Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.603
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 187(10): 2375-2392.e33, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38653238

RESUMEN

Lysine lactylation is a post-translational modification that links cellular metabolism to protein function. Here, we find that AARS1 functions as a lactate sensor that mediates global lysine lacylation in tumor cells. AARS1 binds to lactate and catalyzes the formation of lactate-AMP, followed by transfer of lactate to the lysince acceptor residue. Proteomics studies reveal a large number of AARS1 targets, including p53 where lysine 120 and lysine 139 in the DNA binding domain are lactylated. Generation and utilization of p53 variants carrying constitutively lactylated lysine residues revealed that AARS1 lactylation of p53 hinders its liquid-liquid phase separation, DNA binding, and transcriptional activation. AARS1 expression and p53 lacylation correlate with poor prognosis among cancer patients carrying wild type p53. ß-alanine disrupts lactate binding to AARS1, reduces p53 lacylation, and mitigates tumorigenesis in animal models. We propose that AARS1 contributes to tumorigenesis by coupling tumor cell metabolism to proteome alteration.


Asunto(s)
Carcinogénesis , Ácido Láctico , Proteína p53 Supresora de Tumor , Animales , Femenino , Humanos , Ratones , Carcinogénesis/metabolismo , Carcinogénesis/genética , Línea Celular Tumoral , Ácido Láctico/metabolismo , Lisina/metabolismo , Neoplasias/metabolismo , Neoplasias/genética , Procesamiento Proteico-Postraduccional , Proteína p53 Supresora de Tumor/metabolismo , Masculino
2.
Cell ; 186(25): 5620-5637.e16, 2023 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-38065082

RESUMEN

Colorectal cancer exhibits dynamic cellular and genetic heterogeneity during progression from precursor lesions toward malignancy. Analysis of spatial multi-omic data from 31 human colorectal specimens enabled phylogeographic mapping of tumor evolution that revealed individualized progression trajectories and accompanying microenvironmental and clonal alterations. Phylogeographic mapping ordered genetic events, classified tumors by their evolutionary dynamics, and placed clonal regions along global pseudotemporal progression trajectories encompassing the chromosomal instability (CIN+) and hypermutated (HM) pathways. Integrated single-cell and spatial transcriptomic data revealed recurring epithelial programs and infiltrating immune states along progression pseudotime. We discovered an immune exclusion signature (IEX), consisting of extracellular matrix regulators DDR1, TGFBI, PAK4, and DPEP1, that charts with CIN+ tumor progression, is associated with reduced cytotoxic cell infiltration, and shows prognostic value in independent cohorts. This spatial multi-omic atlas provides insights into colorectal tumor-microenvironment co-evolution, serving as a resource for stratification and targeted treatments.


Asunto(s)
Neoplasias Colorrectales , Inestabilidad de Microsatélites , Microambiente Tumoral , Humanos , Inestabilidad Cromosómica/genética , Neoplasias Colorrectales/patología , Perfilación de la Expresión Génica , Quinasas p21 Activadas/genética , Filogenia , Mutación , Progresión de la Enfermedad , Pronóstico
3.
Cell ; 185(2): 299-310.e18, 2022 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-35063072

RESUMEN

Ductal carcinoma in situ (DCIS) is a pre-invasive lesion that is thought to be a precursor to invasive breast cancer (IBC). To understand the changes in the tumor microenvironment (TME) accompanying transition to IBC, we used multiplexed ion beam imaging by time of flight (MIBI-TOF) and a 37-plex antibody staining panel to interrogate 79 clinically annotated surgical resections using machine learning tools for cell segmentation, pixel-based clustering, and object morphometrics. Comparison of normal breast with patient-matched DCIS and IBC revealed coordinated transitions between four TME states that were delineated based on the location and function of myoepithelium, fibroblasts, and immune cells. Surprisingly, myoepithelial disruption was more advanced in DCIS patients that did not develop IBC, suggesting this process could be protective against recurrence. Taken together, this HTAN Breast PreCancer Atlas study offers insight into drivers of IBC relapse and emphasizes the importance of the TME in regulating these processes.


Asunto(s)
Neoplasias de la Mama/patología , Carcinoma Intraductal no Infiltrante/patología , Diferenciación Celular , Estudios de Cohortes , Progresión de la Enfermedad , Células Epiteliales/patología , Epitelio/patología , Matriz Extracelular/metabolismo , Femenino , Fibroblastos/metabolismo , Fibroblastos/patología , Humanos , Persona de Mediana Edad , Invasividad Neoplásica , Recurrencia Local de Neoplasia/patología , Fenotipo , Análisis de la Célula Individual , Células del Estroma/patología , Microambiente Tumoral
4.
Immunity ; 51(1): 27-41, 2019 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-31315034

RESUMEN

Inflammation predisposes to the development of cancer and promotes all stages of tumorigenesis. Cancer cells, as well as surrounding stromal and inflammatory cells, engage in well-orchestrated reciprocal interactions to form an inflammatory tumor microenvironment (TME). Cells within the TME are highly plastic, continuously changing their phenotypic and functional characteristics. Here, we review the origins of inflammation in tumors, and the mechanisms whereby inflammation drives tumor initiation, growth, progression, and metastasis. We discuss how tumor-promoting inflammation closely resembles inflammatory processes typically found during development, immunity, maintenance of tissue homeostasis, or tissue repair and illuminate the distinctions between tissue-protective and pro-tumorigenic inflammation, including spatiotemporal considerations. Defining the cornerstone rules of engagement governing molecular and cellular mechanisms of tumor-promoting inflammation will be essential for further development of anti-cancer therapies.


Asunto(s)
Carcinogénesis , Infecciones/inmunología , Inflamación , Neoplasias/inmunología , Animales , Autoinmunidad , Enfermedad Crónica , Homeostasis , Humanos , Neovascularización Patológica , Microambiente Tumoral , Cicatrización de Heridas
5.
EMBO J ; 42(4): e111549, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36598329

RESUMEN

YAP/TAZ transcriptional co-activators play pivotal roles in tumorigenesis. In the Hippo pathway, diverse signals activate the MST-LATS kinase cascade that leads to YAP/TAZ phosphorylation, and subsequent ubiquitination and proteasomal degradation by SCFß-TrCP . When the MST-LATS kinase cascade is inactive, unphosphorylated or dephosphorylated YAP/TAZ translocate into the nucleus to mediate TEAD-dependent gene transcription. Hippo signaling-independent YAP/TAZ activation in human malignancies has also been observed, yet the mechanism remains largely elusive. Here, we report that the ubiquitin E3 ligase HERC3 can promote YAP/TAZ activation independently of its enzymatic activity. HERC3 directly binds to ß-TrCP, blocks its interaction with YAP/TAZ, and thus prevents YAP/TAZ ubiquitination and degradation. Expression levels of HERC3 correlate with YAP/TAZ protein levels and expression of YAP/TAZ target genes in breast tumor cells and tissues. Accordingly, knockdown of HERC3 expression ameliorates tumorigenesis of breast cancer cells. Our results establish HERC3 as a critical regulator of the YAP/TAZ stability and a potential therapeutic target for breast cancer.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Neoplasias de la Mama , Humanos , Femenino , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Transactivadores/genética , Transactivadores/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Señalizadoras YAP , Proteínas con Repetición de beta-Transducina/genética , Proteínas con Repetición de beta-Transducina/metabolismo , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transformación Celular Neoplásica/genética , Carcinogénesis/genética , Ubiquitinación , Neoplasias de la Mama/genética , Ubiquitinas/metabolismo , Ligasas/genética , Fosfoproteínas/genética , Fosfoproteínas/metabolismo
6.
J Biol Chem ; 300(5): 107247, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38556083

RESUMEN

There is a critical need to understand the disease processes and identify improved therapeutic strategies for hepatocellular carcinoma (HCC). The long noncoding RNAs (lncRNAs) display diverse effects on biological regulations. The aim of this study was to identify a lncRNA as a potential biomarker of HCC and investigate the mechanisms by which the lncRNA promotes HCC progression using human cell lines and in vivo. Using RNA-Seq analysis, we found that lncRNA FIRRE was significantly upregulated in hepatitis C virus (HCV) associated liver tissue and identified that lncRNA FIRRE is significantly upregulated in HCV-associated HCC compared to adjacent non-tumor liver tissue. Further, we observed that FIRRE is significantly upregulated in HCC specimens with other etiologies, suggesting this lncRNA has the potential to serve as an additional biomarker for HCC. Overexpression of FIRRE in hepatocytes induced cell proliferation, colony formation, and xenograft tumor formation as compared to vector-transfected control cells. Using RNA pull-down proteomics, we identified HuR as an interacting partner of FIRRE. We further showed that the FIRRE-HuR axis regulates cyclin D1 expression. Our mechanistic investigation uncovered that FIRRE is associated with an RNA-binding protein HuR for enhancing hepatocyte growth. Together, these findings provide molecular insights into the role of FIRRE in HCC progression.


Asunto(s)
Carcinoma Hepatocelular , Ciclina D1 , Proteína 1 Similar a ELAV , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas , ARN Largo no Codificante , Transducción de Señal , Animales , Humanos , Ratones , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/virología , Línea Celular Tumoral , Proliferación Celular , Ciclina D1/metabolismo , Ciclina D1/genética , Proteína 1 Similar a ELAV/metabolismo , Proteína 1 Similar a ELAV/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/virología , Ratones Desnudos , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Transducción de Señal/genética , Hepatitis C/complicaciones , Regulación hacia Arriba , Biomarcadores de Tumor
7.
FASEB J ; 38(5): e23525, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38430373

RESUMEN

CD3+ CD56+ NKT-like cells are crucial to antitumor immune surveillance and defense. However, research on circulating NKT-like cells in colorectal cancer (CRC) patients is limited. This investigation selected 113 patients diagnosed with primary CRC for preoperative peripheral blood collection. The blood from 106 healthy donors at the physical examination center was acquired as a healthy control (HC). The distribution of lymphocyte subsets, immunophenotype, and functional characteristics of NKT-like cells was comprehensively evaluated. Compared to HC, primary CRC patients had considerably fewer peripheral NKT-like cells in frequency and absolute quantity, and the fraction of NKT-like cells was further reduced in patients with vascular invasion compared to those without. The NKT-like cells in CRC patients had a reduced fraction of the activating receptor CD16, up-regulated expression of inhibitory receptors LAG-3 and NKG2A, impaired production of TNF-α and IFN-γ, as well as degranulation capacity. Moreover, the increased frequency of NKG2A+ NKT-like cells and the decreased expression of activation-related molecules were significantly correlated with tumor progression. In detail, NKG2A+ NKT-like cells indicated increased PD-1 and Tim-3 and reduced TNF-α than NKG2A- subgroup. Blocking NKG2A in vitro restored cytokine secretion capacity in NKT-like cells from CRC patients. Altogether, this research revealed that circulating NKT-like cells in CRC patients exhibited suppressive phenotype and functional impairment, which was more pronounced in NKG2A+ NKT-like cells. These findings suggest that NKG2A blockade may restore anti-tumor effector function in NKT-like cells, which provides a potential target for immunotherapy in CRC patients.


Asunto(s)
Neoplasias Colorrectales , Células T Asesinas Naturales , Humanos , Células Asesinas Naturales , Factor de Necrosis Tumoral alfa/metabolismo , Fenotipo , Neoplasias Colorrectales/patología
8.
Cell Mol Life Sci ; 81(1): 50, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38252148

RESUMEN

Pancreatic neuroendocrine neoplasms (PanNENs) are a group of highly heterogeneous neoplasms originating from the endocrine islet cells of the pancreas with characteristic neuroendocrine differentiation, more than 60% of which represent metastases when diagnosis, causing major tumor-related death. Metabolic alterations have been recognized as one of the hallmarks of tumor metastasis, providing attractive therapeutic targets. However, little is known about the molecular mechanism of metabolic changes regulating PanNEN progression. In this study, we first identified methylmalonic acid (MMA) as an oncometabolite for PanNEN progression, based on serum metabolomics of metastatic PanNEN compared with non-metastatic PanNEN patients. One of the key findings was the potentially novel mechanism of epithelial-mesenchymal transition (EMT) triggered by MMA. Inhibin ßA (INHBA) was characterized as a key regulator of MMA-induced PanNEN progression according to transcriptomic analysis, which has been validated in vitro and in vivo. Mechanistically, INHBA was activated by FOXA2, a neuroendocrine (NE) specific transcription factor, which was initiated during MMA-induced progression. In addition, MMA-induced INHBA upregulation activated downstream MITF to regulate EMT-related genes in PanNEN cells. Collectively, these data suggest that activation of INHBA via FOXA2 promotes MITF-mediated EMT during MMA inducing PanNEN progression, which puts forward a novel therapeutic target for PanNENs.


Asunto(s)
Factor Nuclear 3-beta del Hepatocito , Subunidades beta de Inhibinas , Ácido Metilmalónico , Neoplasias Pancreáticas , Humanos , Factor Nuclear 3-beta del Hepatocito/genética , Subunidades beta de Inhibinas/genética , Páncreas , Neoplasias Pancreáticas/genética , Activación Transcripcional
9.
Genomics ; 116(3): 110852, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38703969

RESUMEN

Autophagy, a highly conserved process of protein and organelle degradation, has emerged as a critical regulator in various diseases, including cancer progression. In the context of liver cancer, the predictive value of autophagy-related genes remains ambiguous. Leveraging chip datasets from the TCGA and GTEx databases, we identified 23 differentially expressed autophagy-related genes in liver cancer. Notably, five key autophagy genes, PRKAA2, BIRC5, MAPT, IGF1, and SPNS1, were highlighted as potential prognostic markers, with MAPT showing significant overexpression in clinical samples. In vitro cellular assays further demonstrated that MAPT promotes liver cancer cell proliferation, migration, and invasion by inhibiting autophagy and suppressing apoptosis. Subsequent in vivo studies further corroborated the pro-tumorigenic role of MAPT by suppressing autophagy. Collectively, our model based on the five key genes provides a promising tool for predicting liver cancer prognosis, with MAPT emerging as a pivotal factor in tumor progression through autophagy modulation.


Asunto(s)
Autofagia , Neoplasias Hepáticas , Proteínas tau , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/metabolismo , Autofagia/genética , Proteínas tau/genética , Proteínas tau/metabolismo , Pronóstico , Línea Celular Tumoral , Survivin/genética , Survivin/metabolismo , Proliferación Celular , Animales , Factor I del Crecimiento Similar a la Insulina/genética , Factor I del Crecimiento Similar a la Insulina/metabolismo , Biomarcadores de Tumor/genética , Movimiento Celular , Ratones , Apoptosis , Regulación Neoplásica de la Expresión Génica , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/metabolismo
10.
Crit Rev Biochem Mol Biol ; 57(4): 351-376, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35900938

RESUMEN

Hypoxia is a common feature of the tumor microenvironment (TME) of nearly all solid tumors, leading to therapeutic failure. The changes in stiffness of the extracellular matrix (ECM), pH gradients, and chemical balance that contribute to multiple cancer hallmarks are closely regulated by intratumoral oxygen tension via its primary mediators, hypoxia-inducible factors (HIFs). HIFs, especially HIF-1α, influence these changes in the TME by regulating vital cancer-associated signaling pathways and cellular processes including MAPK/ERK, NF-κB, STAT3, PI3K/Akt, Wnt, p53, and glycolysis. Interestingly, research has revealed the involvement of epigenetic regulation by hypoxia-regulated microRNAs (HRMs) of downstream target genes involved in these signaling. Through literature search and analysis, we identified 48 HRMs that have a functional role in the regulation of 5 key cellular processes: proliferation, metabolism, survival, invasion and migration, and immunoregulation in various cancers in hypoxic condition. Among these HRMs, 17 were identified to be directly associated with HIFs which include miR-135b, miR-145, miR-155, miR-181a, miR-182, miR-210, miR-224, miR-301a, and miR-675-5p as oncomiRNAs, and miR-100-5p, miR-138, miR-138-5p, miR-153, miR-22, miR-338-3p, miR-519d-3p, and miR-548an as tumor suppressor miRNAs. These HRMs serve as a potential lead in the development of miRNA-based targeted therapy for advanced solid tumors. Future development of combined HIF-targeted and miRNA-targeted therapy is possible, which requires comprehensive profiling of HIFs-HRMs regulatory network, and improved formula of the delivery vehicles to enhance the therapeutic kinetics of the targeted cancer therapy (TCT) moving forward.


Asunto(s)
MicroARNs , Línea Celular Tumoral , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , Humanos , Hipoxia/genética , MicroARNs/genética , FN-kappa B/genética , Oxígeno , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Proteína p53 Supresora de Tumor/genética
11.
J Proteome Res ; 23(2): 822-833, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38173118

RESUMEN

Tumor-associated macrophages (TAMs) are key regulators in tumor progression, but the precise role of bone marrow-derived monocytes (Mons) as TAM precursors and their dynamic phenotypes regulated by the tumor microenvironment (TME) remain unclear. Here, we developed an optimized microproteomics workflow to analyze low-cell-number mouse myeloid cells. We sorted TAMs and their corresponding Mons (1 × 105 per sample) from individual melanoma mouse models at both the early and late stages. We established the protein expression profiles for these cells by mass spectrometry. Subsequently, we analyzed the dynamics phenotypes of TAMs and identified a characteristic protein expression profile characterized by upregulated cholesterol metabolism and downregulated immune responses during tumor progression. Moreover, we found the downregulation of both STAT5 and PYCARD expression not only in late-stage TAMs but also in late-stage Mons, indicating a loss of the ability to induce inflammatory responses prior to Mons infiltration into TME. Taken together, our study provides valuable insights into the progression-dependent transitions between TAMs and their precursor cells, as well as the cross-organ communications of tumor and bone marrow.


Asunto(s)
Macrófagos , Neoplasias , Ratones , Animales , Macrófagos Asociados a Tumores/metabolismo , Macrófagos Asociados a Tumores/patología , Proteómica , Neoplasias/patología , Fenotipo , Microambiente Tumoral/genética
12.
J Cell Mol Med ; 28(2): e18017, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38229475

RESUMEN

Understanding the mechanisms underlying metastasis in hepatocellular carcinoma (HCC) is crucial for developing new therapies against this fatal disease. Deubiquitinase ubiquitin-specific protease 11 (USP11) belongs to the deubiquitinating family and has previously been reported to play a critical role in cancer pathogenesis. Although it has been established that USP11 can facilitate the metastasis and proliferation ability of HCC, the underlying regulatory mechanisms are poorly understood. The primary objective of this research was to reveal hitherto undocumented functions of USP11 during HCC progression, especially those related to metabolism. Under hypoxic conditions, USP11 was found to significantly impact the glycolysis of HCC cells, as demonstrated through various techniques, including RNA-Seq, migration and colony formation assays, EdU and co-immunoprecipitation. Interestingly, we found that USP11 interacted with the HIF-1α complex and maintained HIF-1α protein stability by removing ubiquitin. Moreover, USP11/HIF-1α could promote glycolysis through the PDK1 and LDHA pathways. In general, our results demonstrate that USP11 promotes HCC proliferation and metastasis through HIF-1α/LDHA-induced glycolysis, providing new insights and the experimental basis for developing new treatments for this patient population.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , Línea Celular , Hipoxia , Glucólisis , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Línea Celular Tumoral , Tioléster Hidrolasas/genética , Tioléster Hidrolasas/metabolismo
13.
J Biol Chem ; 299(11): 105253, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37716704

RESUMEN

The kinesin-14 motor proteins play important roles in tumor development and drug resistance and have been reported as potential biomarkers or therapeutic targets for tumor treatment. However, kinesin family member C2 (KIFC2), one of the kinesin-14 motor family members, remains largely unknown in prostate cancer (PCa) progression. Here, we used the GEO and The Cancer Genome Atlas datasets, Western blotting, and immunohistochemistry analyses to detect KIFC2 expression in PCa tissues. Additionally, a series of in vivo and in vitro experiments were utilized to demonstrate the roles of KIFC2 in PCa cells. We found that KIFC2 was highly expressed and positively correlated with the clinicopathological characteristics in PCa. Functional experiments indicated that KIFC2 could promote PCa progression. Furthermore, we performed an analysis of the KEGG and GSEA databases, subcellular fractionation, and immunofluorescence to investigate the potential mechanisms of KIFC2 in PCa. We confirmed that KIFC2 could regulate the NF-κB pathway via mediating NF-κB p65 protein expression and nuclear translocation thereby promoting PCa progression and chemotherapeutic resistance. Together, our results suggest that KIFC2 is overexpressed in PCa. By regulating the NF-κB pathway, KIFC2 may play a crucial role in PCa.


Asunto(s)
Cinesinas , Neoplasias de la Próstata , Factor de Transcripción ReIA , Humanos , Masculino , Línea Celular Tumoral , Cinesinas/genética , Cinesinas/metabolismo , FN-kappa B/metabolismo , Neoplasias de la Próstata/metabolismo , Factor de Transcripción ReIA/metabolismo
14.
Mol Cancer ; 23(1): 141, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38982480

RESUMEN

BACKGROUND: The aberrant expression of phosphofructokinase-platelet (PFKP) plays a crucial role in the development of various human cancers by modifying diverse biological functions. However, the precise molecular mechanisms underlying the role of PFKP in head and neck squamous cell carcinoma (HNSCC) are not fully elucidated. METHODS: We assessed the expression levels of PFKP and c-Myc in tumor and adjacent normal tissues from 120 HNSCC patients. A series of in vitro and in vivo experiments were performed to explore the impact of the feedback loop between PFKP and c-Myc on HNSCC progression. Additionally, we explored the therapeutic effects of targeting PFKP and c-Myc in HNSCC using Patient-Derived Organoids (PDO), Cell Line-Derived Xenografts, and Patients-Derived Xenografts. RESULTS: Our findings indicated that PFKP is frequently upregulated in HNSCC tissues and cell lines, correlating with poor prognosis. Our in vitro and in vivo experiments demonstrate that elevated PFKP facilitates cell proliferation, angiogenesis, and metastasis in HNSCC. Mechanistically, PFKP increases the ERK-mediated stability of c-Myc, thereby driving progression of HNSCC. Moreover, c-Myc stimulates PFKP expression at the transcriptional level, thus forming a positive feedback loop between PFKP and c-Myc. Additionally, our multiple models demonstrate that co-targeting PFKP and c-Myc triggers synergistic anti-tumor effects in HNSCC. CONCLUSION: Our study demonstrates the critical role of the PFKP/c-Myc positive feedback loop in driving HNSCC progression and suggests that simultaneously targeting PFKP and c-Myc may be a novel and effective therapeutic strategy for HNSCC.


Asunto(s)
Progresión de la Enfermedad , Retroalimentación Fisiológica , Regulación Neoplásica de la Expresión Génica , Neoplasias de Cabeza y Cuello , Proteínas Proto-Oncogénicas c-myc , Carcinoma de Células Escamosas de Cabeza y Cuello , Humanos , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Animales , Ratones , Neoplasias de Cabeza y Cuello/metabolismo , Neoplasias de Cabeza y Cuello/patología , Neoplasias de Cabeza y Cuello/genética , Línea Celular Tumoral , Fosfofructoquinasa-1 Tipo C/metabolismo , Fosfofructoquinasa-1 Tipo C/genética , Proliferación Celular , Pronóstico , Femenino , Masculino , Ensayos Antitumor por Modelo de Xenoinjerto , Biomarcadores de Tumor/metabolismo
15.
Cancer Sci ; 115(1): 70-82, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37964506

RESUMEN

To evaluate the potential of zinc finger protein 1 (ZPR1) as a diagnostic biomarker and explore the underlying role for esophageal squamous cell carcinoma (ESCC). A human proteome microarray was customized to identify anti-ZPR1 autoantibody, and enzyme-linked immunosorbent assay (ELISA) was adopted to assess the diagnostic performance of anti-ZPR1 autoantibody in 294 patients with ESCC and 294 normal controls. The expression of ZPR1 protein was measured by immunohistochemistry. The effect of ZPR1 on the proliferation, migration, and invasion of ESCC cells was investigated through CCK-8, wound healing, and Transwell assays. The expression level of anti-ZPR1 autoantibody (fold change = 2.77) in ESCC patients was higher than that in normal controls. The receiver operating characteristic (ROC) analysis manifested anti-ZPR1 autoantibody achieved area under the ROC curve (AUC) of 0.726 and 0.734 to distinguish ESCC from normal controls with sensitivity of 50.0% and 42.3%, and specificity of 91.0% and 92.0% in the test group and validation group, respectively. The positive rate of ZPR1 protein was significantly higher in ESCC tissues (75.5%, 80/106) than paracancerous tissues (9.4%, 5/53). Compared with the human normal esophageal cell line, the expression level of ZPR1 mRNA and protein in ESCC lines (KYSE150, Eca109, and TE1) had an increased trend. The knockdown or overexpression of ZPR1 reduced and enhanced the proliferation, migration, and invasion of ESCC cell, respectively. ZPR1 was a potential immunodiagnostic biomarker for noninvasive detection and could be a promotional factor in tumor progression of ESCC.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Humanos , Carcinoma de Células Escamosas de Esófago/genética , Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas/patología , Biomarcadores , Autoanticuerpos/metabolismo , Línea Celular Tumoral , Proliferación Celular , Movimiento Celular , Regulación Neoplásica de la Expresión Génica
16.
Cancer Sci ; 115(1): 139-154, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37940358

RESUMEN

BRD7 was identified as a tumor suppressor in nasopharyngeal carcinoma (NPC). Circular RNAs (CircRNAs) are involved in the occurrence and development of NPC as oncogenes or tumor suppressors. However, the function and mechanism of the circular RNA forms derived from BRD7 in NPC are not well understood. In this study, we first identified that circBRD7 was a novel circRNA derived from BRD7 that inhibited cell proliferation, migration, invasion of NPC cells, as well as the xenograft tumor growth and metastasis in vivo. Mechanistically, circBRD7 promoted the transcriptional activation and expression of BRD7 by enhancing the enrichment of histone 3 lysine 27 acetylation (H3K27ac) in the promoter region of its host gene BRD7, and BRD7 promoted the formation of circBRD7. Therefore, circBRD7 formed a positive feedback loop with BRD7 to inhibit NPC development and progression. Moreover, restoration of BRD7 expression rescued the inhibitory effect of circBRD7 on the malignant progression of NPC. In addition, circBRD7 demonstrated low expression in NPC tissues, which was positively correlated with BRD7 expression and negatively correlated with the clinical stage of NPC patients. Taken together, circBRD7 attenuates the tumor growth and metastasis of NPC by forming a positive feedback loop with its host gene BRD7, and targeting the circBRD7/BRD7 axis is a promising strategy for the clinical diagnosis and treatment of NPC.


Asunto(s)
MicroARNs , Neoplasias Nasofaríngeas , Humanos , Carcinoma Nasofaríngeo/genética , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Regiones Promotoras Genéticas , Proliferación Celular/genética , Neoplasias Nasofaríngeas/patología , Epigénesis Genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Movimiento Celular/genética , MicroARNs/genética , Proteínas que Contienen Bromodominio
17.
Cancer Sci ; 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38801832

RESUMEN

Aberrant signaling in tumor cells induces nonmetabolic functions of some metabolic enzymes in many cellular activities. As a key glycolytic enzyme, the nonmetabolic function of hexokinase 2 (HK2) plays a role in tumor immune evasion. However, whether HK2, dependent of its nonmetabolic activity, plays a role in human pancreatic ductal adenocarcinoma (PDAC) tumorigenesis remains unclear. Here, we demonstrated that HK2 acts as a protein kinase and phosphorylates IκBα at T291 in PDAC cells, activating NF-κB, which enters the nucleus and promotes the expression of downstream targets under hypoxia. HK2 nonmetabolic activity-promoted activation of NF-κB promotes the proliferation, migration, and invasion of PDAC cells. These findings provide new insights into the multifaceted roles of HK2 in tumor development and underscore the potential of targeting HK2 protein kinase activity for PDAC treatment.

18.
Cancer Sci ; 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38877825

RESUMEN

Over 50% of patients with hepatitis B virus-associated hepatocellular carcinoma (HBV-HCC) are diagnosed at an advanced stage, which is characterized by immune imbalance between CD8+ T cells and regulatory T (Treg) cells that accelerates disease progression. However, there is no imbalance indicator to predict clinical outcomes. Here, we show that the proportion of CD8+ T cells decreases and Treg cells increases in advanced HBV-HCC patients. During this stage, CD8+ T cells and Treg cells expressed the coinhibitory molecule PD-1 and the costimulatory molecule ICOS, respectively. Additionally, the ratio between PD-1+CD8 and ICOS+Tregs showed significant changes. Patients were further divided into high- and low-ratio groups: PD-1+CD8 and ICOS+Tregs high- (PD-1/ICOShi) and low-ratio (PD-1/ICOSlo) groups according to ratio median. Compared with PD-1/ICOSlo patients, the PD-1/ICOShi group had better clinical prognosis and weaker CD8+ T cells exhaustion, and the T cell-killing and proliferation functions were more conservative. Surprisingly, the small sample analysis found that PD-1/ICOShi patients exhibited a higher proportion of tissue-resident memory T (TRM) cells and had more stable killing capacity and lower apoptosis capacity than PD-1/ICOSlo advanced HBV-HCC patients treated with immune checkpoint inhibitors (ICIs). In conclusion, the ratio between PD-1+CD8 and ICOS+Tregs was associated with extreme immune imbalance and poor prognosis in advanced HBV-HCC. These findings provide significant clinical implications for the prognosis of advanced HBV-HCC and may serve as a theoretical basis for identifying new targets in immunotherapy.

19.
Trends Genet ; 37(5): 433-443, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33203571

RESUMEN

Germline variants have a rich history of being studied in the context of cancer risk. Emerging studies now suggest that germline variants contribute not only to cancer risk but to tumor progression as well. In this opinion article, we discuss the initial discoveries associating germline variants with patient outcome and the mechanisms by which germline variants affect molecular pathways. Germline variants affect molecular pathways through amino acid changes, alteration of splicing patterns or expression of genes, influencing the selection for somatic mutations, and causing genome-wide mutational enrichment. These molecular alterations can lead to tumor phenotypes that become clinically apparent such as metastasis, alterations to the immune microenvironment, and modulation of therapeutic response. Overall, the growing body of evidence suggests that germline variants play a larger role in tumor progression than has been previously appreciated and that germline variation holds substantial potential for improving personalized medicine and patient outcomes.


Asunto(s)
Mutación de Línea Germinal , Neoplasias/genética , Genes Supresores de Tumor , Predisposición Genética a la Enfermedad , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Variantes Farmacogenómicas , Polimorfismo de Nucleótido Simple , Medicina de Precisión , Resultado del Tratamiento
20.
Cancer ; 130(3): 356-374, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-37861451

RESUMEN

BACKGROUND: This study aimed to determine the role of insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP3), an N6 -methyladinosine reader, in the progression and distant metastasis of breast cancer. METHODS: IGF2BP3 expression was assessed in 152 pairs of breast cancer and adjacent normal tissue (ANT) by real-time quantitative polymerase chain reaction and in 561 cases of breast cancer and 163 cases of ANT by immunohistochemistry. Survival curves were estimated using the Kaplan-Meier method and then compared statistically using the log-rank test. The prognostic role of IGF2BP3 was determined by Cox regression analysis. RESULTS: Analysis of public gene data sets revealed that IGF2PB3 predicted distant metastasis in breast cancer and was highly correlated with brain metastasis. In the clinical retrospective cohort, the positive rate of IGF2BP3 increased gradually with breast cancer progression. Positive IGF2BP3 expression was related to poor distant metastasis-free survival (DMFS, p = .030) and Cox regression analysis identified IGF2BP3 as an independent risk factor for DMFS (hazard ratio, 1.876; 95% confidence interval, 1.128-3.159; p = .019). Positive IGF2BP3 expression was markedly related to breast cancer brain metastasis (p = .011) but not to lung and bone metastasis. Moreover, patients with IGF2BP3-positive brain metastasis had lower survival than patients with IGF2BP3-negative brain metastasis (p = .041). Gene expression profiling results indicated that high IGF2BP3 expression was associated with the PD-1 checkpoint pathway, HER2-HER3 signaling, and epithelial-mesenchymal transition. CONCLUSIONS: IGF2BP3 may serve as a novel predictive biomarker and a potential therapeutic target for breast cancer brain metastasis, which warrants further investigation. PLAIN LANGUAGE SUMMARY: As an m6 A reader, IGF2BP3 is dysregulated and implicated in various cancers but its role in breast cancer has not been fully clarified. In this study, we found that IGF2BP3 was upregulated in breast cancer and IGF2BP3 expression increased gradually during breast cancer progression. IGF2BP3 expression exerted no effect on the overall survival and breast cancer-specific survival of breast cancer patients; however, IGF2BP3-positive patients were more likely to develop distant metastasis than IGF2BP3-negative patients. In addition, IGF2BP3 was associated with brain-specific metastasis in breast cancer patients. These findings warrant further investigation because they provide a rationale for novel predictive or therapeutic approaches.


Asunto(s)
Neoplasias Encefálicas , Neoplasias de la Mama , Femenino , Humanos , Encéfalo/patología , Neoplasias Encefálicas/genética , Neoplasias de la Mama/patología , Pronóstico , Estudios Retrospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA