Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Allergy Clin Immunol ; 151(2): 447-457.e5, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36216081

RESUMEN

BACKGROUND: Microbiota are recognized to play a major role in regulation of immunity through release of immunomodulatory metabolites such as short-chain fatty acids (SCFAs). Rhinoviruses (RVs) induce upper respiratory tract illnesses and precipitate exacerbations of asthma and chronic obstructive pulmonary disease through poorly understood mechanisms. Local interactions between SCFAs and antiviral immune responses in the respiratory tract have not been previously investigated. OBJECTIVE: We sought to investigate whether pulmonary metabolite manipulation through lung-delivered administration of SCFAs can modulate antiviral immunity to RV infection. METHODS: We studied the effects of intranasal administration of the SCFAs acetate, butyrate, and propionate on basal expression of antiviral signatures, and of acetate in a mouse model of RV infection and in RV-infected lung epithelial cell lines. We additionally assessed the effects of acetate, butyrate, and propionate on RV infection in differentiated human primary bronchial epithelial cells. RESULTS: Intranasal acetate administration induced basal upregulation of IFN-ß, an effect not observed with other SCFAs. Butyrate induced RIG-I expression. Intranasal acetate treatment of mice increased interferon-stimulated gene and IFN-λ expression during RV infection and reduced lung virus loads at 8 hours postinfection. Acetate ameliorated virus-induced proinflammatory responses with attenuated pulmonary mucin and IL-6 expression observed at day 4 and 6 postinfection. This interferon-enhancing effect of acetate was confirmed in human bronchial and alveolar epithelial cell lines. In differentiated primary bronchial epithelial cells, butyrate treatment better modulated IFN-ß and IFN-λ gene expression during RV infection. CONCLUSIONS: SCFAs augment antiviral immunity and reduce virus load and proinflammatory responses during RV infection.


Asunto(s)
Infecciones por Enterovirus , Infecciones por Picornaviridae , Humanos , Ratones , Animales , Antivirales/uso terapéutico , Rhinovirus , Propionatos/farmacología , Propionatos/uso terapéutico , Interferones , Bronquios , Células Epiteliales , Acetatos/farmacología , Acetatos/uso terapéutico , Butiratos/farmacología , Butiratos/uso terapéutico
2.
J Virol ; 96(2): e0124121, 2022 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-34705554

RESUMEN

Coronaviruses are a major health care threat to humankind. Currently, the host factors that contribute to limit disease severity in healthy young patients are not well defined. Interferons are key antiviral molecules, especially type I and type III interferons. The role of these interferons during coronavirus disease is a subject of debate. Here, using mice that are deficient in type I (IFNAR1-/-), type III (IFNLR1-/-), or both (IFNAR1/LR1-/-) interferon signaling pathways and murine-adapted coronavirus (MHV-A59) administered through the intranasal route, we define the role of interferons in coronavirus infection. We show that type I interferons play a major role in host survival in this model, while a minimal role of type III interferons was manifested only in the absence of type I interferons or during a lethal dose of coronavirus. IFNAR1-/- and IFNAR1/LR1-/- mice had an uncontrolled viral burden in the airways and lung and increased viral dissemination to other organs. The absence of only type III interferon signaling had no measurable difference in the viral load. The increased viral load in IFNAR1-/- and IFNAR1/LR1-/- mice was associated with increased tissue injury, especially evident in the lung and liver. Type I but not type III interferon treatment was able to promote survival if treated during early disease. Further, we show that type I interferon signaling in macrophages contributes to the beneficial effects during coronavirus infection in mice. IMPORTANCE The antiviral and pathological potential of type I and type III interferons during coronavirus infection remains poorly defined, and opposite findings have been reported. We report that both type I and type III interferons have anticoronaviral activities, but their potency and organ specificity differ. Type I interferon deficiency rendered the mice susceptible to even a sublethal murine coronavirus infection, while the type III interferon deficiency impaired survival only during a lethal infection or during a sublethal infection in the absence of type I interferon signaling. While treatment with both type I and III interferons promoted viral clearance in the airways and lung, only type I interferons promoted the viral clearance in the liver and improved host survival upon early treatment (12 h postinfection). This study demonstrates distinct roles and potency of type I and type III interferons and their therapeutic potential during coronavirus lung infection.


Asunto(s)
Infecciones por Coronavirus/inmunología , Interferón Tipo I/inmunología , Interferones/inmunología , Pulmón , Animales , Femenino , Pulmón/inmunología , Pulmón/virología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Interferón lambda
3.
Int J Mol Sci ; 24(11)2023 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-37298304

RESUMEN

Type I and III Interferons (IFNs) are the first lines of defense in microbial infections. They critically block early animal virus infection, replication, spread, and tropism to promote the adaptive immune response. Type I IFNs induce a systemic response that impacts nearly every cell in the host, while type III IFNs' susceptibility is restricted to anatomic barriers and selected immune cells. Both IFN types are critical cytokines for the antiviral response against epithelium-tropic viruses being effectors of innate immunity and regulators of the development of the adaptive immune response. Indeed, the innate antiviral immune response is essential to limit virus replication at the early stages of infection, thus reducing viral spread and pathogenesis. However, many animal viruses have evolved strategies to evade the antiviral immune response. The Coronaviridae are viruses with the largest genome among the RNA viruses. Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2) caused the coronavirus disease 2019 (COVID-19) pandemic. The virus has evolved numerous strategies to contrast the IFN system immunity. We intend to describe the virus-mediated evasion of the IFN responses by going through the main phases: First, the molecular mechanisms involved; second, the role of the genetic background of IFN production during SARS-CoV-2 infection; and third, the potential novel approaches to contrast viral pathogenesis by restoring endogenous type I and III IFNs production and sensitivity at the sites of infection.


Asunto(s)
COVID-19 , Interferón Tipo I , Animales , Interferones/genética , SARS-CoV-2 , Antivirales/farmacología , Antivirales/uso terapéutico , Interferón Tipo I/genética , Citocinas , Inmunidad Innata , Evasión Inmune
4.
Int J Mol Sci ; 22(21)2021 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-34769174

RESUMEN

A pivotal role of type I interferons in systemic lupus erythematosus (SLE) is widely accepted. Type III interferons (IFN-λ) however, the most recently discovered cytokines grouped within the interferon family, have not been extensively studied in lupus disease models yet. Growing evidence suggests a role for IFN-λ in regulating both innate and adaptive immune responses, and increased serum concentrations have been described in multiple autoimmune diseases including SLE. Using the pristane-induced lupus model, we found that mice with defective IFN-λ receptors (Ifnlr1-/-) showed increased survival rates, decreased lipogranuloma formation and reduced anti-dsDNA autoantibody titers in the early phase of autoimmunity development compared to pristane-treated wild-type mice. Moreover, Ifnlr1-/- mice treated with pristane had reduced numbers of inflammatory mononuclear phagocytes and cNK cells in their kidneys, resembling untreated control mice. Systemically, circulating B cells and monocytes (CD115+Ly6C+) were reduced in pristane-treated Ifnlr1-/- mice. The present study supports a significant role for type III interferons in the pathogenesis of pristane-induced murine autoimmunity as well as in systemic and renal inflammation. Although the absence of type III interferon receptors does not completely prevent the development of autoantibodies, type III interferon signaling accelerates the development of autoimmunity and promotes a pro-inflammatory environment in autoimmune-prone hosts.


Asunto(s)
Inmunidad Celular , Inmunidad Humoral , Interferones/inmunología , Leucocitos/inmunología , Lupus Eritematoso Sistémico , Terpenos/efectos adversos , Animales , Interferones/genética , Lupus Eritematoso Sistémico/inducido químicamente , Lupus Eritematoso Sistémico/genética , Lupus Eritematoso Sistémico/inmunología , Ratones , Ratones Noqueados , Receptores de Interferón/deficiencia , Receptores de Interferón/inmunología , Terpenos/farmacología , Interferón lambda
5.
BMC Cancer ; 20(1): 1131, 2020 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-33228589

RESUMEN

BACKGROUND: Hepatocellular carcinoma (HCC) and pancreatic ductal adenocarcinoma (PDAC) are malignancies with a leading lethality. With reference to interferons (IFNs) known to mediate antitumor activities, this study investigated the relationship between germline genetic variations in type III IFN genes and cancer disease progression from The Cancer Genome Atlas (TCGA) data. The genetic variations under study tag a gain-or-loss-of-function dinucleotide polymorphism within the IFNL4 gene, rs368234815 [TT/ΔG]. METHODS: The entirety of the TCGA sequencing data was used to assess genotypes of 187 patients with HCC and of 162 patients with PDAC matched for ethnicity. Stratified for IFNL genotypes, both cohorts were subjected to time-to-event analyses according to Kaplan-Meier with regard to the length of the specific progression free interval (PFI) and the overall survival (OS) time as two clinical endpoints for disease progression. RESULTS: Logrank analysis revealed a significant relationship between IFNL genotypes and disease outcome for PDAC. This relationship was not found for HCC. A multiple Cox regression analysis employing patients' age, tumor grade and tumor stage as further covariates proved IFNL genotypes to be independent predictors for PDAC disease outcome. CONCLUSION: This repository-based approach unveiled clinical evidence suggestive for an impact of IFNL germline variations for PDAC progression with an IFNL haplotype predisposing for IFNL4 expression being favorable.


Asunto(s)
Adenocarcinoma/genética , Carcinoma Hepatocelular/genética , Carcinoma Ductal Pancreático/genética , Variación Genética/genética , Genoma/genética , Interferones/metabolismo , Interleucinas/metabolismo , Neoplasias Hepáticas/genética , Carcinoma Hepatocelular/patología , Progresión de la Enfermedad , Femenino , Células Germinativas , Humanos , Neoplasias Hepáticas/patología , Masculino
6.
J Virol ; 92(4)2018 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-29187542

RESUMEN

Type III interferons (IFNs) play a vital role in maintaining the antiviral state of the mucosal epithelial surface in the gut, and in turn, enteric viruses may have evolved to evade the type III IFN responses during infection. To study the possible immune evasion of the type III IFN response by porcine epidemic diarrhea virus (PEDV), a line of porcine intestinal epithelial cells was developed as a cell model for PEDV replication. IFN-λ1 and IFN-λ3 inhibited PEDV replication, indicating the anti-PEDV activity of type III IFNs. Of the 21 PEDV proteins, nsp1, nsp3, nsp5, nsp8, nsp14, nsp15, nsp16, open reading frame 3 (ORF3), E, M, and N were found to suppress type III IFN activities, and IRF1 (interferon regulatory factor 1) signaling mediated the suppression. PEDV specifically inhibited IRF1 nuclear translocation. The peroxisome is the innate antiviral signaling platform for the activation of IRF1-mediated IFN-λ production, and the numbers of peroxisomes were found to be decreased in PEDV-infected cells. PEDV nsp1 blocked the nuclear translocation of IRF1 and reduced the number of peroxisomes to suppress IRF1-mediated type III IFNs. Mutational studies showed that the conserved residues of nsp1 were crucial for IRF1-mediated IFN-λ suppression. Our study for the first time provides evidence that the porcine enteric virus PEDV downregulates and evades IRF1-mediated type III IFN responses by reducing the number of peroxisomes.IMPORTANCE Porcine epidemic diarrhea virus (PEDV) is a highly contagious enteric coronavirus that emerged in swine in the United States and has caused severe economic losses. PEDV targets intestinal epithelial cells in the gut, and intestinal epithelial cells selectively induce and respond to the production of type III interferons (IFNs). However, little is known about the modulation of the type III IFN response by PEDV in intestinal epithelial cells. In this study, we established a porcine intestinal epithelial cell model for PEDV replication. We found that PEDV inhibited IRF1-mediated type III IFN production by decreasing the number of peroxisomes in porcine intestinal epithelial cells. We also demonstrated that the conserved residues in the PEDV nsp1 protein were crucial for IFN suppression. This study for the first time shows PEDV evasion of the type III IFN response in intestinal epithelial cells, and it provides valuable information on host cell-virus interactions not only for PEDV but also for other enteric viral infections in swine.


Asunto(s)
Interacciones Huésped-Patógeno , Factor 1 Regulador del Interferón/metabolismo , Interferones/inmunología , Virus de la Diarrea Epidémica Porcina/patogenicidad , Proteínas Virales/metabolismo , Animales , Chlorocebus aethiops , Infecciones por Coronavirus/virología , Células Epiteliales/virología , Evasión Inmune , Masculino , Mutación , Peroxisomas/inmunología , Virus de la Diarrea Epidémica Porcina/fisiología , Transducción de Señal , Porcinos/virología , Células Vero
7.
Medicina (Kaunas) ; 55(10)2019 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-31561422

RESUMEN

Background and objectives: Recurrent herpes simplex keratitis (HSK) is the most common cause of corneal blindness in the developed world. A relationship between host gene polymorphisms and the recurrence of herpes simplex virus (HSV) infection has previously been proposed. Thus, the aim of this study was to investigate a potential association between the IL28B host genotype and recurrent HSK. Materials and Methods: Eighty patients older than 18 years of age of both genders with a history of recurrent herpes simplex labialis (HSL) were considered for inclusion. Seventy-five of these patients were found to be seropositive for HSV-1 and were subsequently enrolled in the study. Twenty-four of the enrolled patients also had a history of recurrent HSK associated with severe corneal scarring and visual acuity deterioration. Total DNA was isolated from whole blood samples. A single-nucleotide polymorphism (SNP) rs12979860 near the IL28B gene on chromosome 19 was genotyped. Results: A significant association was observed between recurrent HSK and two SNPs of the IL28B genotype (CCrs12979860 and CTrs12979860, p < 0.01). The variation CCrs12979860 showed a significantly greater association with HSK (16 out of 26 patients) compared with CTrs12979860 (8 out of 34 patients). Conclusion: Seropositive individuals with a history of recurrent HSK are likely to have the CC IL28B genotype. This genotype may be related to incomplete control of the infection and more frequent periodical viral shedding along the first nerve branch of the trigeminal ganglion, which clinically manifests as recurrent herpes keratitis. The clinical manifestation of recurrent HSV-1 infection seems to be influenced by polymorphism of the IL28B genotype.


Asunto(s)
Variación Genética , Herpesvirus Humano 1/fisiología , Inmunidad Innata/genética , Interferones/genética , Queratitis Herpética/genética , Adulto , Femenino , Técnica del Anticuerpo Fluorescente Indirecta , Herpesvirus Humano 1/inmunología , Humanos , Inmunidad Innata/inmunología , Queratitis Herpética/inmunología , Queratitis Herpética/virología , Masculino , Persona de Mediana Edad , Recurrencia
8.
Biomed Pharmacother ; 179: 117426, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39243429

RESUMEN

Interferons are a family of cytokines that are famously known for their involvement in innate and adaptive immunity. Type I interferons (IFNs) exert pleiotropic effects on various immune cells and contribute to tumor-intrinsic and extrinsic mechanisms. Their pleiotropic effects and ubiquitous expression on nucleated cells have made them attractive candidates for cytokine engineering to deliver to largely immunosuppressive tumors. Type III interferons were believed to play overlapping roles with type I IFNs because they share a similar signaling pathway and induce similar transcriptional programs. However, type III IFNs are unique in their cell specific receptor expression and their antitumor activity is specific to a narrow range of cell types. Thus, type III IFN based therapies may show reduced toxic side effects compared with type I IFN based treatment. In this review, we focus on the development of IFN-based therapeutics used to treat different tumors. We highlight how the development in cytokine engineering has allowed for efficient delivery of type I and type III IFNs to tumor sites and look ahead to the obstacles that are still associated with IFN-based therapies before they can be fully and safely integrated into clinical settings.


Asunto(s)
Inmunoterapia , Interferones , Neoplasias , Humanos , Neoplasias/terapia , Neoplasias/inmunología , Inmunoterapia/métodos , Animales , Interferones/inmunología , Ingeniería de Proteínas/métodos , Interferón Tipo I/inmunología
9.
J Interferon Cytokine Res ; 43(9): 379-393, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37253131

RESUMEN

Autoantibodies (AABs) neutralizing type I interferons (IFN) underlie about 15% of cases of critical coronavirus disease 2019 (COVID-19) pneumonia. The impact of autoimmunity toward type III IFNs remains unexplored. We included samples from 1,002 patients with COVID-19 (50% with severe disease) and 1,489 SARS-CoV-2-naive individuals. We studied the prevalence and neutralizing capacity of AABs toward IFNλ and IFNα. Luciferase-based immunoprecipitation method was applied using pooled IFNα (subtypes 1, 2, 8, and 21) or pooled IFNλ1-IFNλ3 as antigens, followed by reporter cell-based neutralization assay. In the SARS-CoV-2-naive cohort, IFNλ AABs were more common (8.5%) than those targeting IFNα2 (2.9%) and were related with older age. In the COVID-19 cohort the presence of autoreactivity to IFNλ did not associate with severe disease [odds ratio (OR) 0.84; 95% confidence interval (CI) 0.40-1.73], unlike to IFNα (OR 4.88; 95% CI 2.40-11.06; P < 0.001). Most IFNλ AAB-positive COVID-19 samples (67%) did not neutralize any of the 3 IFNλ subtypes. Pan-IFNλ neutralization occurred in 5 patients (0.50%), who all suffered from severe COVID-19 pneumonia, and 4 of them neutralized IFNα2 in addition to IFNλ. Overall, AABs to type III IFNs are rarely neutralizing, and do not seem to predispose to severe COVID-19 pneumonia on their own.


Asunto(s)
COVID-19 , Interferón Tipo I , Humanos , Interferón lambda , SARS-CoV-2 , Autoanticuerpos , Interferón-alfa , Interferones
10.
J Interferon Cytokine Res ; 43(9): 403-413, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37499093

RESUMEN

Type III interferons (IFN-lambdas, IFN-λs) are important antiviral cytokines that can also modulate immune responses by acting through a heterodimeric receptor composed of the specific and limited expressed IFN-λR1 chain and the ubiquitous IL-10R2 chain, which is shared with IL-10 family cytokines. Conflicting data have been reported regarding which cells express the IFN-λR1 subunit and directly respond to IFN-λs. This is, in part, owing to transcript levels of the IFN-λR1 gene, IFNLR1, not always correlating with cell surface protein levels. In this study, we tested a panel of novel monoclonal antibodies (mAbs) that specifically recognize human IFN-λR1. Initially, antigen specificity was confirmed by enzyme-linked immunosorbent assay (ELISA), from which a subset of antibodies was selected for additional flow cytometry and neutralization assays. We further characterized two antibodies based on their strong ELISA binding activity (HLR1 and HLR14) and found only HLR14 could reliably detect cell surface IFN-λR1 protein on a variety of cell lines by flow cytometry. HLR14 could also detect IFN-λR1 protein on certain primary human blood cells, including plasmacytoid dendritic cells and B cells from peripheral blood. Availability of the HLR14 mAb will enable the quantification of IFN-λR1 protein levels on cells and better characterization of the cell specificity of the IFN-λ response.


Asunto(s)
Interferones , Receptores de Interferón , Humanos , Receptores de Interferón/genética , Interferón lambda , Proteínas de la Membrana , Anticuerpos Monoclonales , Citocinas
11.
Expert Opin Biol Ther ; 23(5): 389-394, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37147857

RESUMEN

INTRODUCTION: Pegylated interferon lambda substantially reduced the risk of COVID-19-related hospitalizations or emergency room visits in a recent phase 3, multi-center, randomized, double-blind, placebo-controlled study of high-risk, non-hospitalized adult patients with SARS-CoV-2 infection compared to treatment with placebo. AREAS COVERED: Interferons are a family of signaling molecules produced as part of the innate immune response to viral infections. The administration of exogenous interferon may limit disease progression in patients with COVID-19. EXPERT OPINION: Interferons have been used to treat viral infections, including hepatitis B and hepatitis C, and malignancies such as non-Hodgkin's lymphoma, as well as the autoimmune condition multiple sclerosis. This manuscript examines what is known about the role of interferon lambda in the treatment of COVID-19, including potential limitations, and explores how this approach may be used in the future.


Asunto(s)
COVID-19 , Virosis , Adulto , Humanos , Interferón lambda , SARS-CoV-2 , Interferones/uso terapéutico , Antivirales/efectos adversos
12.
Clin Exp Med ; 23(7): 2967-2977, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37142799

RESUMEN

The mammalian lungs encounter several pathogens, but have a sophisticated multi-phase immune defense. Furthermore, several immune responses to suppress pulmonary pathogens can damage the airway epithelial cells, particularly the vital alveolar epithelial cells (pneumocytes). The lungs have a sequentially activated, but overlapping, five phase immune response to suppress most pathogens, while causing minimal damage to the airway epithelial cells. Each phase of the immune response may suppress the pathogens, but if the previous phase proves inadequate, a stronger phase of immune response is activated, but with an increased risk of airway epithelial cell damage. The first phase immune response involves the pulmonary surfactants, which have proteins and phospholipids with potentially sufficient antibacterial, antifungal and antiviral properties to suppress many pathogens. The second phase immune response involves the type III interferons, having pathogen responses with comparatively minimal risk of damage to airway epithelial cells. The third phase immune response involves type I interferons, which implement stronger immune responses against pathogens with an increased risk of damage to airway epithelial cells. The fourth phase immune response involves the type II interferon, interferon-γ, which activates stronger immune responses, but with considerable risk of airway epithelial cell damage. The fifth phase immune response involves antibodies, potentially activating the complement system. In summary, five major phases of immune responses for the lungs are sequentially initiated to create an overlapping immune response which can suppress most pathogens, while usually causing minimal damage to the airway epithelial cells, including the pneumocytes.


Asunto(s)
Interferones , Pulmón , Animales , Humanos , Células Epiteliales , Sistema Inmunológico , Interferón lambda , Mamíferos/metabolismo
13.
Front Microbiol ; 13: 846343, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35308346

RESUMEN

Senecavirus A (SVA) is a new type of virus related to swine vesicular disease, which results in enormous economic losses worldwide. At present, the host transcriptional responses to SVA infection, host-SVA interactions, and the mechanism of SVA in innate immune modulation are not well understood. This study explores the gene expression profiles of PK-15 cells at 0, 6, 12, 18, 24, 36 h SVA post-infection by RNA sequencing. Our analysis identified 61, 510, 1,584, 2,460, and 2,359 differentially expressed genes (DEGs) in the comparison groups S6 vs. Control, S12 vs. Control, S18 vs. Control, S24 vs. Control, S36 vs. Control, respectively. The reproducibility and repeatability of the results were validated by RT-qPCR, and all DEGs exhibited expression patterns consistent with the RNA-seq results. According to GO enrichment analysis and KEGG pathway analysis of DEGs in different periods after SVA infection, we found that SVA infection significantly modified the host cell gene-expression patterns and the host cells responded in highly specific manners, including response to signal reception and transmission, external biotic stimulus, response to the virus and host immune defense response. Notably, we observed the specific induction of type III interferon IFN-λ1 and IFN-λ3, which indicated that type III interferon plays an important antiviral function in PK-15 cells. Furthermore, our results showed that SVA might be recognized by RIG-I/MDA-5 receptors first after infecting PK-15 cells and then activates downstream IRF7-mediated signaling pathways, causing an increase in the expression of type III interferon. This study could provide important insights into the modulation of host metabolism during SVA infection and provide a strong theoretical basis for a better understanding of the pathogenic mechanism and immune escape mechanism of SVA.

14.
Front Immunol ; 13: 794776, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35281062

RESUMEN

Stimulator of Interferon Genes (STING) is a cytosolic sensor of cyclic dinucleotides (CDNs). The activation of dendritic cells (DC) via the STING pathway, and their subsequent production of type I interferon (IFN) is considered central to eradicating tumours in mouse models. However, this contribution of STING in preclinical murine studies has not translated into positive outcomes of STING agonists in phase I & II clinical trials. We therefore questioned whether a difference in human DC responses could be critical to the lack of STING agonist efficacy in human settings. This study sought to directly compare mouse and human plasmacytoid DCs and conventional DC subset responses upon STING activation. We found all mouse and human DC subsets were potently activated by STING stimulation. As expected, Type I IFNs were produced by both mouse and human plasmacytoid DCs. However, mouse and human plasmacytoid and conventional DCs all produced type III IFNs (i.e., IFN-λs) in response to STING activation. Of particular interest, all human DCs produced large amounts of IFN-λ1, not expressed in the mouse genome. Furthermore, we also found differential cell death responses upon STING activation, observing rapid ablation of mouse, but not human, plasmacytoid DCs. STING-induced cell death in murine plasmacytoid DCs occurred in a cell-intrinsic manner and involved intrinsic apoptosis. These data highlight discordance between STING IFN and cell death responses in mouse and human DCs and caution against extrapolating STING-mediated events in mouse models to equivalent human outcomes.


Asunto(s)
Interferón Tipo I , Animales , Muerte Celular , Citosol/metabolismo , Células Dendríticas/metabolismo , Humanos , Interferón Tipo I/metabolismo , Proteínas de la Membrana , Ratones , Transducción de Señal
15.
Viral Immunol ; 34(5): 307-320, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33147113

RESUMEN

While an appropriately regulated production of interferons (IFNs) performs a fundamental role in the defense against coronaviruses such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), dysregulated overproduction of inflammatory mediators can play an important role in the development of SARS-CoV-2 infection-related complications, such as acute respiratory distress syndrome. As the principal constituents of innate immunity, both type I and III IFNs share antiviral features. However, important properties, including preferential expression at mucosal barriers (such as respiratory tract), local influences, lower receptor distribution, smaller target cell types, noninflammatory effects, and immunomodulatory impacts, were attributed only to type III IFNs. Accordingly, type III IFNs can establish an optimal effective antiviral response, without triggering exaggerated systemic inflammation that is generally attributed to the type I IFNs. However, some harmful effects were attributed to the III IFNs and there are also major differences between human and mouse concerning the immunomodulatory effects of III IFNs. Here, we describe the differential properties of type I and type III IFNs and present a model of IFN response during SARS-COV-2 infection, while highlighting the superior potential of type III IFNs in COVID-19.


Asunto(s)
COVID-19/inmunología , COVID-19/terapia , Interferón Tipo I/inmunología , Interferones/inmunología , Replicación Viral/efectos de los fármacos , Animales , Antivirales/uso terapéutico , COVID-19/prevención & control , Humanos , Inmunidad Innata , Interferón Tipo I/uso terapéutico , Interferones/uso terapéutico , Ratones , SARS-CoV-2/efectos de los fármacos , Interferón lambda
16.
Front Immunol ; 12: 724618, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34484233

RESUMEN

Herpes simplex virus type 2 (HSV-2) infection is one of the most prevalent sexually transmitted infections that disproportionately impacts women worldwide. Currently, there are no vaccines or curative treatments, resulting in life-long infection. The mucosal environment of the female reproductive tract (FRT) is home to a complex array of local immune defenses that must be carefully coordinated to protect against genital HSV-2 infection, while preventing excessive inflammation to prevent disease symptoms. Crucial to the defense against HSV-2 infection in the FRT are three classes of highly related and integrated cytokines, type I, II, and III interferons (IFN). These three classes of cytokines control HSV-2 infection and reduce tissue damage through a combination of directly inhibiting viral replication, as well as regulating the function of resident immune cells. In this review, we will examine how interferons are induced and their critical role in how they shape the local immune response to HSV-2 infection in the FRT.


Asunto(s)
Herpes Genital/inmunología , Herpesvirus Humano 2/inmunología , Interferones/inmunología , Animales , Femenino , Humanos , Inmunidad Mucosa , Ratones , Membrana Mucosa/virología
17.
mBio ; 11(6)2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33203755

RESUMEN

Enteroviruses infect gastrointestinal epithelium cells, cause multiple human diseases, and present public health risks worldwide. However, the mechanisms underlying host immune responses in intestinal mucosa against the early enterovirus infections remain elusive. Here, we showed that human enteroviruses including enterovirus 71 (EV71), coxsackievirus B3 (CVB3), and poliovirus 1 (PV1) predominantly induce type III interferons (IFN-λ1 and IFN-λ2/3), rather than type I interferons (IFN-α and IFN-ß), in cultured human normal and cancerous intestine epithelial cells (IECs), mouse intestine tissues, and human clinical intestine specimens. Mechanistic studies demonstrated that IFN-λ production is induced upon enterovirus infection through the Toll-like receptor 3/interferon regulatory factor 1 (TLR3/IRF1) signaling pathway in IECs. In turn, the supplementation of IFN-λ subsequently induces intrinsically antiviral responses against enterovirus replication. Notably, intraperitoneal injection in neonatal C57BL/6J mice with mouse recombinant IFN-λ2 protein represses EV71 replication and protects mice from viral lethal effects. Altogether, these results revealed a distinct mechanism by which the host elicited immune responses against enterovirus infections in intestine through activating the TLR3/IRF1/type III IFN axis. The new findings would provide an antiviral strategy for the prevention and treatment of enterovirus infections and associated diseases.IMPORTANCE Enterovirus infections are significant sources of human diseases and public health risks worldwide, but little is known about the mechanism of innate immune response in host intestine epithelial surface during the viral replication. We reported the epithelial immune response in cultured human normal and cancerous cells (IECs), mouse tissues, and human clinical intestine specimens following infection with enterovirus 71. The results mechanistically revealed type III interferons (IFN-λ1 and IFN-λ2/3), rather than type I interferons (IFN-α and IFN-ß), as the dominant production through TLR3/IRF1 signaling upon multiple human enterovirus infection, including enterovirus 71 (EV71), coxsackievirus B3 (CVB3), and poliovirus 1 (PV1). IFN-λ subsequently induced antiviral activity against enterovirus replication in vitro and in vivo. These studies uncovered the role of the novel process of type III IFN production involved in the TLR3/IRF1 pathway in host intestine upon enterovirus infection, which highlighted a regulatory manner of antiviral defense in intestine during enterovirus infection.


Asunto(s)
Infecciones por Enterovirus/inmunología , Enterovirus/inmunología , Inmunidad Innata , Factor 1 Regulador del Interferón/metabolismo , Interferones/metabolismo , Receptor Toll-Like 3/metabolismo , Animales , Enterovirus/genética , Enterovirus/fisiología , Infecciones por Enterovirus/virología , Femenino , Humanos , Factor 1 Regulador del Interferón/genética , Interferones/genética , Intestinos/inmunología , Intestinos/virología , Masculino , Ratones , Ratones Endogámicos C57BL , Transducción de Señal , Receptor Toll-Like 3/genética , Replicación Viral , Interferón lambda
18.
Viruses ; 11(11)2019 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-31683525

RESUMEN

Classical swine fever virus (CSFV) causes a contagious disease of pigs. The virus can break the mucosal barrier to establish its infection. Type III interferons (IFN-λs) play a crucial role in maintaining the antiviral state in epithelial cells. Limited information is available on whether or how CSFV modulates IFN-λs production. We found that IFN-λ3 showed dose-dependent suppression of CSFV replication in IPEC-J2 cells. Npro-deleted CSFV mutant (∆Npro) induced significantly higher IFN-λs transcription from 24 h post-infection (hpi) than its parental strain (wtCSFV). The strain wtCSFV strongly inhibited IFN-λs transcription and IFN-λ3 promoter activity in poly(I:C)-stimulated IPEC-J2 cells, whereas ∆Npro did not show such inhibition. Npro overexpression caused significant reduction of IFN-λs transcription and IFN-λ3 promoter activity. Both wtCSFV and ∆Npro infection induced time-dependent IRF1 expression in IPEC-J2 cells, with ΔNpro showing more significant induction, particularly at 24 hpi. However, infection with wtCSFV or Npro overexpression led not only to significant reduction of IRF1 expression and its promoter activity in poly(I:C)-treated IPEC-J2 cells but also to blockage of IRF1 nuclear translocation. This study provides clear evidence that CSFV Npro suppresses IRF1-mediated type III IFNs production by inhibiting IRF1 expression and its nuclear translocation.


Asunto(s)
Virus de la Fiebre Porcina Clásica , Peste Porcina Clásica/inmunología , Endopeptidasas , Interferones/metabolismo , Proteínas Virales , Transporte Activo de Núcleo Celular/inmunología , Animales , Línea Celular , Peste Porcina Clásica/virología , Virus de la Fiebre Porcina Clásica/genética , Virus de la Fiebre Porcina Clásica/metabolismo , Endopeptidasas/genética , Endopeptidasas/metabolismo , Regulación de la Expresión Génica , Interacciones Huésped-Patógeno , Inmunidad Innata , Factor 1 Regulador del Interferón/metabolismo , Mutación/genética , Porcinos , Enfermedades de los Porcinos/inmunología , Enfermedades de los Porcinos/virología , Proteínas Virales/genética , Proteínas Virales/metabolismo , Interferón lambda
19.
J Leukoc Biol ; 106(5): 1177-1185, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31211458

RESUMEN

Plasmacytoid dendritic cells (pDCs) are key players in the antiviral immune response and type III IFNs such as IL-29 appear to play a pivotal role in pDC function. Pronounced susceptibility to viral infections in neonates is partly resulting from diminished antiviral immune mechanisms. Accordingly, the aim of the present study was to investigate the impact of IL-29 in the altered immune response of neonatal pDCs. PBMCs of adult and term newborns were stimulated with CpG-ODN2216 in the presence or absence of IL-29 and assessed for IFN-α production, downstream-signaling, and activation marker expression. A significantly lower IL-29 production after TLR9-specific stimulation was demonstrated in neonatal pDCs. IL-29 enhanced the IFN-α production of pDCs in adults compared to newborns. Newborn pDCs displayed a significantly lower surface expression of IL-10 and IL-28Rα receptor resulting in diminished STAT1 and IRF7 activation. Interestingly, concomitant stimulation with CpG-ODN2216/IL-29 had no impact on the expression of surface activation and maturation markers of pDCs in neither population. The diminished antiviral immune response of neonatal pDCs is associated with reduced production and cellular responses toward IL-29. Potential therapeutic agents enhancing the IL-29 response in neonatal pDCs possibly augment viral protection in newborns.


Asunto(s)
Células Dendríticas/inmunología , Interferón-alfa/inmunología , Interferones/inmunología , Interleucinas/inmunología , Oligodesoxirribonucleótidos/farmacología , Adolescente , Adulto , Células Dendríticas/citología , Femenino , Humanos , Recién Nacido , Factor 7 Regulador del Interferón/inmunología , Interleucina-10/inmunología , Masculino , Receptores de Interferón/inmunología , Factor de Transcripción STAT1/inmunología , Receptor Toll-Like 9/agonistas , Receptor Toll-Like 9/inmunología
20.
Front Immunol ; 10: 112, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30778353

RESUMEN

Background and aims: Chronic hepatitis B virus (HBV) infection is a major health burden potentially evolving toward cirrhosis and hepatocellular carcinoma. HBV physiopathology is strongly related to the host immunity, yet the mechanisms of viral evasion from immune-surveillance are still misunderstood. The immune response elicited at early stages of viral infection is believed to be important for subsequent disease outcome. Dendritic cells (DCs) are crucial immune sentinels which orchestrate antiviral immunity, which offer opportunity to pathogens to subvert them to escape immunity. Despite the pivotal role of DCs in orientating antiviral responses and determining the outcome of infection, their precise involvement in HBV pathogenesis is not fully explored. Methods: One hundred thirty chronically HBV infected patients and 85 healthy donors were enrolled in the study for blood collection, together with 29 chronically HBV infected patients and 33 non-viral infected patients that were included for liver biopsy collection. In a pioneer way, we investigated the phenotypic and functional features of both circulating and intrahepatic BDCA1+ cDC2, BDCA2+ pDCs, and BDCA3+ cDC1 simultaneously in patients with chronic HBV infection by designing a unique multi-parametric flow cytometry approach. Results: We showed modulations of the frequencies and basal activation status of blood and liver DCs associated with impaired expressions of specific immune checkpoints and TLR molecules on circulating DC subsets. Furthermore, we highlighted an impaired maturation of circulating and hepatic pDCs and cDCs following stimulation with specific TLR agonists in chronic HBV patients, associated with drastic dysfunctions in the capacity of circulating DC subsets to produce IL-12p70, TNFα, IFNα, IFNλ1, and IFNλ2 while intrahepatic DCs remained fully functional. Most of these modulations correlated with HBsAg and HBV DNA levels. Conclusion: We highlight potent alterations in the distribution, phenotype and function of all DC subsets in blood together with modulations of intrahepatic DCs, revealing that HBV may hijack the immune system by subverting DCs. Our findings provide innovative insights into the immuno-pathogenesis of HBV and the mechanisms of virus escape from immune control. Such understanding is promising for developing new therapeutic strategies restoring an efficient immune control of the virus.


Asunto(s)
Antígenos CD1/metabolismo , Antígenos de Superficie/metabolismo , Células Dendríticas/metabolismo , Glicoproteínas/metabolismo , Virus de la Hepatitis B/inmunología , Hepatitis B Crónica/sangre , Hepatitis B Crónica/patología , Lectinas Tipo C/metabolismo , Hígado/patología , Glicoproteínas de Membrana/metabolismo , Receptores Inmunológicos/metabolismo , Adolescente , Adulto , Anciano , Biopsia , ADN Viral/metabolismo , Femenino , Antígenos de Superficie de la Hepatitis B/metabolismo , Humanos , Interferón Tipo I/metabolismo , Interferón gamma/metabolismo , Masculino , Persona de Mediana Edad , Trombomodulina , Receptores Toll-Like/agonistas , Receptores Toll-Like/metabolismo , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA