Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 82(16): 3103-3118.e8, 2022 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-35752172

RESUMEN

The development of CRISPR-based barcoding methods creates an exciting opportunity to understand cellular phylogenies. We present a compact, tunable, high-capacity Cas12a barcoding system called dual acting inverted site array (DAISY). We combined high-throughput screening and machine learning to predict and optimize the 60-bp DAISY barcode sequences. After optimization, top-performing barcodes had ∼10-fold increased capacity relative to the best random-screened designs and performed reliably across diverse cell types. DAISY barcode arrays generated ∼12 bits of entropy and ∼66,000 unique barcodes. Thus, DAISY barcodes-at a fraction of the size of Cas9 barcodes-achieved high-capacity barcoding. We coupled DAISY barcoding with single-cell RNA-seq to recover lineages and gene expression profiles from ∼47,000 human melanoma cells. A single DAISY barcode recovered up to ∼700 lineages from one parental cell. This analysis revealed heritable single-cell gene expression and potential epigenetic modulation of memory gene transcription. Overall, Cas12a DAISY barcoding is an efficient tool for investigating cell-state dynamics.


Asunto(s)
Sistemas CRISPR-Cas , Código de Barras del ADN Taxonómico , Linaje de la Célula/genética , Código de Barras del ADN Taxonómico/métodos , Humanos , Aprendizaje Automático , Filogenia
2.
Mol Cell ; 81(23): 4843-4860.e8, 2021 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-34648748

RESUMEN

Maternal stress can have long-lasting epigenetic effects on offspring. To examine how epigenetic changes are triggered by stress, we examined the effects of activating the universal stress-responsive heat shock transcription factor HSF-1 in the germline of Caenorhabditis elegans. We show that, when activated in germ cells, HSF-1 recruits MET-2, the putative histone 3 lysine 9 (H3K9) methyltransferase responsible for repressive H3K9me2 (H3K9 dimethyl) marks in chromatin, and negatively bookmarks the insulin receptor daf-2 and other HSF-1 target genes. Increased H3K9me2 at these genes persists in adult progeny and shifts their stress response strategy away from inducible chaperone expression as a mechanism to survive stress and instead rely on decreased insulin/insulin growth factor (IGF-1)-like signaling (IIS). Depending on the duration of maternal heat stress exposure, this epigenetic memory is inherited by the next generation. Thus, paradoxically, HSF-1 recruits the germline machinery normally responsible for erasing transcriptional memory but, instead, establishes a heritable epigenetic memory of prior stress exposure.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Epigénesis Genética , Factores de Transcripción del Choque Térmico/metabolismo , Receptor de Insulina/metabolismo , Transducción de Señal , Somatomedinas/metabolismo , Factores de Transcripción/genética , Animales , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/metabolismo , Células Germinativas/metabolismo , Histonas , Insulina/metabolismo , Masculino , Meiosis , Mitosis , Unión Proteica , Factores de Transcripción/metabolismo , Transcripción Genética
3.
EMBO J ; 43(3): 437-461, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38228917

RESUMEN

Plants are often exposed to recurring adverse environmental conditions in the wild. Acclimation to high temperatures entails transcriptional responses, which prime plants to better withstand subsequent stress events. Heat stress (HS)-induced transcriptional memory results in more efficient re-induction of transcription upon recurrence of heat stress. Here, we identified CDK8 and MED12, two subunits of the kinase module of the transcription co-regulator complex, Mediator, as promoters of heat stress memory and associated histone modifications in Arabidopsis. CDK8 is recruited to heat-stress memory genes by HEAT SHOCK TRANSCRIPTION FACTOR A2 (HSFA2). Like HSFA2, CDK8 is largely dispensable for the initial gene induction upon HS, and its function in transcriptional memory is thus independent of primary gene activation. In addition to the promoter and transcriptional start region of target genes, CDK8 also binds their 3'-region, where it may promote elongation, termination, or rapid re-initiation of RNA polymerase II (Pol II) complexes during transcriptional memory bursts. Our work presents a complex role for the Mediator kinase module during transcriptional memory in multicellular eukaryotes, through interactions with transcription factors, chromatin modifications, and promotion of Pol II efficiency.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Respuesta al Choque Térmico/genética , Factores de Transcripción del Choque Térmico/metabolismo , Activación Transcripcional , Nucleotidiltransferasas/metabolismo , Complejo Mediador/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Quinasa 8 Dependiente de Ciclina/genética , Quinasa 8 Dependiente de Ciclina/metabolismo
4.
Mol Cell ; 78(5): 915-925.e7, 2020 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-32392469

RESUMEN

Transcriptional memory of gene expression enables adaptation to repeated stimuli across many organisms. However, the regulation and heritability of transcriptional memory in single cells and through divisions remains poorly understood. Here, we combined microfluidics with single-cell live imaging to monitor Saccharomyces cerevisiae galactokinase 1 (GAL1) expression over multiple generations. By applying pedigree analysis, we dissected and quantified the maintenance and inheritance of transcriptional reinduction memory in individual cells through multiple divisions. We systematically screened for loss- and gain-of-memory knockouts to identify memory regulators in thousands of single cells. We identified new loss-of-memory mutants, which affect memory inheritance into progeny. We also unveiled a gain-of-memory mutant, elp6Δ, and suggest that this new phenotype can be mediated through decreased histone occupancy at the GAL1 promoter. Our work uncovers principles of maintenance and inheritance of gene expression states and their regulators at the single-cell level.


Asunto(s)
Galactoquinasa/genética , Regulación Fúngica de la Expresión Génica/genética , Transcripción Genética/genética , Galactosa/metabolismo , Expresión Génica/genética , Genes Fúngicos/genética , Herencia/genética , Histonas/metabolismo , Regiones Promotoras Genéticas/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Análisis de la Célula Individual/métodos
5.
Mol Cell ; 80(3): 396-409.e6, 2020 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-33108759

RESUMEN

Cytokine activation of cells induces gene networks involved in inflammation and immunity. Transient gene activation can have a lasting effect even in the absence of ongoing transcription, known as long-term transcriptional memory. Here we explore the nature of the establishment and maintenance of interferon γ (IFNγ)-induced priming of human cells. We find that, although ongoing transcription and local chromatin signatures are short-lived, the IFNγ-primed state stably propagates through at least 14 cell division cycles. Single-cell analysis reveals that memory is manifested by an increased probability of primed cells to engage in target gene expression, correlating with the strength of initial gene activation. Further, we find that strongly memorized genes tend to reside in genomic clusters and that long-term memory of these genes is locally restricted by cohesin. We define the duration, stochastic nature, and molecular mechanisms of IFNγ-induced transcriptional memory, relevant to understanding enhanced innate immune signaling.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Interferón gamma/metabolismo , Activación Transcripcional/genética , Proteínas de Ciclo Celular/fisiología , Línea Celular , Cromatina/genética , Proteínas Cromosómicas no Histona/fisiología , Regulación de la Expresión Génica/inmunología , Células HeLa , Humanos , Inflamación , Interferón gamma/fisiología , Unión Proteica/genética , Factor de Transcripción STAT1/metabolismo , Transducción de Señal/genética , Transcripción Genética/genética , Activación Transcripcional/fisiología , Cohesinas
6.
EMBO J ; 42(24): e113595, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-37937667

RESUMEN

Plants often experience recurrent stressful events, for example, during heat waves. They can be primed by heat stress (HS) to improve the survival of more severe heat stress conditions. At certain genes, sustained expression is induced for several days beyond the initial heat stress. This transcriptional memory is associated with hyper-methylation of histone H3 lysine 4 (H3K4me3), but it is unclear how this is maintained for extended periods. Here, we determined histone turnover by measuring the chromatin association of HS-induced histone H3.3. Genome-wide histone turnover was not homogenous; in particular, H3.3 was retained longer at heat stress memory genes compared to HS-induced non-memory genes during the memory phase. While low nucleosome turnover retained H3K4 methylation, methylation loss did not affect turnover, suggesting that low nucleosome turnover sustains H3K4 methylation, but not vice versa. Together, our results unveil the modulation of histone turnover as a mechanism to retain environmentally mediated epigenetic modifications.


Asunto(s)
Histonas , Nucleosomas , Histonas/genética , Histonas/metabolismo , Nucleosomas/genética , Cromatina/genética , Respuesta al Choque Térmico/genética , Epigénesis Genética
7.
Immunity ; 49(4): 615-626.e6, 2018 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-30332629

RESUMEN

Macrophages polarize into distinct phenotypes in response to complex environmental cues. We found that the nuclear receptor PPARγ drove robust phenotypic changes in macrophages upon repeated stimulation with interleukin (IL)-4. The functions of PPARγ on macrophage polarization in this setting were independent of ligand binding. Ligand-insensitive PPARγ bound DNA and recruited the coactivator P300 and the architectural protein RAD21. This established a permissive chromatin environment that conferred transcriptional memory by facilitating the binding of the transcriptional regulator STAT6 and RNA polymerase II, leading to robust production of enhancer and mRNAs upon IL-4 re-stimulation. Ligand-insensitive PPARγ binding controlled the expression of an extracellular matrix remodeling-related gene network in macrophages. Expression of these genes increased during muscle regeneration in a mouse model of injury, and this increase coincided with the detection of IL-4 and PPARγ in the affected tissue. Thus, a predominantly ligand-insensitive PPARγ:RXR cistrome regulates progressive and/or reinforcing macrophage polarization.


Asunto(s)
Epigénesis Genética/inmunología , Epigenómica/métodos , Regulación de la Expresión Génica/inmunología , Activación de Macrófagos/inmunología , Macrófagos/inmunología , PPAR gamma/inmunología , Animales , Línea Celular , Células Cultivadas , Interleucina-4/inmunología , Interleucina-4/farmacología , Ligandos , Activación de Macrófagos/genética , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Ratones Noqueados , PPAR gamma/genética , PPAR gamma/metabolismo
8.
Mol Cell ; 66(1): 5-6, 2017 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-28388441

RESUMEN

Transcriptional memory often relies on interactions with nuclear pore proteins. In this issue of Molecular Cell, Pascual-Garcia et al. (2017) describe hormone-induced developmental transcriptional memory in cells that have previously experienced ecdysone, mediated by Nup98-dependent enhancer-promoter looping.


Asunto(s)
Proteínas de Complejo Poro Nuclear/genética , Secuencias Reguladoras de Ácidos Nucleicos , Regiones Promotoras Genéticas
9.
Mol Cell ; 66(1): 63-76.e6, 2017 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-28366641

RESUMEN

Nuclear pore complex components (Nups) have been implicated in transcriptional regulation, yet what regulatory steps are controlled by metazoan Nups remains unclear. We identified the presence of multiple Nups at promoters, enhancers, and insulators in the Drosophila genome. In line with this binding, we uncovered a functional role for Nup98 in mediating enhancer-promoter looping at ecdysone-inducible genes. These genes were found to be stably associated with nuclear pores before and after activation. Although changing levels of Nup98 disrupted enhancer-promoter contacts, it did not affect ongoing transcription but instead compromised subsequent transcriptional activation or transcriptional memory. In support of the enhancer-looping role, we found Nup98 to gain and retain physical interactions with architectural proteins upon stimulation with ecdysone. Together, our data identify Nups as a class of architectural proteins for enhancers and supports a model in which animal genomes use the nuclear pore as an organizing scaffold for inducible poised genes.


Asunto(s)
Cromatina/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Elementos de Facilitación Genéticos , Regiones Promotoras Genéticas , Transcripción Genética , Activación Transcripcional , Animales , Animales Modificados Genéticamente , Sitios de Unión , Línea Celular , Cromatina/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/efectos de los fármacos , Drosophila melanogaster/genética , Ecdisona/farmacología , Genotipo , Elementos Aisladores , Mutación , Proteínas de Complejo Poro Nuclear/genética , Proteínas de Complejo Poro Nuclear/metabolismo , Fenotipo , Unión Proteica , Interferencia de ARN , Transcripción Genética/efectos de los fármacos , Activación Transcripcional/efectos de los fármacos , Transfección
10.
BMC Biol ; 22(1): 58, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38468285

RESUMEN

BACKGROUND: Cell differentiation requires the integration of two opposite processes, a stabilizing cellular memory, especially at the transcriptional scale, and a burst of gene expression variability which follows the differentiation induction. Therefore, the actual capacity of a cell to undergo phenotypic change during a differentiation process relies upon a modification in this balance which favors change-inducing gene expression variability. However, there are no experimental data providing insight on how fast the transcriptomes of identical cells would diverge on the scale of the very first two cell divisions during the differentiation process. RESULTS: In order to quantitatively address this question, we developed different experimental methods to recover the transcriptomes of related cells, after one and two divisions, while preserving the information about their lineage at the scale of a single cell division. We analyzed the transcriptomes of related cells from two differentiation biological systems (human CD34+ cells and T2EC chicken primary erythrocytic progenitors) using two different single-cell transcriptomics technologies (scRT-qPCR and scRNA-seq). CONCLUSIONS: We identified that the gene transcription profiles of differentiating sister cells are more similar to each other than to those of non-related cells of the same type, sharing the same environment and undergoing similar biological processes. More importantly, we observed greater discrepancies between differentiating sister cells than between self-renewing sister cells. Furthermore, a progressive increase in this divergence from first generation to second generation was observed when comparing differentiating cousin cells to self renewing cousin cells. Our results are in favor of a gradual erasure of transcriptional memory during the differentiation process.


Asunto(s)
Perfilación de la Expresión Génica , Transcriptoma , Humanos , Diferenciación Celular/genética , División Celular , Análisis de la Célula Individual/métodos
11.
J Cell Physiol ; 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38465708

RESUMEN

Maternal obesity (MO) is a significant cause of increased cardiometabolic risk in offspring, who present endothelial dysfunction at birth. Alterations in physiologic and cellular redox status are strongly associated with altered gene regulation in arterial endothelium. However, specific mechanisms by which the pro-oxidant fetal environment in MO could modulate the vascular gene expression and function during the offspring's postnatal life are elusive. We tested if oxidative stress could reprogram the antioxidant-coding gene's response to a pro-oxidant challenge through an epigenetic transcriptional memory (ETM) mechanism. A pro-oxidant double-hit protocol was applied to human umbilical artery endothelial cells (HUAECs) and EA.hy 926 endothelial cell lines. The ETM acquisition in the HMOX1 gene was analyzed by RT-qPCR. HMOX1 mRNA decay was evaluated by Actinomycin-D treatment and RT-qPCR. To assess the chromatin accessibility and the enrichment of NRF2, RNAP2, and phosphorylation at serin-5 of RNAP2, at HMOX1 gene regulatory regions, were used DNase HS-qPCR and ChIP-qPCR assays, respectively. The CpG methylation pattern at the HMOX1 core promoter was analyzed by DNA bisulfite conversion and Sanger sequencing. Data were analyzed using two-way ANOVA, and p < 0.05 was statistically significant. Using a pro-oxidant double-hit protocol, we found that the Heme Oxygenase gene (HMOX1) presents an ETM response associated with changes in the chromatin structure at the promoter and gene regulatory regions. The ETM response was characterized by a paused-RNA Polymerase 2 and NRF2 enrichment at the transcription start site and Enhancer 2 of the HMOX1 gene, respectively. Changes in DNA methylation pattern at the HMOX1 promoter were not a hallmark of this oxidative stress-induced ETM. These data suggest that a pro-oxidant milieu could trigger an ETM at the vascular level, indicating a potential epigenetic mechanism involved in the increased cardiovascular risk in the offspring of women with obesity.

12.
Biochem Soc Trans ; 52(2): 821-830, 2024 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-38526206

RESUMEN

Mitosis involves intricate steps, such as DNA condensation, nuclear membrane disassembly, and phosphorylation cascades that temporarily halt gene transcription. Despite this disruption, daughter cells remarkably retain the parent cell's gene expression pattern, allowing for efficient transcriptional memory after division. Early studies in mammalian cells suggested that transcription factors (TFs) mark genes for swift reactivation, a phenomenon termed 'mitotic bookmarking', but conflicting data emerged regarding TF presence on mitotic chromosomes. Recent advancements in live-cell imaging and fixation-free genomics challenge the conventional belief in universal formaldehyde fixation, revealing dynamic TF interactions during mitosis. Here, we review recent studies that provide examples of at least four modes of TF-DNA interaction during mitosis and the molecular mechanisms that govern these interactions. Additionally, we explore the impact of these interactions on transcription initiation post-mitosis. Taken together, these recent studies call for a paradigm shift toward a dynamic model of TF behavior during mitosis, underscoring the need for incorporating dynamics in mechanistic models for re-establishing transcription post-mitosis.


Asunto(s)
Mitosis , Factores de Transcripción , Transcripción Genética , Humanos , Factores de Transcripción/metabolismo , Animales , ADN/metabolismo , Regulación de la Expresión Génica
13.
J Exp Bot ; 75(16): 5037-5053, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-38727615

RESUMEN

Transgenerational plasticity in plants enables rapid adaptation to environmental changes, allowing organisms and their offspring to adapt to the environment without altering their underlying DNA. In this study, we investigated the transgenerational plasticity in salinity tolerance of rice plants using a reciprocal transplant experimental strategy. Our aim was to assess whether non-genetic environment-induced phenotypic modifications and transgenerational salinity affect the salinity tolerance of progeny while excluding nuclear genomic factors for two generations. Using salt-tolerant and salt-sensitive rice genotypes, we observed that the parentally salt-stressed salt-sensitive genotype displayed greater growth performance, photosynthetic activity, yield performance, and transcriptional responses than the parentally non-stressed salt-sensitive plants under salt stress conditions. Surprisingly, salt stress-exposed salt-tolerant progeny did not exhibit as much salinity tolerance as salt stress-exposed salt-sensitive progeny under salt stress. Our findings indicate that the phenotypes of offspring plants differed based on the environment experienced by their ancestors, resulting in heritable transgenerational phenotypic modifications in salt-sensitive genotypes via maternal effects. These results elucidated the mechanisms underlying transgenerational plasticity in salinity tolerance, providing valuable insights into how plants respond to changing environmental conditions.


Asunto(s)
Oryza , Fenotipo , Tolerancia a la Sal , Oryza/genética , Oryza/fisiología , Oryza/crecimiento & desarrollo , Tolerancia a la Sal/genética , Genotipo , Adaptación Fisiológica/genética , Salinidad , Ambiente
14.
Chromosome Res ; 31(1): 8, 2023 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-36725757

RESUMEN

The nucleus is a complex organelle that hosts the genome and is essential for vital processes like DNA replication, DNA repair, transcription, and splicing. The genome is non-randomly organized in the three-dimensional space of the nucleus. This functional sub-compartmentalization was thought to be organized on the framework of nuclear matrix (NuMat), a non-chromatin scaffold that functions as a substratum for various molecular processes of the nucleus. More recently, nuclear bodies or membrane-less subcompartments of the nucleus are thought to arise due to phase separation of chromatin, RNA, and proteins. The nuclear architecture is an amalgamation of the relative organization of chromatin, epigenetic landscape, the nuclear bodies, and the nucleoskeleton in the three-dimensional space of the nucleus. During mitosis, the nucleus undergoes drastic changes in morphology to the degree that it ceases to exist as such; various nuclear components, including the envelope that defines the nucleus, disintegrate, and the chromatin acquires mitosis-specific epigenetic marks and condenses to form chromosome. Upon mitotic exit, chromosomes are decondensed, re-establish hierarchical genome organization, and regain epigenetic and transcriptional status similar to that of the mother cell. How this mitotic memory is inherited during cell division remains a puzzle. NuMat components that are a part of the mitotic chromosome in the form of mitotic chromosome scaffold (MiCS) could potentially be the seeds that guide the relative re-establishment of the epigenome, chromosome territories, and the nuclear bodies. Here, we synthesize the advances towards understanding cellular memory of nuclear architecture across mitosis and propose a hypothesis that a subset of NuMat proteome essential for nucleation of various nuclear bodies are retained in MiCS to serve as seeds of mitotic memory, thus ensuring the daughter cells re-establish the complex status of nuclear architecture similar to that of the mother cells, thereby maintaining the pre-mitotic transcriptional status.


Asunto(s)
Núcleo Celular , Cromatina , Núcleo Celular/genética , Núcleo Celular/metabolismo , Cromatina/genética , Cromatina/metabolismo , Cromosomas/genética , Matriz Nuclear/metabolismo , Mitosis
15.
Trends Genet ; 36(3): 160-176, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32007289

RESUMEN

Like breadcrumbs in the forest, cotranscriptionally acquired histone methylation acts as a memory of prior transcription. Because it can be retained through cell divisions, transcriptional memory allows cells to coordinate complex transcriptional programs during development. However, if not reprogrammed properly during cell fate transitions, it can also disrupt cellular identity. In this review, we discuss the consequences of failure to reprogram histone methylation during three crucial epigenetic reprogramming windows: maternal reprogramming at fertilization, embryonic stem cell (ESC) differentiation, and the continuous maintenance of cell identity in differentiated cells. In addition, we discuss how following the wrong breadcrumb trail of transcriptional memory provides a framework for understanding how heterozygous loss-of-function mutations in histone-modifying enzymes may cause severe neurodevelopmental disorders.


Asunto(s)
Diferenciación Celular/genética , Reprogramación Celular/genética , Epigénesis Genética/genética , Histona Metiltransferasas/genética , Trastornos del Neurodesarrollo/genética , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Fertilización/genética , Código de Histonas/genética , Humanos , Metilación , Trastornos del Neurodesarrollo/enzimología , Trastornos del Neurodesarrollo/patología
16.
Toxicol Appl Pharmacol ; 481: 116753, 2023 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-37951547

RESUMEN

Exposure to nickel, an environmental respiratory toxicant, is associated with lung diseases including asthma, pulmonary fibrosis, bronchitis and cancers. Our previous studies have shown that a majority of the nickel-induced transcriptional changes are persistent and do not reverse even after the termination of exposure. This suggested transcriptional memory, wherein the cell 'remembers' past nickel exposure. Transcriptional memory, due to which the cells respond more robustly to a previously encountered stimulus has been identified in a number of organisms. Therefore, transcriptional memory has been described as an adaptive mechanism. However, transcriptional memory caused by environmental toxicant exposures has not been well investigated. Moreover, how the transcriptional memory caused by an environmental toxicant might influence the outcome of exposure to a second toxicant has not been explored. In this study, we investigated whether nickel-induced transcriptional memory influences the outcome of the cell's response to a second respiratory toxicant, nicotine. Nicotine, an addictive compound in tobacco, is associated with the development of chronic lung diseases including chronic obstructive pulmonary disease (COPD) and pulmonary fibrosis. Our results show that nicotine exposure upregulated a subset of genes only in the cells previously exposed to nickel. Furthermore, our analyses indicate robust activation of interferon (IFN) signaling in these cells. IFN signaling is a driver of inflammation, which is associated with many chronic lung diseases. Therefore, our results suggest that nicotine exposure of lung cells that retain the transcriptional memory of previous nickel exposure could result in increased susceptibility to developing chronic inflammatory lung diseases.


Asunto(s)
Níquel , Fibrosis Pulmonar , Humanos , Níquel/toxicidad , Nicotina/toxicidad , Fibrosis Pulmonar/patología , Pulmón/patología , Células Epiteliales , Interferones
17.
Genomics ; 113(6): 3705-3717, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34509618

RESUMEN

Ex vivo expansion of cells is necessary in regenerative medicine to generate large populations for therapeutic use. Adaptation to culture conditions prompt an increase in transcriptome diversity and decreased population heterogeneity in cKit+ cardiac interstitial cells (cCICs). The "transcriptional memory" influenced by cellular origin remained unexplored and is likely to differ between neonatal versus senescent input cells undergoing culture expansion. Transcriptional profiles derived from single cell RNASEQ platforms characterized human cCIC derived from neonatal and adult source tissue. Bioinformatic analysis revealed contrasting imprint of age influencing targets of 1) cell cycle, 2) senescence associated secretory phenotype (SASP), 3) RNA transport, and 4) ECM-receptor/fibrosis. A small subset of cCICs exist in a transcriptional continuum between "youthful" phenotype and the damaged microenvironment of LVAD tissue in which they were embedded. The connate transcriptional phenotypes offer fundamental biological insight and highlights cellular input as a consideration in culture expansion and adoptive transfer protocols.


Asunto(s)
Senescencia Celular , Transcriptoma , Células Cultivadas , Senescencia Celular/genética , Biología Computacional , Humanos , Fenotipo
18.
Int J Mol Sci ; 23(11)2022 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-35682597

RESUMEN

Drought has gradually become one of the most severe abiotic stresses on plants. Plants that experience stress training can exhibit enhanced stress tolerance. According to MicroRNA (miRNA) sequencing data, this study identified 195 candidate drought memory-related miRNAs in wheat, and targets of 64 (32.8%) candidate miRNAs were validated by degradome sequencing. Several drought memory-related miRNAs such as tae-miR9676-5p, tae-MIR9676-p3_1ss21GA, tae-miR171a, tae-miR531_L-2, tae-miR408_L-1, PC-3p-5049_3565, tae-miR396c-5p, tae-miR9778, tae-miR164a-5p, and tae-miR9662a-3p were validated as having a strong response to drought memory by regulating the expression of their target genes. In addition, overexpression of drought memory-related miRNA, tae-miR531_L-2, can remarkably improve the drought tolerance of transgenic Arabidopsisthaliana. Drought memory can regulate plant cellular signal transduction, plant biosynthetic processes, and other biological processes to cope with drought via transcriptional memory. In addition, drought memory-related miRNAs can promote starch and sucrose catabolism and soluble sugar accumulation and regulate proline homeostasis to improve plant drought resistance. Our results could contribute to an understanding of drought memory in wheat seedlings and may provide a new strategy for drought-resistant breeding.


Asunto(s)
MicroARNs , Triticum , Sequías , Regulación de la Expresión Génica de las Plantas , MicroARNs/genética , MicroARNs/metabolismo , Fitomejoramiento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética , Triticum/metabolismo
19.
New Phytol ; 229(3): 1615-1634, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32966623

RESUMEN

Plants that successfully acclimate to stress can resume growth under stressful conditions. The grass Brachypodium distachyon can grow a cold-adaptive morphology during cold acclimation. Studies on transcriptional memory (TM) have revealed that plants can be primed for stress by adjusting their transcriptional responses, but the function of TM in stress acclimation is not well understood. We investigated the function of TM during cold acclimation in B. distachyon. Quantitative polymerase chain reaction (qPCR), RNA-seq and chromatin immunoprecipitation qPCR analyses were performed on plants exposed to repeated episodes of cold to characterize the presence and stability of TM during the stress and growth responses of cold acclimation. Transcriptional memory mainly dampened stress responses as growth resumed and as B. distachyon became habituated to cold stress. Although permanent on vernalization gene VRN1, TMs were short-term and reversible on cold-stress genes. Growing under cold conditions also coincided with the acquisition of new and targeted cold-induced transcriptional responses. Overall, TM provided plasticity to cold stress responses during cold acclimation in B. distachyon, leading to stress habituation, acquired stress responses, and resumed growth. Our study shows that chromatin-associated TMs are involved in tuning plant responses to environmental change and, as such, regulate both stress and developmental components that characterize cold-climate adaptation in B. distachyon.


Asunto(s)
Brachypodium , Aclimatación , Brachypodium/genética , Brachypodium/metabolismo , Respuesta al Choque por Frío , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
20.
FASEB J ; 34(1): 1637-1651, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31914649

RESUMEN

Studies on the effects of transcriptional memory on clone reprogramming in mammals are limited. In the present study, we observed higher levels of active histone H3 lysine 4 trimethylation (H3K4me3 and 5-hydroxymethylcytosine) and repressive (5-methylcytosine) epigenetic modifications in bovine early cloned embryos than in in vitro fertilized embryos. We hypothesized that aberrant epigenetic modification may result in transcriptional disorders in bovine somatic cell nuclear transfer (SCNT) embryos. RNA sequencing results confirmed that both abnormal transcriptional silencing and transcriptional activation are involved in bovine SCNT reprogramming. The cloned embryos exhibited excessive transcription in RNA processing- and translation-related genes as well as transcriptional defects in reproduction-related genes whose transcriptional profiles were similar to those in donor cells. These results demonstrated the existence of active and silent memory genes inherited from donor cells in early bovine SCNT embryos. Further, H3K4me3-specific demethylase 5B (KDM5B) mRNA was injected into the reconstructed embryos to reduce the increased H3K4me3 modification. KDM5B overexpression not only reduced the transcriptional level of active memory genes, but also promoted the expression of silent memory genes; in particular, it rescued the expression of multiple development-related genes. These results showed that transcriptional memory acts as a reprogramming barrier and KDM5B improves SCNT reprogramming via bidirectional regulation effects on transcriptional memory genes in bovines.


Asunto(s)
Embrión de Mamíferos/fisiología , Desarrollo Embrionario/genética , Regulación del Desarrollo de la Expresión Génica/genética , Transcripción Genética/genética , Animales , Bovinos , Reprogramación Celular/genética , Clonación de Organismos/métodos , Epigénesis Genética/genética , Fertilización In Vitro/métodos , Histonas/genética , Técnicas de Transferencia Nuclear , Procesamiento Proteico-Postraduccional/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA