RESUMEN
Conjugative transposition drives the emergence of multidrug resistance in diverse bacterial pathogens, yet the mechanisms are poorly characterized. The Tn1549 conjugative transposon propagates resistance to the antibiotic vancomycin used for severe drug-resistant infections. Here, we present four high-resolution structures of the conserved Y-transposase of Tn1549 complexed with circular transposon DNA intermediates. The structures reveal individual transposition steps and explain how specific DNA distortion and cleavage mechanisms enable DNA strand exchange with an absolute minimum homology requirement. This appears to uniquely allow Tn916-like conjugative transposons to bypass DNA homology and insert into diverse genomic sites, expanding gene transfer. We further uncover a structural regulatory mechanism that prevents premature cleavage of the transposon DNA before a suitable target DNA is found and generate a peptide antagonist that interferes with the transposase-DNA structure to block transposition. Our results reveal mechanistic principles of conjugative transposition that could help control the spread of antibiotic resistance genes.
Asunto(s)
ADN Bacteriano/metabolismo , Transposasas/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Sitios de Unión , Dominio Catalítico , Cristalografía por Rayos X , División del ADN , Elementos Transponibles de ADN/genética , ADN Bacteriano/química , Farmacorresistencia Bacteriana , Enterococcus faecalis/genética , Modelos Moleculares , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Conformación de Ácido Nucleico , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Alineación de Secuencia , Transposasas/antagonistas & inhibidores , Transposasas/química , Transposasas/genéticaRESUMEN
To spread, transposons must integrate into target sites without disruption of essential genes while avoiding host defense systems. Tn7-like transposons employ multiple mechanisms for target-site selection, including protein-guided targeting and, in CRISPR-associated transposons (CASTs), RNA-guided targeting. Combining phylogenomic and structural analyses, we conducted a broad survey of target selectors, revealing diverse mechanisms used by Tn7 to recognize target sites, including previously uncharacterized target-selector proteins found in newly discovered transposable elements (TEs). We experimentally characterized a CAST I-D system and a Tn6022-like transposon that uses TnsF, which contains an inactivated tyrosine recombinase domain, to target the comM gene. Additionally, we identified a non-Tn7 transposon, Tsy, encoding a homolog of TnsF with an active tyrosine recombinase domain, which we show also inserts into comM. Our findings show that Tn7 transposons employ modular architecture and co-opt target selectors from various sources to optimize target selection and drive transposon spread.
Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Elementos Transponibles de ADN , Plásmidos , Elementos Transponibles de ADN/genética , Recombinasas/genética , Tirosina/genéticaRESUMEN
The site-specific recombination pathway of bacteriophage λ encompasses isoenergetic but highly directional and tightly regulated integrative and excisive reactions that integrate and excise the vial chromosome into and out of the bacterial chromosome. The reactions require 240 bp of phage DNA and 21 bp of bacterial DNA comprising 16 protein binding sites that are differentially used in each pathway by the phage-encoded Int and Xis proteins and the host-encoded integration host factor and factor for inversion stimulation proteins. Structures of higher-order protein-DNA complexes of the four-way Holliday junction recombination intermediates provided clarifying insights into the mechanisms, directionality, and regulation of these two pathways, which are tightly linked to the physiology of the bacterial host cell. Here we review our current understanding of the mechanisms responsible for regulating and executing λ site-specific recombination, with an emphasis on key studies completed over the last decade.
Asunto(s)
Bacteriófago lambda , Recombinación Genética , Bacteriófago lambda/genética , Bacteriófago lambda/fisiología , ADN Viral/genética , ADN Viral/metabolismo , Proteínas Virales/metabolismo , Proteínas Virales/genética , ADN Bacteriano/metabolismo , ADN Bacteriano/genética , Sitios de Unión , Factores de Integración del Huésped/metabolismo , Factores de Integración del Huésped/genéticaRESUMEN
To date, most reports of horizontal gene transfer (HGT) in fungi rely on genome sequence data and are therefore an indirect measure of HGT after the event has occurred. However, a novel group of class II-like transposons known as Starships may soon alter this status quo. Starships are giant transposable elements that carry dozens of genes, some of which are host-beneficial, and are linked to many recent HGT events in the fungal kingdom. These transposons remain active and mobile in many fungal genomes and their transposition has recently been shown to be driven by a conserved tyrosine-recombinase called 'Captain'. This perspective explores some of the remaining unanswered questions about how these Starship transposons move, both within a genome and between different species. We seek to outline several experimental approaches that can be used to identify the genes essential for Starship-mediated HGT and draw links to other recently discovered giant transposons outside of the fungal kingdom.
RESUMEN
Accessory genes are variably present among members of a species and are a reservoir of adaptive functions. In bacteria, differences in gene distributions among individuals largely result from mobile elements that acquire and disperse accessory genes as cargo. In contrast, the impact of cargo-carrying elements on eukaryotic evolution remains largely unknown. Here, we show that variation in genome content within multiple fungal species is facilitated by Starships, a newly discovered group of massive mobile elements that are 110â kb long on average, share conserved components, and carry diverse arrays of accessory genes. We identified hundreds of Starship-like regions across every major class of filamentous Ascomycetes, including 28 distinct Starships that range from 27 to 393â kb and last shared a common ancestor ca. 400â Ma. Using new long-read assemblies of the plant pathogen Macrophomina phaseolina, we characterize four additional Starships whose activities contribute to standing variation in genome structure and content. One of these elements, Voyager, inserts into 5S rDNA and contains a candidate virulence factor whose increasing copy number has contrasting associations with pathogenic and saprophytic growth, suggesting Voyager's activity underlies an ecological trade-off. We propose that Starships are eukaryotic analogs of bacterial integrative and conjugative elements based on parallels between their conserved components and may therefore represent the first dedicated agents of active gene transfer in eukaryotes. Our results suggest that Starships have shaped the content and structure of fungal genomes for millions of years and reveal a new concerted route for evolution throughout an entire eukaryotic phylum.
Asunto(s)
Genoma Fúngico , Factores de Virulencia , Elementos Transponibles de ADN , Células Eucariotas , HumanosRESUMEN
pTAND672-2, a 144-kb resident plasmid of Bacillus thuringiensis serovar israelensis strain TAND672, was sequenced and characterized. This extrachromosomal element carries mosquitocidal toxin-, conjugation-, and recombinase-encoding genes, together with a putative arbitrium system, a genetic module recently discovered in temperate phages controlling lysogeny-lysis transition and in mobile genetic elements (MGEs) where its function remains clarified. Using conjugation experiments, pTAND672-2 is shown to be a novel integrative and conjugative element (ICE), which can horizontally transfer from B. thuringiensis serovar israelensis to Lysinibacillus sphaericus, another mosquitocidal bacterium, where it integrates into the chromosome. Its integration and circularization are reversible and involve a single-cross recombination between 33-bp specific sites, attB in the chromosome of L. sphaericus and attP in pTAND672-2. CDS143, coding for the putative tyrosine integrase Int143 distantly related to site-specific tyrosine Xer recombinases and phage integrases, can mediate the integration of pTAND672-2 to attB. The B. thuringiensis mosquito-killing genes carried by pTAND672-2 are efficiently transcribed and expressed in L. sphaericus, displaying a slight increased toxicity in this bacterium against Aedes albopictus larvae. The occurrence of pTAND672-2-like plasmids within the Bacillus cereus group was also explored and indicated that they all share a similar genetic backbone with diverse plasmid sizes, ranging from 58 to 225 kb. Interestingly, among them, the pEFR-4-4 plasmid of Bacillus paranthracis EFR-4 and p5 of B. thuringiensis BT-59 also display conjugative capability; moreover, like pTAND672-2 displays a chimeric structure between the pCH_133-e- and pBtoxis-like plasmids, pBTHD789-3 also appears to be mosaic of two plasmids. IMPORTANCE Horizontal transfer of mobile genetic elements carrying mosquitocidal toxin genes may play a driving role in the diversity of mosquitocidal bacteria. Here, the 144-kb mosquitocidal toxin-encoding plasmid pTAND672-2 is the first verified integrative and conjugative element (ICE) identified in Bacillus thuringiensis serovar israelensis. The key tyrosine integrase Int143, involved in the specific integration, is distantly related to other tyrosine recombinases. The study also reports the occurrence and potential interspecies transmission of pTAND672-2-like plasmids with varied sizes in B. thuringiensis, Bacillus paranthracis, and Bacillus wiedmannii isolates belonging to the Bacillus cereus group. This study is important for further understanding the evolution and ecology of mosquitocidal bacteria, as well as for providing new direction for the genetic engineering of biopesticides in the control of disease-transmitting mosquitoes.
Asunto(s)
Aedes , Bacillus thuringiensis , Animales , Bacillus thuringiensis/genética , Plásmidos/genética , Endotoxinas/genética , Aedes/genética , Proteínas Bacterianas/genéticaRESUMEN
Mobile genetic elements (MGEs) often encode integrases which catalyze the site-specific insertion of their genetic information into the host genome and the reverse reaction of excision. Hyperthermophilic archaea harbor integrases belonging to the SSV-family which carry the MGE recombination site within their open reading frame. Upon integration into the host genome, SSV integrases disrupt their own gene into two inactive pseudogenes and are termed suicidal for this reason. The evolutionary maintenance of suicidal integrases, concurring with the high prevalence and multiples recruitments of these recombinases by archaeal MGEs, is highly paradoxical. To elucidate this phenomenon, we analyzed the wide phylogenomic distribution of a prominent class of suicidal integrases which revealed a highly variable integration site specificity. Our results highlighted the remarkable hybrid nature of these enzymes encoded from the assembly of inactive pseudogenes of different origins. The characterization of the biological properties of one of these integrases, IntpT26-2 showed that this enzyme was active over a wide range of temperatures up to 99 °C and displayed a less-stringent site specificity requirement than comparable integrases. These observations concurred in explaining the pervasiveness of these suicidal integrases in the most hyperthermophilic organisms. The biochemical and phylogenomic data presented here revealed a target site switching system operating on highly thermostable integrases and suggested a new model for split gene reconstitution. By generating fast-evolving pseudogenes at high frequency, suicidal integrases constitute a powerful model to approach the molecular mechanisms involved in the generation of active genes variants by the recombination of proto-genes.
Asunto(s)
Evolución Molecular , Integrasas/metabolismo , Seudogenes , Thermococcus/enzimología , Respiraderos Hidrotermales , Integrasas/genética , Secuencias Repetitivas Esparcidas , Thermococcus/genética , Thermococcus/aislamiento & purificaciónRESUMEN
Conjugation, besides transformation and transduction, is one of the main mechanisms of horizontal transmission of genetic information among bacteria. Conjugational transfer, due to its essential role in shaping bacterial genomes and spreading of antibiotics resistance genes, has been widely studied for more than 70 years. However, new and intriguing facts concerning the molecular basis of this process are still being revealed. Most recently, a novel family of conjugative relaxases (Mob proteins) was distinguished. The characteristic feature of these proteins is that they are not related to any of Mobs described so far. Instead of this, they share significant similarity to tyrosine recombinases. In this study MobK-a tyrosine recombinase-like Mob protein, encoded by pIGRK cryptic plasmid from the Klebsiella pneumoniae clinical strain, was characterized. This study revealed that MobK is a site-specific nuclease and its relaxase activity is dependent on both a conserved catalytic tyrosine residue (Y179) that is characteristic of tyrosine recombinases and the presence of Mg2+ divalent cations. The pIGRK minimal origin of transfer sequence (oriT) was also characterized. This is one of the first reports presenting tyrosine recombinase-like conjugative relaxase protein. It also demonstrates that MobK is a convenient model for studying this new protein family.
Asunto(s)
Proteínas Bacterianas/metabolismo , Conjugación Genética , ADN Bacteriano/genética , Endodesoxirribonucleasas/metabolismo , Klebsiella pneumoniae/enzimología , Plásmidos/genética , Recombinación Genética , Proteínas Bacterianas/genética , Secuencia de Bases , Endodesoxirribonucleasas/genética , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/crecimiento & desarrollo , Plásmidos/metabolismoRESUMEN
Streptococcus pneumoniae (pneumococcus), a major human pathogen, is well known for its adaptation to various host environments. Multiple DNA inversions in the three DNA methyltransferase hsdS genes (hsdSA, hsdSB, and hsdSC) of the colony opacity determinant (cod) locus generate extensive epigenetic and phenotypic diversity. However, it is unclear whether all three hsdS genes are functional and how the inversions mechanistically occur. In this work, our transcriptional analysis revealed active expression of hsdSA but not hsdSB and hsdSC, indicating that hsdSB and hsdSC do not produce functional proteins and instead act as sources for altering the sequence of hsdSA by DNA inversions. Consistent with our previous finding that the hsdS inversions are mediated by three pairs of inverted repeats (IR1, IR2, and IR3), this study showed that the 15-bp IR1 and its upstream sequence are strictly required for the inversion between hsdSA and hsdSB Furthermore, a single tyrosine recombinase PsrA catalyzes the inversions mediated by IR1, IR2, and IR3, based on the dramatic loss of these inversions in the psrA mutant. Surprisingly, PsrA-independent inversions were also detected in the hsdS sequences flanked by the IR2 (298 bp) and IR3 (85 bp) long inverted repeats, which appear to occur spontaneously in the absence of site-specific or RecA-mediated recombination. Because the HsdS subunit is responsible for the sequence specificity of type I restriction modification DNA methyltransferase, these results have revealed that S. pneumoniae varies the methylation patterns of the genome DNA (epigenetic status) by employing multiple mechanisms of DNA inversion in the cod locus.IMPORTANCEStreptococcus pneumoniae is a major pathogen of human infections with the capacity for adaptation to host environments, but the molecular mechanisms behind this phenomenon remain unclear. Previous studies reveal that pneumococcus extends epigenetic and phenotypic diversity by DNA inversions in three methyltransferase hsdS genes of the cod locus. This work revealed that only the hsdS gene that is in the same orientation as hsdM is actively transcribed, but the other two are silent, serving as DNA sources for inversions. While most of the hsdS inversions are catalyzed by PsrA recombinase, the sequences bound by long inverted repeats also undergo inversions via an unknown mechanism. Our results revealed that S. pneumoniae switches the methylation patterns of the genome (epigenetics) by employing multiple mechanisms of DNA inversion.
Asunto(s)
Proteínas Bacterianas/genética , Inversión Cromosómica , Enzimas de Restricción-Modificación del ADN/genética , Sitios Genéticos , Streptococcus pneumoniae/genética , Proteínas Bacterianas/biosíntesis , Enzimas de Restricción-Modificación del ADN/biosíntesis , Perfilación de la Expresión Génica , Variación Genética , Secuencias Invertidas Repetidas , Recombinación GenéticaRESUMEN
BACKGROUND: Direct manipulation of the genome is a widespread technique for genetic studies and synthetic biology applications. The tyrosine and serine site-specific recombination systems of bacteriophages HK022 and ΦC31 are widely used for stable directional exchange and relocation of DNA sequences, making them valuable tools in these contexts. We have developed site-specific recombination tools that allow the direct selection of recombination events by embedding the attB site from each system within the ß-lactamase resistance coding sequence (bla). RESULTS: The HK and ΦC31 tools were developed by placing the attB sites from each system into the signal peptide cleavage site coding sequence of bla. All possible open reading frames (ORFs) were inserted and tested for recombination efficiency and bla activity. Efficient recombination was observed for all tested ORFs (3 for HK, 6 for ΦC31) as shown through a cointegrate formation assay. The bla gene with the embedded attB site was functional for eight of the nine constructs tested. CONCLUSIONS: The HK/ΦC31 att-bla system offers a simple way to directly select recombination events, thus enhancing the use of site-specific recombination systems for carrying out precise, large-scale DNA manipulation, and adding useful tools to the genetics toolbox. We further show the power and flexibility of bla to be used as a reporter for recombination.
Asunto(s)
Sitios de Ligazón Microbiológica/genética , Ingeniería Genética/métodos , Recombinación Genética , Bacteriófagos/genética , Clonación Molecular , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Genes Reporteros , Pruebas de Sensibilidad Microbiana , Sistemas de Lectura Abierta , Plásmidos , beta-Lactamasas/genéticaRESUMEN
BACKGROUND: The bacterial chromosome may be used to stably maintain foreign DNA in the mega-base range. Integration into the chromosome circumvents issues such as plasmid replication, stability, incompatibility, and copy number variance. The site-specific integrase IntA from Rhizobium etli CFN42 catalyzes a direct recombination between two specific DNA sites: attA and attD (23 bp). This recombination is stable. The aim of this work was to develop a R. etli derivative that may be used as recipient for the integration of foreign DNA in the chromosome, adapting the IntA catalyzed site-specific recombination system. RESULTS: To fulfill our aim, we designed a Rhizobium etli CFN42 derivative, containing a "landing pad" (LP) integrated into the chromosome. The LP sector consists of a green fluorescent protein gene under the control of the lacZ promoter and a spectinomycin resistance gene. Between the lacZ promoter and the GFP gene we inserted an IntA attachment site, which does not affect transcription from the lac promoter. Also, a mobilizable donor vector was generated, containing an attA site and a kanamycin resistance gene; to facilitate insertion of foreign DNA, this vector also contains a multicloning site. There are no promoters flanking the multicloning site. A biparental mating protocol was used to transfer the donor vector into the landing pad strain; insertion of the donor vector into the landing pad sector via IntA-mediated attA X attA recombination thereby interrupted the expression of the green fluorescent protein, generating site-specific cointegrants. Cointegrants were easily recognized by screening for antibiotic sensitivity and lack of GFP expression, and were obtained with an efficiency of 6.18 %. CONCLUSIONS: Integration of foreign DNA in Rhizobium, lacking any similarity with the genome, can be easily achieved by IntA-mediated recombination. This protocol contains the mating and selection procedures for creating and isolating integrants.
Asunto(s)
Cromosomas Bacterianos , Ingeniería Genética/métodos , Integrasas/genética , Rhizobium etli/enzimología , Rhizobium etli/genética , Conjugación Genética , ADN , ADN Nucleotidiltransferasas/genética , ADN Nucleotidiltransferasas/metabolismo , Replicación del ADN , Escherichia coli/genética , Citometría de Flujo , Vectores Genéticos , Proteínas Fluorescentes Verdes/genética , Operón Lac , Plásmidos/genética , Regiones Promotoras Genéticas , Recombinación GenéticaRESUMEN
IMPORTANCE: Crustacean genomes harbor sequences originating from a family of large DNA viruses called nimaviruses, but it is unclear why they are present. We show that endogenous nimaviruses selectively insert into repetitive sequences within the host genome, and this insertion specificity was correlated with different types of integrases, which are DNA recombination enzymes encoded by the nimaviruses themselves. This suggests that endogenous nimaviruses have colonized various genomic niches through the acquisition of integrases with different insertion specificities. Our results point to a novel survival strategy of endogenous large DNA viruses colonizing the host genomes. These findings may clarify the evolution and spread of nimaviruses in crustaceans and lead to measures to control and prevent the spread of pathogenic nimaviruses in aquaculture settings.
Asunto(s)
Virus ADN , Integrasas , Virus ADN/genética , Secuencias Repetitivas de Ácidos Nucleicos , GenomaRESUMEN
Recombinase in trio (RIT) elements are composed of three adjacent tyrosine based site-specific recombinases that commonly occur in bacterial genomes. In this study, we examine RIT elements found in the genomes of strains from 63 different genera across 7 phyla of Eubacteria and examine the specific organization of these elements, their phylogenetic and environmental distribution, and their potential for mobility. We have found that each recombinase in this RIT arrangement is associated with a distinct sub-family of the tyrosine recombinases, and that the order and orientation of these sub-families is consistently maintained. We have determined that the distribution of these elements suggests that they are an ancient feature of bacterial genomes, but identical copies found within individual strains indicates that they are capable of intragenomic mobility. The occurrence of identical elements on both the main chromosome and one or more plasmids within individual strains, coupled with the finding that in some cases related genera are carrying highly similar RIT elements indicates that horizontal transfer has in some cases proceeded through a plasmid intermediate.
Asunto(s)
Bacterias/enzimología , Integrasas/genética , Filogenia , Plásmidos/genética , Recombinasas/genética , Bacterias/genética , Secuencia de Bases , Análisis por Conglomerados , Biología Computacional , Componentes del Gen , Integrasas/clasificación , Modelos Genéticos , Datos de Secuencia Molecular , Recombinasas/clasificación , Especificidad de la EspecieRESUMEN
The integration of mobile genetic elements into their host chromosome influences the immediate fate of cellular organisms and gradually shapes their evolution. Site-specific recombinases catalyzing this integration have been extensively characterized both in bacteria and eukarya. More recently, a number of reports provided the in-depth characterization of archaeal tyrosine recombinases and highlighted new particular features not observed in the other two domains. In addition to being active in extreme environments, archaeal integrases catalyze reactions beyond site-specific recombination. Some of these integrases can catalyze low-sequence specificity recombination reactions with the same outcome as homologous recombination events generating deep rearrangements of their host genome. A large proportion of archaeal integrases are termed suicidal due to the presence of a specific recombination target within their own gene. The paradoxical maintenance of integrases that disrupt their gene upon integration implies novel mechanisms for their evolution. In this review, we assess the diversity of the archaeal tyrosine recombinases using a phylogenomic analysis based on an exhaustive similarity network. We outline the biochemical, ecological and evolutionary properties of these enzymes in the context of the families we identified and emphasize similarities and differences between archaeal recombinases and their bacterial and eukaryal counterparts.
Asunto(s)
Archaea , Integrasas , Archaea/genética , Eucariontes , Recombinasas/genética , Tirosina/genéticaRESUMEN
Stx bacteriophages are members of the lambdoid group of phages and are responsible for Shiga toxin (Stx) production and the dissemination of Shiga toxin genes (stx) across shigatoxigenic Escherichia coli (STEC). These toxigenic bacteriophage hosts can cause life-threatening illnesses, and Stx is the virulence determinant responsible for the severe nature of infection with enterohemorrhagic E. coli, a subset of pathogenic STEC. Stx phages are temperate, and in the present study, the identification of what is actually required for Stx phage Φ24B and bacterial DNA recombination was tested using both in vitro and in situ recombination assays. It is well established that phage λ, which underpins most of what we understand about lambdoid phage biology, requires its own encoded phage attachment site (attP) of 250 bp, a host-encoded attachment site (attB) of 21 bp, and a host-encoded DNA binding protein known as integration host factor (IHF). The assays applied in this study enabled the manipulation of the phage attachment site (attP) and the bacterial attachment site (attB) sequences and the inclusion or exclusion of a host-encoded accessory element known as integration host factor. We were able to demonstrate that the minimal attP sequence required by Φ24B phage is between 350 and 427 bp. Unlike phage λ, the minimal necessary flanking sequences for the attB site do not appear to be equal in size, with a total length between 62 and 93 bp. Furthermore, we identified that the Φ24B integrase does not require IHF to drive the integration and the recombination process. Understanding how this unusual Stx phage integrase works may enable exploitation of its promiscuous nature in the context of genetic engineering.
RESUMEN
BACKGROUND: The precise, functional and safe insertion of large DNA payloads into host genomes offers versatility in downstream genetic engineering-associated applications, spanning cell and gene therapies, therapeutic protein production, high-throughput cell-based drug screening and reporter cell lines amongst others. Employing viral- and non-viral-based genome engineering tools to achieve specific insertion of large DNA-despite being successful in E. coli and animal models-still pose challenges in the human system. In this study, we demonstrate the applicability of our lambda integrase-based genome insertion tool for human cell and gene therapy applications that require insertions of large functional genes, as exemplified by the integration of a functional copy of the F8 gene and a Double Homeobox Protein 4 (DUX4)-based reporter cassette for potential hemophilia A gene therapy and facioscapulohumeral muscular dystrophy (FSHD)-based high-throughput drug screening purposes, respectively. Thus, we present a non-viral genome insertion tool for safe and functional delivery of large seamless DNA cargo into the human genome that can enable novel designer cell-based therapies. METHODS: Previously, we have demonstrated the utility of our phage λ-integrase platform to generate seamless vectors and subsequently achieve functional integration of large-sized DNA payloads at defined loci in the human genome. To further explore this tool for therapeutic applications, we used pluripotent human embryonic stem cells (hESCs) to integrate large seamless vectors comprising a 'gene of interest'. Clonal cell populations were screened for the correct integration events and further characterized by southern blotting, gene expression and protein activity assays. In the case of our hemophilia A-related study, clones were differentiated to confirm that the targeted locus is active after differentiation and actively express and secrete Factor VIII. RESULTS: The two independent approaches demonstrated specific and functional insertions of a full-length blood clotting F8 expression cassette of ~ 10 kb and of a DUX4 reporter cassette of ~ 7 kb in hESCs. CONCLUSION: We present a versatile tool for site-specific human genome engineering with large transgenes for cell/gene therapies and other synthetic biology and biomedical applications.
Asunto(s)
Escherichia coli , Edición Génica , Animales , Escherichia coli/genética , Vectores Genéticos/genética , Humanos , Integrasas/genética , TransgenesRESUMEN
Site-specific recombination is a DNA breaking and reconstructing process that plays important roles in various cellular pathways for both prokaryotes and eukaryotes. This process requires a site-specific recombinase and direct or inverted repeats. Some tyrosine site-specific recombinases catalyze DNA inversions and regulate subpopulation diversity and phase variation in many bacterial species. In Streptococcus pneumoniae, the PsrA tyrosine recombinase was shown to control DNA inversions in the three DNA methyltransferase hsdS genes of the type I restriction-modification cod locus. Such DNA inversions are mediated by three inverted repeats (IR1, IR2, and IR3). In this work, we purified an untagged form of the PsrA protein and studied its DNA-binding and catalytic features. Gel retardation assays showed that PsrA binds to linear and supercoiled DNAs, containing or not inverted repeats. Nevertheless, DNase I footprinting assays showed that, on linear DNAs, PsrA has a preference for sites that include an IR1 sequence (IR1.1 or IR1.2) and its boundary sequences. Furthermore, on supercoiled DNAs, PsrA was able to generate DNA inversions between specific inverted repeats (IR1, IR2, and IR3), which supports its ability to locate specific target sites. Unlike other site-specific recombinases, PsrA showed reliance on magnesium ions for efficient catalysis of IR1-mediated DNA inversions. We discuss that PsrA might find its specific binding sites on the bacterial genome by a mechanism that involves transitory non-specific interactions between protein and DNA.
RESUMEN
Inducible genetic switches based on tyrosine recombinase-based DNA excision are a promising platform for the regulation and control of chimeric antigen receptor (CAR) T cell activity in cancer immunotherapy. These switches exploit the increased stability of DNA excision in tyrosine recombinases through an inversion-excision circuit design. Here, the authors develop the first mechanistic mathematical model of switching dynamics in tyrosine recombinases and validate it against experimental data through both global optimisation and statistical approximation approaches. Analysis of this model provides guidelines regarding which system parameters are best suited to experimental tuning in order to establish optimal switch performance in vivo. In particular, they find that the switching response can be made significantly faster by increasing the concentration of the inducer drug 4-OHT and/or by using promoters generating higher expression levels of the FlpO recombinase.
RESUMEN
BACKGROUND: Kinetoplastids are a flagellated group of protists, including some parasites, such as Trypanosoma and Leishmania species, that can cause diseases in humans and other animals. The genomes of these species enclose a fraction of retrotransposons including VIPER and TATE, two poorly studied transposable elements that encode a tyrosine recombinase (YR) and were previously classified as DIRS elements. This study investigated the distribution and evolution of VIPER and TATE in kinetoplastids to understand the relationships of these elements with other retrotransposons. RESULTS: We observed that VIPER and TATE have a discontinuous distribution among Trypanosomatidae, with several events of loss and degeneration occurring during a vertical transfer evolution. We were able to identify the terminal repeats of these elements for the first time, and we showed that these elements are potentially active in some species, including T. cruzi copies of VIPER. We found that VIPER and TATE are strictly related elements, which were named in this study as VIPER-like. The reverse transcriptase (RT) tree presented a low resolution, and the origin and relationships among YR groups remain uncertain. Conversely, for RH, VIPER-like grouped with Hepadnavirus, whereas for YR, VIPER-like sequences constituted two different clades that are closely allied to Crypton. Distinct topologies among RT, RH and YR trees suggest ancient rearrangements/exchanges in domains and a modular pattern of evolution with putative independent origins for each ORF. CONCLUSIONS: Due to the presence of both elements in Bodo saltans, a nontrypanosomatid species, we suggested that VIPER and TATE have survived and remained active for more than 400 million years or were reactivated during the evolution of the host species. We did not find clear evidence of independent origins of VIPER-like from the other YR retroelements, supporting the maintenance of the DIRS group of retrotransposons. Nevertheless, according to phylogenetic findings and sequence structure obtained by this study and other works, we proposed separating DIRS elements into four subgroups: DIRS-like, PAT-like, Ngaro-like, and VIPER-like.
RESUMEN
The site-specific recombinase Cre was previously reported to have in vitro activity. Here, we describe the method of purifying two new tyrosine site-specific recombinases VCre and Dre along with Cre by nickel affinity chromatography. We proved the in vitro function of the VCre and Dre on their respective conditional recombination sites. We also developed a methodology to one-step construct and optimize the productivity of a biosynthetic pathway through the combinatorial integration of promoters into a plasmid-encoded pathway by simply incubating a DNA mixture with recombinase system at 37 °C in vitro.