Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Cancer Invest ; : 1-14, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39189652

RESUMEN

The role of tweety homolog 3 (TTYH3) has been studied in several cancers, including hepatocellular carcinoma, cholangiocarcinoma, and gastric cancer. The results showed that TTYH3 is highly expression in cervical cancer tissues and cells and high TTYH3 expression correlates with poor prognosis in patients with cervical cancer. TTYH3 markedly reduced the apoptosis rate and promoted proliferation, migration, and invasion. Silencing of TTYH3 has been shown to have an inhibitory effect on cervical cancer progression. Moreover, TTYH3 enhanced EMT and activated Wnt/ß-catenin signaling. Furthermore, TTYH3 knockdown inhibited the tumor growth in vivo. In conclusion, TTYH3 promoted cervical cancer progression by activating the Wnt/ß-catenin signaling.


TTYH3 is upregulated in cervical cancer tissue and cells.TTYH3 promotes cervical cancer cell proliferation.TTYH3 inhibits cervical cancer cell apoptosis.TTYH3 induces cervical cancer cell migration and invasion.TTYH3 activates the Wnt signaling in cervical cancer cell.

2.
Int J Mol Sci ; 23(18)2022 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-36142409

RESUMEN

Tweety family member 3 (TTYH3) is a calcium-activated chloride channel with a non-pore-forming structure that controls cell volume and signal transduction. We investigated the role of TTYH3 as a cancer-promoting factor in bladder cancer. The mRNA expression of TTYH3 in bladder cancer patients was investigated using various bioinformatics databases. The results demonstrated that the increasingly greater expression of TTYH3 increasingly worsened the prognosis of patients with bladder cancer. TTYH3 knockdown bladder cancer cell lines were constructed by their various cancer properties measured. TTYH3 knockdown significantly reduced cell proliferation and sphere formation. Cell migration and invasion were also significantly reduced in knockdown bladder cancer cells, compared to normal bladder cancer cells. The knockdown of TTYH3 led to the downregulation of H-Ras/A-Raf/MEK/ERK signaling by inhibiting fibroblast growth factor receptor 1 (FGFR1) phosphorylation. This signaling pathway also attenuated the expression of c-Jun and c-Fos. The findings implicate TTYH3 as a potential factor regulating the properties of bladder cancer and as a therapeutic target.


Asunto(s)
Canales de Cloruro/metabolismo , Sistema de Señalización de MAP Quinasas , Neoplasias de la Vejiga Urinaria , Línea Celular Tumoral , Proliferación Celular , Humanos , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , ARN Mensajero/metabolismo , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo , Neoplasias de la Vejiga Urinaria/metabolismo , Neoplasias de la Vejiga Urinaria/patología
3.
Am J Med Genet A ; 173(6): 1593-1600, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28440577

RESUMEN

Isolated 7p22.3p22.2 deletions are rarely described with only two reports in the literature. Most other reported cases either involve a much larger region of the 7p arm or have an additional copy number variation. Here, we report five patients with overlapping microdeletions at 7p22.3p22.2. The patients presented with variable developmental delays, exhibiting relative weaknesses in expressive language skills and relative strengths in gross, and fine motor skills. The most consistent facial features seen in these patients included a broad nasal root, a prominent forehead a prominent glabella and arched eyebrows. Additional variable features amongst the patients included microcephaly, metopic ridging or craniosynostosis, cleft palate, cardiac defects, and mild hypotonia. Although the patients' deletions varied in size, there was a 0.47 Mb region of overlap which contained 7 OMIM genes: EIP3B, CHST12, LFNG, BRAT1, TTYH3, AMZ1, and GNA12. We propose that monosomy of this region represents a novel microdeletion syndrome. We recommend that individuals with 7p22.3p22.2 deletions should receive a developmental assessment and a thorough cardiac exam, with consideration of an echocardiogram, as part of their initial evaluation.


Asunto(s)
Deleción Cromosómica , Cromosomas Humanos Par 7/genética , Discapacidades del Desarrollo/genética , Preescolar , Variaciones en el Número de Copia de ADN/genética , Discapacidades del Desarrollo/fisiopatología , Femenino , Humanos , Lactante , Masculino , Monosomía
4.
MedComm (2020) ; 5(6): e576, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38827027

RESUMEN

Colorectal cancer (CRC) is one of the leading cancers worldwide, with metastasis being a major cause of high mortality rates among patients. In this study, dysregulated gene Tweety homolog 3 (TTYH3) was identified by Gene Expression Omnibus database. Public databases were used to predict potential competing endogenous RNAs (ceRNAs) for TTYH3. Quantitative real-time polymerase chain reaction, western blot, and immunohistochemistry were utilized to analyze TTYH3 and histone deacetylase 7 (HDAC7) levels. Luciferase assays confirmed miR-1271-5p directly targeting the 3' untranslated regions of TTYH3 and HDAC7. In vitro experiments such as transwell and human umbilical vein endothelial cell tube formation, as well as in vivo mouse models, were conducted to assess the biological functions of TTYH3 and HDAC7. We discovered that upregulation of TTYH3 in CRC promotes cell migration by affecting the Epithelial-mesenchymal transition pathway, which was independent of its ion channel activity. Mechanistically, TTYH3 and HDAC7 functioned as ceRNAs, reciprocally regulating each other's expression. TTYH3 competes for binding miR-1271-5p, increasing HDAC7 expression, facilitating CRC metastasis and angiogenesis. This study reveals the critical role of TTYH3 in promoting CRC metastasis through ceRNA crosstalk, offering new insights into potential therapeutic targets for clinical intervention.

5.
Int Immunopharmacol ; 110: 108999, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35858518

RESUMEN

PURPOSE: The recognition of new diagnostic and prognostic biological markers for lung cancer is an essential and eager study. It's shown that ion channels play important roles in regulating various cellular processes and have been suggested to be associated with patient survival. However, tweety family member 3 (TTYH3), as a maxi-Cl- channel, its role in lung cancer remains elusive. METHODS: The expression, diagnostic and prognostic efficacy of TTYH3 were analyzed by public databases and clinical samples. Cell functional experiments were used to explore the effects of TTYH3 on cell viability. GO and KEGG enrichment analysis revealed underlying pathways that TTYH3 and its co-expressed genes were enriched in. TIMER, TIDE and R language analyses were used to detect the correlation between TTYH3 and immune infiltration cell and immunotherapy response. RESULTS: TTYH3 was up-regulated in lung cancer tissues compared to normal tissues and possessed a prominent diagnostic and prognostic value. TTYH3 knockdown significantly inhibited the proliferation of lung cancer cells. Enrichment analyses showed that TTYH3 and its co-expressed genes were mainly involved in immune related signaling pathways. Further investigation clarified that TTYH3 had a positive correlation with the infiltration of TAMs, Treg infiltration as well as T cell exhaustion and high TTYH3 expression indicated worse immunotherapy response and shorter survival after immune checkpoint blockade treatment. CONCLUSION: This study not only revealed the diagnostic and prognostic value of TTYH3 but also provided TTYH3-based estimation of immunotherapy response for lung cancer patients, which might provide new strategies like anti-TTYH3 combined with immune therapy for the treatment of lung cancer.


Asunto(s)
Neoplasias Pulmonares , Biomarcadores , Biomarcadores de Tumor/metabolismo , Humanos , Inmunoterapia , Neoplasias Pulmonares/genética , Pronóstico
6.
Front Mol Neurosci ; 14: 672511, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34262434

RESUMEN

The tweety genes encode gated chloride channels that are found in animals, plants, and even simple eukaryotes, signifying their deep evolutionary origin. In vertebrates, the tweety gene family is highly conserved and consists of three members-ttyh1, ttyh2, and ttyh3-that are important for the regulation of cell volume. While research has elucidated potential physiological functions of ttyh1 in neural stem cell maintenance, proliferation, and filopodia formation during neural development, the roles of ttyh2 and ttyh3 are less characterized, though their expression patterns during embryonic and fetal development suggest potential roles in the development of a wide range of tissues including a role in the immune system in response to pathogen-associated molecules. Additionally, members of the tweety gene family have been implicated in various pathologies including cancers, particularly pediatric brain tumors, and neurodegenerative diseases such as Alzheimer's and Parkinson's disease. Here, we review the current state of research using information from published articles and open-source databases on the tweety gene family with regard to its structure, evolution, expression during development and adulthood, biochemical and cellular functions, and role in human disease. We also identify promising areas for further research to advance our understanding of this important, yet still understudied, family of genes.

7.
Cell Oncol (Dordr) ; 44(6): 1351-1361, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34796468

RESUMEN

PURPOSE: Cholangiocarcinoma (CCA) is a highly invasive malignant tumor originating from the bile duct epithelium. Tweety homolog 3 (TTYH3) is a member of the family of calcium-activated chloride channels, which have several biological functions. Here, we aimed to investigate the expression and biological function of TTYH3 in CCA. METHODS: The mRNA and protein expression levels of TTYH3 were investigated in primary human CCA tissues and normal tissues. The DNA methylation levels of three CpG sites in the TTYH3 promoter region were evaluated using pyrosequencing. The effect of TTYH3 expression on proliferation, apoptosis, migration and invasion were assessed in HUCCT1 and QBC939 cells. Xenograft models were developed to substantiate its role in the development of CCA. Western blot analysis was used to investigate the mechanistic role of TTYH3 in regulating CCA progression. RESULTS: We found that TTYH3 was highly expressed both at the mRNA and protein levels in CCA (p = 0.0001) and that the expression levels were significantly related to a poor overall survival of the patients (p = 0.0019). The DNA methylation levels of three CpG sites in the TTYH3 promoter region were significantly lower in CCA tissues compared to normal tissues (p < 0.05). In vitro studies indicated that TTYH3 can promote the proliferation, migration and invasion of the CCA cells. TTYH3 overexpression significantly promoted tumor progression and cellular proliferation in vivo as indicated by Ki-67 expression. In addition, we found that exogenous TTYH3 overexpression induced epithelial-mesenchymal transition (EMT) in CCA as indicated by expression changes in E-cadherin, N-cadherin and vimentin. The EMT process was found to occur through the Wnt/ß-catenin signaling pathway, with simultaneous changes in P-GSK3ß and ß-catenin levels. CONCLUSIONS: Our data indicate that DNA hypomethylation-induced overexpression of TTYH3 regulates CCA development and metastasis through the Wnt/ß-catenin pathway.


Asunto(s)
Neoplasias de los Conductos Biliares , Canales de Cloruro/genética , Colangiocarcinoma , Animales , Apoptosis/genética , Neoplasias de los Conductos Biliares/metabolismo , Conductos Biliares Intrahepáticos/metabolismo , Conductos Biliares Intrahepáticos/patología , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Colangiocarcinoma/metabolismo , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Regulación hacia Arriba/genética , Vía de Señalización Wnt , beta Catenina/metabolismo
8.
Mol Ther Methods Clin Dev ; 21: 492-506, 2021 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-33997099

RESUMEN

Cervical cancer is a common female malignancy that is mainly caused by human papillomavirus (HPV) infection. However, the incidence of HPV-negative cervical cancer has shown an increasing trend in recent years. Because the mechanism of HPV-negative cervical cancer development is unclear, this study aims to find the pattern of differential gene expression in HPV-negative cervical cancer and verify the underlying potential mechanism. Differentially expressed genes were compared among HPV-positive cervical cancer, HPV-negative cervical cancer, and normal cervical tissues retrieved from TCGA. Subsequently, dysregulated differentially expressed genes specifically existed in HPV-negative cervical cancer tissues and HPV-negative cell lines were validated by qRT-PCR, western blotting, and immunohistochemical staining. We found seventeen highly expressed genes that were particularly associated with HPV-negative cervical cancer from analysis of TCGA database. Among the 17 novel genes, 7 genes (preferentially expressed antigen in melanoma [PRAME], HMGA2, ETS variant 4 [ETV4], MEX3A, TM7SF2, SLC19A1, and tweety-homologs 3 [TTYH3]) displayed significantly elevated expression in HPV-negative cervical cancer cells and HPV-negative cervical cancer tissues. Additionally, higher expression of MEX3A and TTYH3 was associated with a shorter overall survival of patients with HPV-negative cervical cancer. Our study implies that these seven genes are more likely to provide novel insights into the occurrence and progression of HPV-negative cervical cancer.

9.
J Clin Med ; 8(11)2019 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-31652813

RESUMEN

Ion channels play important roles in regulating various cellular processes and malignant transformation. Expressions of some chloride channels have been suggested to be associated with patient survival in gastric cancer (GC). However, little is known about the expression and function of TTYH3, a gene encoding a chloride ion channel, in cancer progression. Here, we comprehensively analyzed the expression of TTYH3 and its clinical outcome in GC using publicly available cancer gene expression and patient survival data through various databases. We examined the differences of TTYH3 expression between cancers and their normal tissues using the Oncomine, UALCAN, and GEO (Gene Expression Omnibus) databases. TTYH3 expression was investigated from immunohistochemistry images using the Human Protein Atlas database. Copy number alterations and mutations of TTYH3 were analyzed using cBioPortal. The co-expression profile of TTYH3 in GC was revealed using Oncomine. The gene ontology and pathway analyses were done using those co-expressed genes via the Enrichr tool to explore the predicted signaling pathways in GC. TTYH3 mRNA and protein levels in GC were significantly greater than those in normal tissue. Kaplan-Meier analysis revealed the upregulation of TTYH3 expression, which was significantly correlated with worse patient survival. Collectively, our data suggest that TTYH3 might be a potential prognostic marker for GC patients.

10.
Int. j. morphol ; 41(1): 118-133, feb. 2023. ilus, tab, graf
Artículo en Inglés | LILACS | ID: biblio-1430508

RESUMEN

SUMMARY: We investigated Tweety Family Member 3 (TTYH3) level in lung adenocarcinoma (LUAD) and its relationship with immune infiltration in tumors by bioinformatics. Differential expressions of TTYH3 in lung cancer were analyzed with Oncomine, TIMER, GEO, UALCAN and HPA. Relationship of TTYH3 mRNA/protein levels with clinical parameters was analyzed by UALCAN. Co-expressed genes of TTYH3 in LUAD were analyzed using Cbioportal. Its relationship with LUAD prognosis was analyzed by Kaplan-Meier plotter. GO and KEGG analysis were performed. Correlation between TTYH3 and tumor immune infiltration were tested by TIMER, TISIDB and GEPIA. We found that TTYH3 was significantly increased in LUAD tissues. TTYH3 high expression was closely related to poor overall survival, post progression survival and first progression in LUAD patients. TTYH3 mRNA/protein levels were significantly associated with multiple pathways. Specifically, TTYH3 up-regulation was mostly related to biological regulation, metabolic process, protein blinding, extracellular matrix organization and pathways in cancer. Moreover, TTYH3 was positively associated with immune cell infiltration in LUAD. Finally, TTYH3 was highly expressed in LUAD as revealed by meta-analysis. TTYH3 is closely related to the prognosis of LUAD and immune cell infiltration, and it can be used as a prognostic biomarker for LUAD and immune infiltration.


Investigamos por bioinformática el nivel de Tweety Family Member 3 (TTYH3) con adenocarcinoma de pulmón (LUAD) y su relación con la infiltración inmune en tumores. Las expresiones diferenciales de TTYH3 en cáncer de pulmón se analizaron con Oncomine, TIMER, GEO, UALCAN y HPA. Con UALCAN se analizó la relación de los niveles de ARNm/proteína de TTYH3 con los parámetros clínicos. Los genes coexpresados de TTYH3 en LUAD se analizaron utilizando Cbioportal. Su relación con el pronóstico LUAD se analizó mediante plotter de Kaplan- Meier. Se realizaron análisis GO y KEGG. TIMER, TISIDB y GEPIA probaron la correlación entre TTYH3 y la infiltración inmune tumoral. Encontramos que TTYH3 aumentó significativamente en los tejidos LUAD. La alta expresión de TTYH3 estuvo estrechamente relacionada con una supervivencia general deficiente, supervivencia posterior a la progresión y primera progresión en pacientes con LUAD. Los niveles de ARNm/ proteína de TTYH3 se asociaron significativamente con múltiples vías. Específicamente, la regulación positiva de TTYH3 se relacionó principalmente con la regulación biológica, el proceso metabólico, el cegamiento de proteínas, la organización de la matriz extracelular y las vías en el cáncer. Además, TTYH3 se asoció positivamente con la infiltración de células inmunitarias en LUAD. Finalmente, TTYH3 se expresó altamente en LUAD como lo reveló el metanálisis. TTYH3 está estrechamente relacionado con el pronóstico de LUAD y la infiltración de células inmunitarias, y se puede utilizar como biomarcador pronóstico para LUAD y la infiltración de células inmunitarias.


Asunto(s)
Humanos , Canales de Cloruro/metabolismo , Adenocarcinoma del Pulmón/diagnóstico , Neoplasias Pulmonares/diagnóstico , Pronóstico , ARN Mensajero , Linfocitos , Biomarcadores de Tumor , Canales de Cloruro/genética , Adenocarcinoma del Pulmón/inmunología , Adenocarcinoma del Pulmón/metabolismo , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/metabolismo
11.
Gene Expr Patterns ; 17(1): 38-44, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25541457

RESUMEN

The tweety family of genes encodes large-conductance chloride channels and has been implicated in a wide array of cellular processes including cell division, cell adhesion, regulation of calcium activity, and tumorigenesis, particularly in neuronal cells. However, their expression patterns during early development remain largely unknown. Here, we describe the spatial and temporal patterning of ttyh1, ttyh2, and ttyh3 in Xenopus laevis during early embryonic development. Ttyh1 and ttyh3 are initially expressed at the late neurula stage are and primarily localized to the developing nervous system; however ttyh1 and ttyh3 both show transient expression in the somites. By swimming tadpole stages, all three genes are expressed in the brain, spinal cord, eye, and cranial ganglia. While ttyh1 is restricted to proliferative, ventricular zones, ttyh3 is primarily localized to postmitotic regions of the developing nervous system. Ttyh2, however, is strongly expressed in cranial ganglia V, VII, IX and X. The differing temporal and spatial expression patterns of ttyh1, ttyh2, and ttyh3 suggest that they may play distinct roles throughout embryonic development.


Asunto(s)
Canales de Cloruro/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/embriología , Animales , Secuencia de Bases , Encéfalo/embriología , Encéfalo/metabolismo , Canales de Cloruro/genética , Datos de Secuencia Molecular , Análisis de Secuencia de ADN , Somitos/metabolismo , Proteínas de Xenopus/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA