Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.460
Filtrar
Más filtros

Intervalo de año de publicación
1.
Annu Rev Biochem ; 88: 59-83, 2019 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-30830799

RESUMEN

Directional transport of protons across an energy transducing membrane-proton pumping-is ubiquitous in biology. Bacteriorhodopsin (bR) is a light-driven proton pump that is activated by a buried all-trans retinal chromophore being photoisomerized to a 13-cis conformation. The mechanism by which photoisomerization initiates directional proton transport against a proton concentration gradient has been studied by a myriad of biochemical, biophysical, and structural techniques. X-ray free electron lasers (XFELs) have created new opportunities to probe the structural dynamics of bR at room temperature on timescales from femtoseconds to milliseconds using time-resolved serial femtosecond crystallography (TR-SFX). Wereview these recent developments and highlight where XFEL studies reveal new details concerning the structural mechanism of retinal photoisomerization and proton pumping. We also discuss the extent to which these insights were anticipated by earlier intermediate trapping studies using synchrotron radiation. TR-SFX will open up the field for dynamical studies of other proteins that are not naturally light-sensitive.


Asunto(s)
Bacteriorodopsinas/ultraestructura , Rayos Láser , Protones , Retinaldehído/química , Difracción de Rayos X/métodos , Bacteriorodopsinas/química , Bacteriorodopsinas/metabolismo , Cristalografía/instrumentación , Cristalografía/métodos , Halobacterium salinarum/química , Halobacterium salinarum/metabolismo , Transporte Iónico , Modelos Moleculares , Conformación Proteica , Retinaldehído/metabolismo , Sincrotrones/instrumentación , Rayos X
2.
Cell ; 172(1-2): 344-357.e15, 2018 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-29224782

RESUMEN

The bacterial Mfd ATPase is increasingly recognized as a general transcription factor that participates in the resolution of transcription conflicts with other processes/roadblocks. This function stems from Mfd's ability to preferentially act on stalled RNA polymerases (RNAPs). However, the mechanism underlying this preference and the subsequent coordination between Mfd and RNAP have remained elusive. Here, using a novel real-time translocase assay, we unexpectedly discovered that Mfd translocates autonomously on DNA. The speed and processivity of Mfd dictate a "release and catch-up" mechanism to efficiently patrol DNA for frequently stalled RNAPs. Furthermore, we showed that Mfd prevents RNAP backtracking or rescues a severely backtracked RNAP, allowing RNAP to overcome stronger obstacles. However, if an obstacle's resistance is excessive, Mfd dissociates the RNAP, clearing the DNA for other processes. These findings demonstrate a remarkably delicate coordination between Mfd and RNAP, allowing efficient targeting and recycling of Mfd and expedient conflict resolution.


Asunto(s)
Proteínas Bacterianas/metabolismo , Elongación de la Transcripción Genética , Factores de Transcripción/metabolismo , Proteínas Bacterianas/genética , ADN/genética , ADN/metabolismo , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Escherichia coli/enzimología , Escherichia coli/genética , Factores de Transcripción/genética , Terminación de la Transcripción Genética
3.
Mol Cell ; 81(14): 3018-3030.e5, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34102106

RESUMEN

Mammalian DNA base excision repair (BER) is accelerated by poly(ADP-ribose) polymerases (PARPs) and the scaffold protein XRCC1. PARPs are sensors that detect single-strand break intermediates, but the critical role of XRCC1 during BER is unknown. Here, we show that protein complexes containing DNA polymerase ß and DNA ligase III that are assembled by XRCC1 prevent excessive engagement and activity of PARP1 during BER. As a result, PARP1 becomes "trapped" on BER intermediates in XRCC1-deficient cells in a manner similar to that induced by PARP inhibitors, including in patient fibroblasts from XRCC1-mutated disease. This excessive PARP1 engagement and trapping renders BER intermediates inaccessible to enzymes such as DNA polymerase ß and impedes their repair. Consequently, PARP1 deletion rescues BER and resistance to base damage in XRCC1-/- cells. These data reveal excessive PARP1 engagement during BER as a threat to genome integrity and identify XRCC1 as an "anti-trapper" that prevents toxic PARP1 activity.


Asunto(s)
Reparación del ADN/genética , ADN/genética , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X/metabolismo , Animales , Línea Celular , Roturas del ADN de Cadena Simple , Daño del ADN/efectos de los fármacos , Daño del ADN/genética , ADN Ligasa (ATP)/metabolismo , ADN Polimerasa beta/metabolismo , Reparación del ADN/efectos de los fármacos , Proteínas de Unión al ADN/metabolismo , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Humanos , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Poli(ADP-Ribosa) Polimerasas/metabolismo , Unión Proteica/efectos de los fármacos
4.
Mol Cell ; 80(5): 862-875.e6, 2020 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-33275888

RESUMEN

The anti-tumor potency of poly(ADP-ribose) polymerase (PARP) inhibitors (PARPis) has been linked to trapping of PARP1 on damaged chromatin. However, little is known about their impact on PARP2, an isoform with overlapping functions at DNA lesions. Whether the release of PARP1/2 from DNA lesions is actively catalyzed by molecular machines is also not known. We found that PARPis robustly trap PARP2 and that the helicase ALC1 (CHD1L) is strictly required for PARP2 release. Catalytic inactivation of ALC1 quantitatively traps PARP2 but not PARP1. ALC1 manipulation impacts the response to single-strand DNA breaks through PARP2 trapping, potentiates PARPi-induced cancer cell killing, and mediates synthetic lethality upon BRCA deficiency. The chromatin remodeler ALC1 actively drives PARP2 turnover from DNA lesions, and PARP2 contributes to the cellular responses of PARPi. This suggests that disrupting the ATP-fueled remodeling forces of ALC1 might enable therapies that selectively target the DNA repair functions of PARPs in cancer.


Asunto(s)
Roturas del ADN de Cadena Simple , ADN Helicasas/metabolismo , Proteínas de Unión al ADN/metabolismo , Neoplasias/enzimología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/metabolismo , Poli(ADP-Ribosa) Polimerasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Línea Celular Tumoral , ADN Helicasas/genética , Proteínas de Unión al ADN/genética , Humanos , Neoplasias/genética , Neoplasias/patología , Poli(ADP-Ribosa) Polimerasa-1/genética , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Poli(ADP-Ribosa) Polimerasas/genética , Proteínas Proto-Oncogénicas/genética
5.
Proc Natl Acad Sci U S A ; 121(19): e2403384121, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38691585

RESUMEN

Macromolecular complexes are often composed of diverse subunits. The self-assembly of these subunits is inherently nonequilibrium and must avoid kinetic traps to achieve high yield over feasible timescales. We show how the kinetics of self-assembly benefits from diversity in subunits because it generates an expansive parameter space that naturally improves the "expressivity" of self-assembly, much like a deeper neural network. By using automatic differentiation algorithms commonly used in deep learning, we searched the parameter spaces of mass-action kinetic models to identify classes of kinetic protocols that mimic biological solutions for productive self-assembly. Our results reveal how high-yield complexes that easily become kinetically trapped in incomplete intermediates can instead be steered by internal design of rate-constants or external and active control of subunits to efficiently assemble. Internal design of a hierarchy of subunit binding rates generates self-assembly that can robustly avoid kinetic traps for all concentrations and energetics, but it places strict constraints on selection of relative rates. External control via subunit titration is more versatile, avoiding kinetic traps for any system without requiring molecular engineering of binding rates, albeit less efficiently and robustly. We derive theoretical expressions for the timescales of kinetic traps, and we demonstrate our optimization method applies not just for design but inference, extracting intersubunit binding rates from observations of yield-vs.-time for a heterotetramer. Overall, we identify optimal kinetic protocols for self-assembly as a powerful mechanism to achieve efficient and high-yield assembly in synthetic systems whether robustness or ease of "designability" is preferred.


Asunto(s)
Algoritmos , Cinética , Sustancias Macromoleculares/química , Sustancias Macromoleculares/metabolismo
6.
Proc Natl Acad Sci U S A ; 121(14): e2302967120, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38547063

RESUMEN

It is well-known that highly reactive hydroxyl radicals (HO•) can be produced by the classic Fenton system and our recently discovered haloquinone/H2O2 system, but rarely from thiol-derivatives. Here, we found, unexpectedly, that HO• can be generated from H2O2 and thiourea dioxide (TUO2), a widely used and environmentally friendly bleaching agent. A carbon-centered radical and sulfite were detected and identified as the transient intermediates, and urea and sulfate as the final products, with the complementary application of electron spin-trapping, oxygen-18 isotope labeling coupled with HPLC/MS analysis. Density functional theory calculations were conducted to further elucidate the detailed pathways for HO• production. Taken together, we proposed that the molecular mechanism for HO• generation by TUO2/H2O2: TUO2 tautomerizes from sulfinic acid into ketone isomer (TUO2-K) through proton transfer, then a nucleophilic addition of H2O2 on the S atom of TUO2-K, forming a S-hydroperoxide intermediate TUO2-OOH, which dissociates homolytically to produce HO•. Our findings represent the first experimental and computational study on an unprecedented new molecular mechanism of HO• production from simple thiol-derived sulfinic acids, which may have broad chemical, environmental, and biomedical significance for future research on the application of the well-known bleaching agent and its analogs.

7.
Proc Natl Acad Sci U S A ; 121(21): e2317616121, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38743627

RESUMEN

The therapeutic targeting of ferroptosis requires full understanding of the molecular mechanism of this regulated cell death pathway. While lipid-derived electrophiles (LDEs), including 4-hydroxy-2-nonenal (4-HNE), are important biomarkers of ferroptosis, a functional role for these highly reactive species in ferroptotic cell death execution has not been established. Here, through mechanistic characterization of LDE-detoxification impairment, we demonstrate that LDEs mediate altered protein function during ferroptosis. Applying live cell fluorescence imaging, we first identified that export of glutathione-LDE-adducts through multidrug resistance-associated protein (MRP) channels is inhibited following exposure to a panel of ferroptosis inducers (FINs) with different modes of action (type I-IV FINs erastin, RSL3, FIN56, and FINO2). This channel inhibition was recreated by both initiation of lipid peroxidation and treatment with 4-HNE. Importantly, treatment with radical-trapping antioxidants prevented impaired LDE-adduct export when working with both FINs and lipid peroxidation initiators but not 4-HNE, pinpointing LDEs as the cause of this inhibited MRP activity observed during ferroptosis. Our findings, when combined with reports of widespread LDE alkylation of key proteins following ferroptosis induction, including MRP1, set a precedent for LDEs as critical mediators of ferroptotic cell damage. Lipid hydroperoxide breakdown to form truncated phospholipids and LDEs may fully explain membrane permeabilization and modified protein function downstream of lipid peroxidation, offering a unified explanation of the molecular cell death mechanism of ferroptosis.


Asunto(s)
Aldehídos , Ferroptosis , Peroxidación de Lípido , Ferroptosis/efectos de los fármacos , Humanos , Peroxidación de Lípido/efectos de los fármacos , Aldehídos/farmacología , Aldehídos/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Glutatión/metabolismo
8.
Proc Natl Acad Sci U S A ; 121(11): e2319427121, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38442175

RESUMEN

Heterogeneous high-valent cobalt-oxo [≡Co(IV)=O] is a widely focused reactive species in oxidant activation; however, the relationship between the catalyst interfacial defects and ≡Co(IV)=O formation remains poorly understood. Herein, photoexcited oxygen vacancies (OVs) were introduced into Co3O4 (OV-Co3O4) by a UV-induced modification method to facilitate chlorite (ClO2-) activation. Density functional theory calculations indicate that OVs result in low-coordinated Co atom, which can directionally anchor chlorite under the oxygen-atom trapping effect. Chlorite first undergoes homolytic O-Cl cleavage and transfers the dissociated O atom to the low-coordinated Co atom to form reactive ≡Co(IV)=O with a higher spin state. The reactive ≡Co(IV)=O rapidly extracts one electron from ClO2- to form chlorine dioxide (ClO2), accompanied by the Co atom returning a lower spin state. As a result of the oxygen-atom trapping effect, the OV-Co3O4/chlorite system achieved a 3.5 times higher efficiency of sulfamethoxazole degradation (~0.1331 min-1) than the pristine Co3O4/chlorite system. Besides, the refiled OVs can be easily restored by re-exposure to UV light, indicating the sustainability of the oxygen atom trap. The OV-Co3O4 was further fabricated on a polyacrylonitrile membrane for back-end water purification, achieving continuous flow degradation of pollutants with low cobalt leakage. This work presents an enhancement strategy for constructing OV as an oxygen-atom trapping site in heterogeneous advanced oxidation processes and provides insight into modulating the formation of ≡Co(IV)=O via defect engineering.

9.
RNA ; 29(12): 1950-1959, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37704221

RESUMEN

In general, riboswitches functioning through a cotranscriptional kinetic trapping mechanism (kt-riboswitches) show higher switching efficiencies in response to practical concentrations of their ligand molecules than eq-riboswitches, which function by an equilibrium mechanism. However, the former have been much more difficult to design due to their more complex mechanism. We here successfully developed a rational strategy for constructing eukaryotic kt-riboswitches that ligand-dependently enhance translation initiation mediated by an internal ribosome entry site (IRES). This was achieved both by utilizing some predicted structural features of a highly efficient bacterial kt-riboswitch identified through screening and by completely decoupling an aptamer domain from the IRES. Three kt-riboswitches optimized through this strategy, each responding to a different ligand, exhibited three- to sevenfold higher induction ratios (up to ∼90) than previously optimized eq-riboswitches regulating the same IRES-mediated translation in wheat germ extract. Because the IRES used functions well in various eukaryotic expression systems, these types of kt-riboswitches are expected to serve as major eukaryotic gene regulators based on RNA. In addition, the present strategy could be applied to the rational construction of other types of kt-riboswitches, including those functioning in bacterial expression systems.


Asunto(s)
Riboswitch , Riboswitch/genética , Sitios Internos de Entrada al Ribosoma , Ligandos , Bacterias/genética , Cinética
10.
Methods ; 225: 1-12, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38428472

RESUMEN

Elucidating the folding energy landscape of membrane proteins is essential to the understanding of the proteins' stabilizing forces, folding mechanisms, biogenesis, and quality control. This is not a trivial task because the reversible control of folding is inherently difficult in a lipid bilayer environment. Recently, novel methods have been developed, each of which has a unique strength in investigating specific aspects of membrane protein folding. Among such methods, steric trapping is a versatile strategy allowing a reversible control of membrane protein folding with minimal perturbation of native protein-water and protein-lipid interactions. In a nutshell, steric trapping exploits the coupling of spontaneous denaturation of a doubly biotinylated protein to the simultaneous binding of bulky monovalent streptavidin molecules. This strategy has been evolved to investigate key elements of membrane protein folding such as thermodynamic stability, spontaneous denaturation rates, conformational features of the denatured states, and cooperativity of stabilizing interactions. In this review, we describe the critical methodological advancement, limitation, and outlook of the steric trapping strategy.


Asunto(s)
Proteínas de la Membrana , Pliegue de Proteína , Termodinámica , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Desnaturalización Proteica , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Estreptavidina/química , Biotinilación/métodos
11.
Am J Respir Crit Care Med ; 209(10): 1196-1207, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38113166

RESUMEN

Rationale: Density thresholds in computed tomography (CT) lung scans quantify air trapping (AT) at the whole-lung level but are not informative for AT in specific bronchopulmonary segments. Objectives: To apply a segment-based measure of AT in asthma to investigate the clinical determinants of AT in asthma. Methods: In each of 19 bronchopulmonary segments in CT lung scans from 199 patients with asthma, AT was categorized as present if lung attenuation was less than -856 Hounsfield units at expiration in ⩾15% of the lung area. The resulting AT segment score (0-19) was related to patient outcomes. Measurements and Main Results: AT varied at the lung segment level and tended to persist at the patient and lung segment levels over 3 years. Patients with widespread AT (⩾10 segments) had more severe asthma (P < 0.05). The mean (±SD) AT segment score in patients with a body mass index ⩾30 kg/m2 was lower than in patients with a body mass index <30 kg/m2 (3.5 ± 4.6 vs. 5.5 ± 6.3; P = 0.008), and the frequency of AT in lower lobe segments in obese patients was less than in upper and middle lobe segments (35% vs. 46%; P = 0.001). The AT segment score in patients with sputum eosinophils ⩾2% was higher than in patients without sputum eosinophilia (7.0 ± 6.1 vs. 3.3 ± 4.9; P < 0.0001). Lung segments with AT more frequently had airway mucus plugging than lung segments without AT (48% vs. 18%; P ⩽ 0.0001). Conclusions: In patients with asthma, air trapping is more severe in those with airway eosinophilia and mucus plugging, whereas those who are obese have less severe trapping because their lower lobe segments are spared.


Asunto(s)
Asma , Eosinofilia , Obesidad , Tomografía Computarizada por Rayos X , Humanos , Asma/diagnóstico por imagen , Asma/fisiopatología , Masculino , Femenino , Persona de Mediana Edad , Obesidad/complicaciones , Obesidad/fisiopatología , Adulto , Eosinofilia/diagnóstico por imagen , Pulmón/diagnóstico por imagen , Pulmón/fisiopatología , Anciano , Índice de Masa Corporal
12.
Proc Natl Acad Sci U S A ; 119(33): e2206513119, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35939666

RESUMEN

Nucleosome DNA unwrapping and its disassembly into hexasomes and tetrasomes is necessary for genomic access and plays an important role in transcription regulation. Previous single-molecule mechanical nucleosome unwrapping revealed a low- and a high-force transitions, and force-FRET pulling experiments showed that DNA unwrapping is asymmetric, occurring always first from one side before the other. However, the assignment of DNA segments involved in these transitions remains controversial. Here, using high-resolution optical tweezers with simultaneous single-molecule FRET detection, we show that the low-force transition corresponds to the undoing of the outer wrap of one side of the nucleosome (∼27 bp), a process that can occur either cooperatively or noncooperatively, whereas the high-force transition corresponds to the simultaneous unwrapping of ∼76 bp from both sides. This process may give rise stochastically to the disassembly of nucleosomes into hexasomes and tetrasomes whose unwrapping/rewrapping trajectories we establish. In contrast, nucleosome rewrapping does not exhibit asymmetry. To rationalize all previous nucleosome unwrapping experiments, it is necessary to invoke that mechanical unwrapping involves two nucleosome reorientations: one that contributes to the change in extension at the low-force transition and another that coincides but does not contribute to the high-force transition.


Asunto(s)
ADN , Nucleosomas , Imagen Individual de Molécula , Animales , ADN/química , Transferencia Resonante de Energía de Fluorescencia , Nucleosomas/química , Pinzas Ópticas , Imagen Individual de Molécula/métodos , Xenopus laevis
13.
Proc Natl Acad Sci U S A ; 119(1)2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-34969836

RESUMEN

Defining the denatured state ensemble (DSE) and disordered proteins is essential to understanding folding, chaperone action, degradation, and translocation. As compared with water-soluble proteins, the DSE of membrane proteins is much less characterized. Here, we measure the DSE of the helical membrane protein GlpG of Escherichia coli (E. coli) in native-like lipid bilayers. The DSE was obtained using our steric trapping method, which couples denaturation of doubly biotinylated GlpG to binding of two streptavidin molecules. The helices and loops are probed using limited proteolysis and mass spectrometry, while the dimensions are determined using our paramagnetic biotin derivative and double electron-electron resonance spectroscopy. These data, along with our Upside simulations, identify the DSE as being highly dynamic, involving the topology changes and unfolding of some of the transmembrane (TM) helices. The DSE is expanded relative to the native state but only to 15 to 75% of the fully expanded condition. The degree of expansion depends on the local protein packing and the lipid composition. E. coli's lipid bilayer promotes the association of TM helices in the DSE and, probably in general, facilitates interhelical interactions. This tendency may be the outcome of a general lipophobic effect of proteins within the cell membranes.


Asunto(s)
Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Conformación Proteica , Biotinilación , Membrana Celular , Microscopía por Crioelectrón , Proteínas de Unión al ADN , Endopeptidasas , Escherichia coli , Proteínas de Escherichia coli/química , Modelos Moleculares , Desnaturalización Proteica , Pliegue de Proteína , Estreptavidina
14.
Proc Natl Acad Sci U S A ; 119(16): e2122990119, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35394901

RESUMEN

While crystallization is a ubiquitous and an important process, the microscopic picture of crystal nucleation is yet to be established. Recent studies suggest that the nucleation process can be more complex than the view offered by the classical nucleation theory. Here, we implement single crystal nucleation spectroscopy (SCNS) by combining Raman microspectroscopy and optical trapping induced crystallization to spectroscopically investigate one crystal nucleation at a time. Raman spectral evolution during a single glycine crystal nucleation from water, measured by SCNS and analyzed by a nonsupervised spectral decomposition technique, uncovered the Raman spectrum of prenucleation aggregates and their critical role as an intermediate species in the dynamics. The agreement between the spectral feature of prenucleation aggregates and our simulation suggests that their structural order emerges through the dynamic formation of linear hydrogen-bonded networks. The present work provides a strong impetus for accelerating the investigation of crystal nucleation by optical spectroscopy.

15.
Nano Lett ; 24(22): 6778-6787, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38767965

RESUMEN

Controllable large-scale integration of two-dimensional (2D) materials with organic semiconductors and the realization of strong coupling between them still remain challenging. Herein, we demonstrate a wafer-scale, vertically layered SnSe2/PTAA heterojunction array with high light-trapping ability via a low-temperature molecular beam epitaxy method and a facile spin-coating process. Conductive probe atomic force microscopy (CP-AFM) measurements reveal strong rectification and photoresponse behavior in the individual SnSe2 nanosheet/PTAA heterojunction. Theoretical analysis demonstrates that vertically layered SnSe2/PTAA heterojunctions exhibit stronger C-Se covalent coupling than that of the conventional tiled type, which could facilitate more efficient charge transfer. Benefiting from these advantages, the SnSe2/PTAA heterojunction photodetectors with an optimized PTAA concentration show high performance, including a responsivity of 41.02 A/W, an external quantum efficiency of 1.31 × 104%, and high uniformity. The proposed approach for constructing large-scale 2D inorganic-organic heterostructures represents an effective route to fabricate high-performance broadband photodetectors for integrated optoelectronic systems.

16.
Nano Lett ; 24(15): 4498-4504, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38587933

RESUMEN

Dimensionality of materials is closely related to their physical properties. For two-dimensional (2D) semiconductors such as monolayer molybdenum disulfide (MoS2), converting them from 2D nanosheets to one-dimensional (1D) nanoscrolls could contribute to remarkable electronic and optoelectronic properties, yet the rolling-up process still lacks sufficient controllability, which limits the development of their device applications. Herein we report a modified solvent evaporation-induced rolling process that halts at intermediate states and achieve MoS2 nanoscrolls with high yield and decent axial uniformity. The accordingly fabricated nanoscroll memories exhibit an on/off ratio of ∼104 and a retention time exceeding 103 s and can realize multilevel storage with pulsed gate voltages. Such open-end, high-curvature, and hollow 1D nanostructures provide new possibilities to manipulate the hysteresis windows and, consequently, the charge storage characteristics of nanoscale field-effect transistors, thereby holding great promise for the development of miniaturized memories.

17.
Nano Lett ; 24(22): 6753-6760, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38708988

RESUMEN

Recently, extensive research has been reported on the detection of metal nanoparticles using terahertz waves, due to their potential for efficient and nondestructive detection of chemical and biological samples without labeling. Resonant terahertz nanoantennas can be used to detect a small amount of molecules whose vibrational modes are in the terahertz frequency range with high sensitivity. However, the positioning of target molecules is critical to obtaining a reasonable signal because the field distribution is inhomogeneous over the antenna structure. Here, we combine an optical tweezing technique and terahertz spectroscopy based on nanoplasmonics, resulting in extensive controllable tweezing and sensitive detection at the same time. We observed optical tweezing of a gold nanoparticle and detected it with terahertz waves by using a single bowtie nanoantenna. Furthermore, the calculations confirm that molecular fingerprinting is possible by using our technique. This study will be a prestep of biomolecular detection using gold nanoparticles in terahertz spectroscopy.

18.
Nano Lett ; 24(19): 5699-5704, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38695662

RESUMEN

We report the second harmonic generation (SHG) response from a single 34 nm diameter lithium niobate nanoparticle. The experimental setup involves a first beam devoted to the optical trapping of single nanoparticles, whereas a second arm involves a femtosecond laser source leading to the SHG emission from the trapped nanoparticles. SHG operation where one to three nanoparticles are present in the optical trap is first demonstrated, highlighting the transition between coherent and incoherent SHG, the latter known as hyper-Rayleigh scattering (HRS). With a spatial light modulator moving the optical trap in and out of the focus of the femtosecond beam, the SHG intensity is switched back and forth between a low and a high level. This controlled operation opens new avenues for nanoparticle characterization and applications in sensing or communication and information technologies and constitutes the first step in the design of active substrateless metasurfaces.

19.
J Proteome Res ; 23(7): 2619-2628, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38910295

RESUMEN

Chromatography-mass spectrometry-based lipidomics represents an essential tool for elucidating lipid dysfunction mechanisms and is extensively employed in investigating disease mechanisms and identifying biomarkers. However, the detection of low-abundance lipids in biological matrices, along with cumbersome operational procedures, complicates comprehensive lipidomic analyses, necessitating the development of highly sensitive, environmentally friendly, and automated methods. In this study, an online phase transition trapping-supercritical fluid extraction-chromatography-mass spectrometry (PTT-SFEC-MS/MS) method was developed and successfully applied to plasma lipidomics analysis in Type 1 diabetes (T1D) rats. The PTT strategy captured entire extracts at the column head by converting CO2 from a supercritical state to a gaseous state, thereby preventing peak spreading, enhancing peak shape for precise quantification, and boosting sensitivity without any sample loss. This method utilized only 5 µL of plasma and accomplished sample extraction, separation, and detection within 27 min. Ultimately, 77 differential lipids were identified, including glycerophospholipids, sphingolipids, and glycerolipids, in T1D rat plasma. The results indicated that the progression of the disease might be linked to alterations in glycerophospholipid and sphingolipid metabolism. Our findings demonstrated a green, highly efficient, and automated method for the lipidomics analysis of biological samples, providing a scientific foundation for understanding the pathogenesis and diagnosis of T1D.


Asunto(s)
Cromatografía con Fluido Supercrítico , Diabetes Mellitus Tipo 1 , Lipidómica , Espectrometría de Masas en Tándem , Animales , Lipidómica/métodos , Espectrometría de Masas en Tándem/métodos , Ratas , Cromatografía con Fluido Supercrítico/métodos , Diabetes Mellitus Tipo 1/sangre , Diabetes Mellitus Tipo 1/metabolismo , Lípidos/sangre , Lípidos/química , Diabetes Mellitus Experimental/sangre , Diabetes Mellitus Experimental/metabolismo , Masculino , Ratas Sprague-Dawley , Transición de Fase , Biomarcadores/sangre , Esfingolípidos/sangre , Esfingolípidos/análisis , Esfingolípidos/aislamiento & purificación
20.
J Proteome Res ; 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39008777

RESUMEN

Proteins undergo reversible S-acylation via a thioester linkage in vivo. S-palmitoylation, modification by C16:0 fatty acid, is a common S-acylation that mediates critical protein-membrane and protein-protein interactions. The most widely used S-acylation assays, including acyl-biotin exchange and acyl resin-assisted capture, utilize blocking of free Cys thiols, hydroxylamine-dependent cleavage of the thioester and subsequent labeling of nascent thiol. These assays generally require >500 µg of protein input material per sample and numerous reagent removal and washing steps, making them laborious and ill-suited for high throughput and low input applications. To overcome these limitations, we devised "Acyl-Trap", a suspension trap-based assay that utilizes a thiol-reactive quartz to enable buffer exchange and hydroxylamine-mediated S-acyl enrichment. We show that the method is compatible with protein-level detection of S-acylated proteins (e.g., H-Ras) as well as S-acyl site identification and quantification using "on trap" isobaric labeling and LC-MS/MS from as little as 20 µg of protein input. In mouse brain, Acyl-Trap identified 279 reported sites of S-acylation and 1298 previously unreported putative sites. Also described are conditions for long-term hydroxylamine storage, which streamline the assay. More generally, Acyl-Trap serves as a proof-of-concept for PTM-tailored suspension traps suitable for both traditional protein detection and chemoproteomic workflows.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA