway. OGD induced the increase of miR365 and VEGF inhibited the increase of OGD-induced miR365 expression. However, miR365 agonists blocked VEGF-enhanced Pax6 expression in hypoxic astrocytes, but did not block VEGF-enhanced Erk phosphorylation. We further found that VEGF promoted OGD-induced astrocyte-converted to neuron. Interestingly, both U0126 and Pax6 RNAi significantly reduced enhancement of VEGF on astrocytes-to-neurons transformation, as indicated Dcx and MAP2 immunopositive signals in reactive astrocytes. Moreover, those transformed neurons become mature and functional. We concluded that VEGF enhanced astrocytic neurogenesis via the MAPK/Erk-miR-365-Pax6 signal axis. The results also indicated that astrocytes play important roles in the reconstruction of neurovascular units in brain after stroke.


Asunto(s)
Astrocitos , Factor A de Crecimiento Endotelial Vascular , Ratas , Animales , Astrocitos/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Sistema de Señalización de MAP Quinasas , Transdiferenciación Celular , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal , Infarto de la Arteria Cerebral Media/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Neuronas/metabolismo , Glucosa/metabolismo
6.
Development ; 147(7)2020 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-32280064

RESUMEN

Understanding the mechanisms that underlie the generation and regeneration of ß cells is crucial for developing treatments for diabetes. However, traditional research methods, which are based on populations of cells, have limitations for defining the precise processes of ß-cell differentiation and trans-differentiation, and the associated regulatory mechanisms. The recent development of single-cell technologies has enabled re-examination of these processes at a single-cell resolution to uncover intermediate cell states, cellular heterogeneity and molecular trajectories of cell fate specification. Here, we review recent advances in understanding ß-cell generation and regeneration, in vivo and in vitro, from single-cell technologies, which could provide insights for optimization of diabetes therapy strategies.


Asunto(s)
Diferenciación Celular , Linaje de la Célula , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/fisiología , Regeneración/fisiología , Análisis de la Célula Individual/métodos , Animales , Rastreo Celular/métodos , Rastreo Celular/tendencias , Humanos , Páncreas/citología , Páncreas/fisiología , Análisis de la Célula Individual/tendencias
7.
Cell Tissue Res ; 393(1): 37-46, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37140683

RESUMEN

The study aims to transdifferentiate rat bone marrow-derived mesenchymal stem cells (BM-MSCs) more efficiently into islet-like cells and encapsulate and transplant them with vital properties like stability, proliferation, and metabolic activity enhanced for the treatment of T1DM. Trans-differentiation of BM-MCs into islet-like cells induced by high glucose concentration combined with Nicotinamide, ꞵ-Mercaptoethanol, ꞵ-Cellulin, and IGF-1. Glucose challenge assays and gene expression profiles were used to determine functionality. Microencapsulation was performed using the vibrating nozzle encapsulator droplet method with a 1% alginate concentration. Encapsulated ꞵ-cells were cultured in a fluidized-bed bioreactor with 1850 µL/min fluid flow rates and a superficial velocity of 1.15 cm/min. The procedure was followed by transplanting transdifferentiated cells into the omentum of streptozotocin (STZ)-induced diabetic Wistar rats. Changes in weight, glucose, insulin, and C-peptide levels were monitored for 2 months after transplantation. PDX1, INS, GCG, NKx2.2, NKx6.1, and GLUT2 expression levels revealed the specificity of generated ß-cells with higher viability (about 20%) and glucose sensitivity about twofold more. The encapsulated ß-cells decreased the glucose levels in STZ-induced rats significantly (P < 0.05) 1 week after transplantation. Also, the weight and levels of insulin and C-peptide reached the control group. In contrast to the treated, the sham group displayed a consistent decline in weight and died when loss reached > 20% at day ~ 55. The coated cells secrete significantly higher amounts of insulin in response to glucose concentration changes. Enhanced viability and functionality of ß-cells can be achieved through differentiation and culturing, a promising approach toward insulin therapy alternatives.


Asunto(s)
Células Secretoras de Insulina , Ratas , Animales , Péptido C/metabolismo , Ratas Wistar , Diferenciación Celular , Insulina/metabolismo , Glucosa/farmacología , Glucosa/metabolismo
8.
J Vasc Res ; 60(4): 193-203, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37669629

RESUMEN

BACKGROUND: Indoxyl sulfate (IS) is a protein-bound uremic toxin with vascular toxicity. The primary cause of death in uremic patients on maintenance hemodialysis is vascular disease, and it had been reported that vascular smooth muscle cells (VSMCs) trans-differentiation (VT) plays a vital role in the context of vascular diseases, but the underlying mechanisms remain obscure. Thrombospondin-1 (TSP-1) participates in vascular calcification by keeping the balance of extracellular matrix, but its role in IS-induced VT is unclear. METHODS: In this study, clinical specimens, animal models, and in vitro VSMCs were used to investigate the role of TSP-1 in IS induced VT and the potential therapeutic methods. RESULTS: We found that TSP-1 was significantly decreased in arterial samples from uremic patients, animal models, and in VSMCs after IS treatment. Downregulation of TSP-1 sufficiently induced the trans-differentiation genotypes of VSMCs. CONCLUSION: Emodin, the main monomer extracted from rhubarb, could alleviate IS-induced VT in vitro by upregulating TSP-1. Taken together, IS induces VT by downregulating TSP-1. Emodin might be a candidate drug to alleviate VT under IS treatment.


Asunto(s)
Emodina , Músculo Liso Vascular , Animales , Humanos , Indicán/toxicidad , Emodina/farmacología , Trombospondina 1 , Transdiferenciación Celular , Miocitos del Músculo Liso , Células Cultivadas
9.
Int J Mol Sci ; 24(8)2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37108582

RESUMEN

White adipose tissue/brown adipose tissue trans-differentiation is one of the main study targets for therapies against obesity and metabolic diseases. In recent years, numerous molecules able to induce such trans-differentiation have been identified; however, their effect in obesity therapies has not been as expected. In the present study, we investigated whether myo-inositol and its stereoisomer D-chiro-inositol could be involved in the browning of white adipose tissue. Our preliminary results clearly indicate that both, at 60 µM concentration, induce the upregulation of uncoupling protein 1 mRNA expression, the main brown adipose tissue marker, and increase mitochondrial copy number as well as oxygen consumption ratio. These changes demonstrate an activation of cell metabolism. Therefore, our results show that human differentiated adipocytes (SGBS and LiSa-2), assume the features typical of brown adipose tissue after both treatments. Furthermore, in the cell lines examined, we proved that D-chiro-inositol and myo-Inositol induce an increase in the expression of estrogen receptor mRNAs, suggesting a possible modulation by these isomers. We also found an increase in the mRNA of peroxisome proliferator-activated receptor gamma, a very important target in lipid metabolism and metabolic diseases. Our results open new opportunities for the use of inositols in therapeutic strategies to counteract obesity and its metabolic complications.


Asunto(s)
Adipocitos , Inositol , Humanos , Inositol/farmacología , Inositol/metabolismo , Adipocitos/metabolismo , Tejido Adiposo Blanco/metabolismo , Tejido Adiposo Pardo/metabolismo , Obesidad/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transdiferenciación Celular
10.
Int J Mol Sci ; 24(12)2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-37373094

RESUMEN

Adult pancreatic acinar cells show high plasticity allowing them to change in their differentiation commitment. Pancreatic acinar-to-ductal metaplasia (ADM) is a cellular process in which the differentiated pancreatic acinar cells transform into duct-like cells. This process can occur as a result of cellular injury or inflammation in the pancreas. While ADM is a reversible process allowing pancreatic acinar regeneration, persistent inflammation or injury can lead to the development of pancreatic intraepithelial neoplasia (PanIN), which is a common precancerous lesion that precedes pancreatic ductal adenocarcinoma (PDAC). Several factors can contribute to the development of ADM and PanIN, including environmental factors such as obesity, chronic inflammation and genetic mutations. ADM is driven by extrinsic and intrinsic signaling. Here, we review the current knowledge on the cellular and molecular biology of ADM. Understanding the cellular and molecular mechanisms underlying ADM is critical for the development of new therapeutic strategies for pancreatitis and PDAC. Identifying the intermediate states and key molecules that regulate ADM initiation, maintenance and progression may help the development of novel preventive strategies for PDAC.


Asunto(s)
Carcinoma in Situ , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Adulto , Humanos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Páncreas/patología , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Células Acinares/patología , Carcinoma in Situ/genética , Metaplasia/patología , Inflamación/patología , Neoplasias Pancreáticas
11.
Curr Issues Mol Biol ; 44(5): 2038-2053, 2022 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-35678667

RESUMEN

Skeletal muscle satellite cells (SMSCs), which are multifunctional muscle-derived stem cells, can differentiate into adipocytes. Long-chain non-coding RNA (lncRNA) has diverse biological functions, including the regulation of gene expression, chromosome silencing, and nuclear transport. However, the regulatory roles and mechanism of lncRNA during adipogenic transdifferentiation in muscle cells have not been thoroughly investigated. Here, porcine SMSCs were isolated, cultured, and induced for adipogenic differentiation. The expressions of lncRNA and mRNA at different time points during transdifferentiation were analysed using RNA-seq analysis. In total, 1005 lncRNAs and 7671 mRNAs showed significant changes in expression at differential differentiation stages. Time-series expression analysis showed that the differentially expressed (DE) lncRNAs and mRNAs were clustered into 5 and 11 different profiles with different changes, respectively. GO, KEGG, and REACTOME enrichment analyses revealed that DE mRNAs with increased expressions during the trans-differentiation were mainly enriched in the pathways for lipid metabolism and fat cell differentiation. The genes with decreased expressions were mainly enriched in the regulation of cell cycle and genetic information processing. In addition, 1883 DE mRNAs were regulated by 193 DE lncRNAs, and these genes were related to the controlling in cell cycle mainly. Notably, three genes in the fatty acid binding protein (FABP) family significantly and continuously increased during trans-differentiation, and 15, 13, and 11 lncRNAs may target FABP3, FABP4, and FABP5 genes by cis- or trans-regulation, respectively. In conclusion, these studies identify a set of new potential regulator for adipogenesis and cell fate and help us in better understanding the molecular mechanisms of trans-differentiation.

12.
Dev Neurosci ; 44(6): 487-497, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35537406

RESUMEN

Astrocytes are the most common glial type in the central nervous system. They play pivotal roles in neurophysiological and neuropathological processes. Mounting evidence indicates that astrocytes may act as neural stem cells and contribute to adult neurogenesis. In previous reports, freshly isolated O-2A progenitors were shown to revert to neural stem-like cells (NSLCs) when cultured with a serum-containing glial medium or bone morphogenic proteins for 3 days and with basic fibroblast growth factor consecutively. NSLCs possess self-renewal and multipotential capacities that can give rise to neurons and glial cells, which suggests that they have stem cell-like properties. However, the underlying molecular mechanisms and cell fate commitment when exposed to a neural conditioned medium remain obscure. In this study, we demonstrated that NSLCs grown in the serum-containing neurobasal medium can differentiate into induced neural-like cells (iNLCs). It was noteworthy that astroglia mixed in these cells, particularly in iNLCs, were gradually replaced by neural phenotypes during this glia-neuron conversion. Remarkably, these glial cells can maintain high levels of proliferation and self-renewal ability by activating the NF-κB and MAPK signals. Finally, we found that Notch, STAT3, autophagy, bHLH, and Wnt signals appear to be critical modulators of these intricate events. Altogether, these data demonstrate that O-2A lineage astroglia can function as neural stem cells and display neurogenic plasticity. Dissecting the regulatory pathways involved in these processes is essential to the understanding of glial cell fate and its precise functions. This finding may foster a better understanding of astrocytic heterogeneity and lead to innovative ways to readily apply stem-like astroglia cells as candidate cell sources for neural repair.


Asunto(s)
Astrocitos , Células-Madre Neurales , Oligodendroglía/metabolismo , Neuroglía , Diferenciación Celular , Linaje de la Célula
13.
J Anat ; 240(6): 1152-1161, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35081258

RESUMEN

Estrogen-induced premature closing of the growth plate in the long bones is a major cause of short stature after premature puberty. Recent studies have found that chondrocytes can directly trans-differentiate into osteoblasts in the process of endochondral bone formation, which indicates that cartilage formation and osteogenesis may be a continuous biological process. However, whether estrogen promotes the direct trans-differentiation of chondrocytes into osteoblasts remains largely unknown. Chondrocytes were treated with different concentrations of 17ß-estradiol, and Alizarin Red staining and alkaline phosphatase activity assay were used to detected osteogenesis. Specific short hairpin RNA and tamoxifen were used to block the estrogen receptor (ER) pathway and osteogenic marker genes and downstream gene expression were detected using real-time quantitative polymerase chain reaction, western blot, and immunohistochemistry staining. The findings showed that 17ß-estradiol promoted the chondrocyte osteogenesis in vitro, even at high concentrations. In addition, blocking of the ERα/ß pathway inhibited the trans-differentiation of chondrocytes into osteogenic cells. Furthermore, we found that dentin matrix protein 1 (DMP1), which is a direct downstream molecular of ER, was involved in 17ß-estradiol/ER pathway-regulated osteogenesis. As well, glycogen synthase kinase-3 beta (GSK-3ß)/ß-catenin signal pathway also participates in ERα/ß/DMP1-regulated chondrocyte osteogenesis. The GSK-3ß/ß-catenin signal pathway was involved in ERα/ß/DMP1-regulated chondrocyte osteogenesis. These findings suggest that ER/DMP1/GSK-3ß/ß-catenin plays a vital role in estrogen regulation of chondrocyte osteogenesis and provide a therapeutic target for short stature caused by epiphyseal fusion.


Asunto(s)
Condrocitos , beta Catenina , Diferenciación Celular/fisiología , Transdiferenciación Celular , Células Cultivadas , Condrocitos/metabolismo , Estradiol , Receptor alfa de Estrógeno/metabolismo , Estrógenos/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Osteogénesis/fisiología , beta Catenina/metabolismo
14.
Rev Endocr Metab Disord ; 23(1): 51-60, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-33387286

RESUMEN

The endocannabinoid system is found in most, if not all, mammalian organs and is involved in a variety of physiological functions, ranging from the control of synaptic plasticity in the brain to the modulation of smooth muscle motility in the gastrointestinal tract. This signaling complex consists of G protein-coupled cannabinoid receptors, endogenous ligands for those receptors (endocannabinoids) and enzymes/transporters responsible for the formation and deactivation of these ligands. There are two subtypes of cannabinoid receptors, CB1 and CB2, and two major endocannabinoids, arachidonoylethanolamide (anandamide) and 2-arachidonoyl-sn-glycerol (2-AG), which are produced upon demand through cleavage of distinct phospholipid precursors. All molecular components of the endocannabinoid system are represented in the adipose organ, where endocannabinoid signals are thought to regulate critical homeostatic processes, including adipogenesis, lipogenesis and thermogenesis. Importantly, obesity was found to be associated with excess endocannabinoid activity in visceral fat depots, and the therapeutic potential of normalizing such activity by blocking CB1 receptors has been the focus of substantial preclinical and clinical research. Results have been mixed thus far, mostly owing to the emergence of psychiatric side effects rooted in the protective functions served by brain endocannabinoids in mood and affect regulation. Further studies about the roles played by the endocannabinoid system in the adipose organ will offer new insights into the pathogenesis of obesity and might help identify new ways to leverage this signaling complex for therapeutic benefit.


Asunto(s)
Tejido Adiposo , Endocannabinoides , Animales , Encéfalo , Endocannabinoides/fisiología , Humanos , Obesidad , Termogénesis
15.
Exp Cell Res ; 402(1): 112563, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33757809

RESUMEN

Development is an irreversible process of differentiating the undifferentiated cells to functional cells. Brain development involves generation of cells with varied phenotype and functions, which is limited during adulthood, stress, damage/degeneration. Cellular reprogramming makes differentiation reversible process with reprogramming somatic/stem cells to alternative fate with/without stem cells. Exogenously expressed transcription factors or small molecule inhibitors have driven reprogramming of stem/somatic cells to neurons providing alternative approach for pre-clinical/clinical testing and therapeutics. Here in, we report a novel approach of microRNA (miR)- induced trans-differentiation of macrophages (CD11b high) to induced neuronal cells (iNCs) (neuronal markershigh- Nestin, Nurr1, Map2, NSE, Tubb3 and Mash1) without exogenous use of transcription factors. miR 9, 124, 155 and 224 successfully transdifferentiated macrophages to neurons with transient stem cell-like phenotype. We report trans differentiation efficacy 18% and 21% with miR 124 and miR 155. in silico(String 10.0, miR gator, mESAdb, TargetScan 7.0) and experimental analysis indicate that the reprogramming involves alteration of pluripotencygenes like Oct4, Sox2, Klf4, Nanog and pluripotency miR, miR 302. iNCs also shifted to G0 phase indicating manipulation of cell cycle by these miRs. Further, CD133+ intermediate cells obtained during current protocol could be differentiated to iNCs using miRs. The syanpsin+ neurons were functionally active and displayed intracellular Ca+2 evoke on activation. miRs could also transdifferentiate bone marrow-derived macrophages and peripheral blood mononuclear cells to neuronal cells. The current protocol could be employed for direct in vivo reprogramming of macrophages to neurons without teratoma formation for transplantation and clinical studies.


Asunto(s)
Diferenciación Celular/genética , MicroARNs/genética , Animales , Transdiferenciación Celular/genética , Reprogramación Celular/genética , Humanos , Factor 4 Similar a Kruppel , Macrófagos/citología , Macrófagos/metabolismo , Ratones , Neuronas/metabolismo , Células Madre/citología , Células Madre/metabolismo
16.
Genes Dev ; 28(20): 2219-32, 2014 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-25319825

RESUMEN

Despite their origin from the inner cell mass, embryonic stem (ES) cells undergo differentiation to the trophectoderm (TE) lineage by repression of the ES cell master regulator Oct4 or activation of the TE master regulator Caudal-type homeobox 2 (Cdx2). In contrast to the in-depth studies of ES cell self-renewal and pluripotency, few TE-specific regulators have been identified, thereby limiting our understanding of mechanisms underlying the first cell fate decision. Here we show that up-regulation and nuclear entry of AT-rich interactive domain 3a (Arid3a) drives TE-like transcriptional programs in ES cells, maintains trophoblast stem (TS) cell self-renewal, and promotes further trophoblastic differentiation both upstream and independent of Cdx2. Accordingly, Arid3a(-/-) mouse post-implantation placental development is severely impaired, resulting in early embryonic death. We provide evidence that Arid3a directly activates TE-specific and trophoblast lineage-specific genes while directly repressing pluripotency genes via differential regulation of epigenetic acetylation or deacetylation. Our results identify Arid3a as a critical regulator of TE and placental development through execution of the commitment and differentiation phases of the first cell fate decision.


Asunto(s)
Diferenciación Celular/genética , Proteínas de Unión al ADN/metabolismo , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Regulación del Desarrollo de la Expresión Génica , Factores de Transcripción/metabolismo , Transporte Activo de Núcleo Celular , Animales , Linaje de la Célula/genética , Proteínas de Unión al ADN/genética , Femenino , Células HEK293 , Humanos , Ratones , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Placentación , Embarazo , Factores de Transcripción/genética
17.
Int J Mol Sci ; 23(7)2022 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-35409189

RESUMEN

Adipocytes from the superficial layer of subcutaneous adipose tissue undergo cyclic de- and re-differentiation, which can significantly influence the development of skin inflammation under different cutaneous conditions. This inflammation can be connected with local loading of the reticular dermis with lipids released due to de-differentiation of adipocytes during the catagen phase of the hair follicle cycle. Alternatively, the inflammation parallels a widespread release of cathelicidin, which typically takes place in the anagen phase (especially in the presence of pathogens). Additionally, trans-differentiation of dermal adipocytes into myofibroblasts, which can occur under some pathological conditions, can be responsible for the development of collateral scarring in acne. Here, we provide an overview of such cellular conversions in the skin and discuss their possible involvement in the pathophysiology of inflammatory skin conditions, such as acne and psoriasis.


Asunto(s)
Acné Vulgar , Enfermedades de la Piel , Adipocitos , Folículo Piloso/fisiología , Humanos , Inflamación , Piel
18.
Int J Mol Sci ; 23(24)2022 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-36555471

RESUMEN

The activation of monocytes and their trans-differentiation into macrophages are critical processes of the immune response. Prior work has characterized the differences in the expression between monocytes and macrophages, but the transitional process between these cells is poorly detailed. Here, we analyzed the temporal changes of the transcriptome during trans-differentiation of primary human monocytes into M0 macrophages. We find changes with many transcription factors throughout the process, the vast majority of which exhibit a maximally different expression at the intermediate stages. A few factors, including AP-1, were previously known to play a role in immunological transitions, but most were not. Thus, these findings indicate that this trans-differentiation requires the dynamic expression of many transcription factors not previously discussed in immunology, and provide a foundation for the delineation of the molecular mechanisms associated with healthy or pathological responses that involve this transition.


Asunto(s)
Monocitos , Factores de Transcripción , Humanos , Monocitos/metabolismo , Factores de Transcripción/metabolismo , Macrófagos/metabolismo , Diferenciación Celular/fisiología , Transdiferenciación Celular/genética
19.
Int J Mol Sci ; 23(13)2022 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-35805883

RESUMEN

In patients with type 1 diabetes (T1D), compromised pancreatic ß-cell functions are compensated through daily insulin injections or the transplantation of pancreatic tissue or islet cells. However, both approaches are associated with specific challenges. The transplantation of mesenchymal stem cells (MSCs) represents a potential alternative, as MSCs have tissue-forming capacity and can be isolated from various tissues. The human umbilical cord (hUC) is a good source of freely available MSCs, which can be collected through pain-free, non-invasive methods subject to minimal ethical concerns. We sought to develop a method for the in vitro generation of insulin-producing cells (IPCs) using MSCs. We examined the potential therapeutic uses and efficacy of IPCs generated from hUC-derived MSCs (hUC-IPCs) and human adipose tissue (hAD)-derived MSCs (hAD-IPCs) through in vitro experiments and streptozotocin (STZ)-induced C57BL/6 T1D mouse models. We discovered that compared to hAD-IPCs, hUC-IPCs exhibited a superior insulin secretion capacity. Therefore, hUC-IPCs were selected as candidates for T1D cell therapy in mice. Fasting glucose and intraperitoneal glucose tolerance test levels were lower in hUC-IPC-transplanted mice than in T1D control mice and hAD-IPC-transplanted mice. Our findings support the potential use of MSCs for the treatment of T1D.


Asunto(s)
Diabetes Mellitus Tipo 1 , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Animales , Diferenciación Celular , Diabetes Mellitus Tipo 1/terapia , Humanos , Insulina , Ratones , Ratones Endogámicos C57BL , Cordón Umbilical
20.
J Gastroenterol Hepatol ; 36(12): 3418-3428, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34151462

RESUMEN

BACKGROUND AND AIM: In chronic hepatic diseases where treatment strategies are not available, deposited fibrotic tissues deteriorate the intrinsic regeneration capacity of the liver by creating special restrictions. Thus, if the anti-fibrosis modality is efficiently applied, the regeneration capacity of the liver should be reactivated even in such refractory hepatic diseases. METHODS: Rat liver fibrosis was induced by dimethyl-nitrosamine (DMN). Another liver fibrosis model was established in CCl4 treated Sox9CreERT2ROSA26: YFP mice. To resolve hepatic fibrosis, vitamin A-coupled liposomes containing siRNA HSP47 (VA-liposome siHSP47) were employed. EpCAM + hepatic progenitor cells from GFP rats were transplanted to DMN rat liver to examine their trans-differentiation into hepatic cells after resolution of liver fibrosis. RESULTS: Even under continuous exposure to such strong hepatotoxin as DMN, rats undergoing VA-liposome siHSP47 treatment showed an increment of DNA synthesis of hepatocytes with the concomitant restoration of impaired liver weight and normalization of albumin levels. These results were consistent with the observation that GFP + EpCAM hepatic progenitor cells transplanted to DMN rat liver, trans-differentiated into GFP + mature hepatic cells after VA-liposome siHSP47 treatment. Another rodent model also proved regeneration potential of the fibrotic liver in CCl4 administered Sox9CreERT2ROSA26: YFP mice, VA-liposome siHSP47 treatment-induced restoration of liver weight and trans-differentiation of YEP + Sox9 + cells into YFP + hepatic cells, although because of relatively mild hepatotoxicity of CCl4, undamaged hepatocytes also proliferated. CONCLUSIONS: These results demonstrated that regeneration of chronically damaged liver indeed occurs after anti-fibrosis treatment even under continuous exposure to hepatotoxin, which promises a significant benefit of the anti-fibrosis therapy for refractory liver diseases.


Asunto(s)
Liposomas , Cirrosis Hepática , ARN Interferente Pequeño , Vitamina A , Animales , Fibrosis , Liposomas/farmacología , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/patología , Regeneración Hepática/efectos de los fármacos , Lesión Pulmonar/patología , Ratones , ARN Interferente Pequeño/farmacología , Ratas , Resultado del Tratamiento , Vitamina A/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA