Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Neurosci ; 44(2)2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38050081

RESUMEN

The outgrowth and stabilization of nascent dendritic spines are crucial processes underlying learning and memory. Most new spines retract shortly after growth; only a small subset is stabilized and integrated into the new circuit connections that support learning. New spine stabilization has been shown to rely upon activity-dependent molecular mechanisms that also contribute to long-term potentiation (LTP) of synaptic strength. Indeed, disruption of the activity-dependent targeting of the kinase CaMKIIα to the GluN2B subunit of the NMDA-type glutamate receptor disrupts both LTP and activity-dependent stabilization of new spines. Yet it is not known which of CaMKIIα's many enzymatic and structural functions are important for new spine stabilization. Here, we used two-photon imaging and photolysis of caged glutamate to monitor the activity-dependent stabilization of new dendritic spines on hippocampal CA1 neurons from mice of both sexes in conditions where CaMKIIα functional and structural interactions were altered. Surprisingly, we found that inhibiting CaMKIIα kinase activity either genetically or pharmacologically did not impair activity-dependent new spine stabilization. In contrast, shRNA knockdown of CaMKIIα abolished activity-dependent new spine stabilization, which was rescued by co-expressing shRNA-resistant full-length CaMKIIα, but not by a truncated monomeric CaMKIIα. Notably, overexpression of phospho-mimetic CaMKIIα-T286D, which exhibits activity-independent targeting to GluN2B, enhanced basal new spine survivorship in the absence of additional glutamatergic stimulation, even when kinase activity was disrupted. Together, our results support a model in which nascent dendritic spine stabilization requires structural and scaffolding interactions mediated by dodecameric CaMKIIα that are independent of its enzymatic activities.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Espinas Dendríticas , Femenino , Masculino , Ratones , Animales , Espinas Dendríticas/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Potenciación a Largo Plazo/fisiología , Hipocampo/fisiología , ARN Interferente Pequeño
2.
Chembiochem ; 25(8): e202300855, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38363151

RESUMEN

Photopharmacology is an emerging field that utilizes photo-responsive molecules to enable control over the activity of a drug using light. The aim is to limit the therapeutic action of a drug at the level of diseased tissues and organs. Considering the well-known implications of protein kinases in cancer and the therapeutic issues associated with protein kinase inhibitors, the photopharmacology is seen as an innovative and alternative solution with great potential in oncology. In this context, we developed the first photocaged TAM kinase inhibitors based on UNC2025, a first-in-class small molecule kinase inhibitor. These prodrugs showed good stability in biologically relevant buffer and rapid photorelease of the photoremovable protecting group upon UV-light irradiation (<10 min.). These light-activatable prodrugs led to a 16-fold decrease to a complete loss of kinase inhibition, depending on the protein and the position at which the coumarin-type phototrigger was introduced. The most promising candidate was the N,O-dicaged compound, showing the superiority of having two photolabile protecting groups on UNC2025 for being entirely inactive on TAM kinases. Under UV-light irradiation, the N,O-dicaged compound recovered its inhibitory potency in enzymatic assays and displayed excellent antiproliferative activity in RT112 cell lines.


Asunto(s)
Adenina/análogos & derivados , Antineoplásicos , Profármacos , Neoplasias de la Vejiga Urinaria , Humanos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Piperazinas/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Profármacos/farmacología
3.
Proc Natl Acad Sci U S A ; 118(33)2021 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-34389673

RESUMEN

The expression of several hippocampal genes implicated in learning and memory processes requires that Ca2+ signals generated in dendritic spines, dendrites, or the soma in response to neuronal stimulation reach the nucleus. The diffusion of Ca2+ in the cytoplasm is highly restricted, so neurons must use other mechanisms to propagate Ca2+ signals to the nucleus. Here, we present evidence showing that Ca2+ release mediated by the ryanodine receptor (RyR) channel type-2 isoform (RyR2) contributes to the generation of nuclear Ca2+ signals induced by gabazine (GBZ) addition, glutamate uncaging in the dendrites, or high-frequency field stimulation of primary hippocampal neurons. Additionally, GBZ treatment significantly increased cyclic adenosine monophosphate response element binding protein (CREB) phosphorylation-a key event in synaptic plasticity and hippocampal memory-and enhanced the expression of Neuronal Per Arnt Sim domain protein 4 (Npas4) and RyR2, two central regulators of these processes. Suppression of RyR-mediated Ca2+ release with ryanodine significantly reduced the increase in CREB phosphorylation and the enhanced Npas4 and RyR2 expression induced by GBZ. We propose that RyR-mediated Ca2+ release induced by neuronal activity, through its contribution to the sequential generation of nuclear Ca2+ signals, CREB phosphorylation, Npas4, and RyR2 up-regulation, plays a central role in hippocampal synaptic plasticity and memory processes.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Calcio/metabolismo , Hipocampo/citología , Neuronas/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Técnicas de Cultivo de Célula , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Antagonistas del GABA/farmacología , Ácido Glutámico/farmacología , Piridazinas/farmacología , Canal Liberador de Calcio Receptor de Rianodina/genética , Sinapsis/fisiología , Técnicas de Cultivo de Tejidos
4.
Angew Chem Int Ed Engl ; 63(13): e202315726, 2024 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-38329885

RESUMEN

We have developed a photochemical protecting group that enables wavelength selective uncaging using green versus violet light. Change of the exocyclic oxygen of the laser dye coumarin-102 to sulfur, gave thio-coumarin-102, a new chromophore with an absorption ratio at 503/402 nm of 37. Photolysis of thio-coumarin-102 caged γ-aminobutyric acid was found to be highly wavelength selective on neurons, with normalized electrical responses >100-fold higher in the green versus violet channel. When partnered with coumarin-102 caged glutamate, we could use whole cell violet and green irradiation to fire and block neuronal action potentials with complete orthogonality. Localized irradiation of different dendritic segments, each connected to a neuronal cell body, in concert with 3-dimenional Ca2+ imaging, revealed that such inputs could function independently. Chemical signaling in living cells always involves a complex balance of multiple pathways, use of (thio)-coumarin-102 caged compounds will enable arbitrarily timed flashes of green and violet light to interrogate two independent pathways simultaneously.


Asunto(s)
Luz Verde , Neuronas , Neuronas/metabolismo , Fotólisis , Cumarinas/química , Ácido Glutámico/metabolismo
5.
Chemistry ; 29(25): e202300149, 2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-36785982

RESUMEN

Two-photon (2P) activatable probes are of high value in biological and medical chemistry since near infrared (NIR) light can penetrate deeply even in blood-perfused tissue and due to the intrinsic three-dimensional activation properties. Designing two-photon chromophores is challenging. However, the two-photon absorption qualities of a photocage can be improved with an intramolecular sensitizer, which transfers the absorbed light onto the cage. We herein present the synthesis and photophysical characterization of a 2P-sensitive uncaging dyad based on rhodamine 101 as donor fluorophore and a redshifted BODIPY as acceptor photocage. Liberation of p-nitroaniline (PNA) upon one-photon photolysis was confirmed by HPLC analysis. The photoreaction was found to be accompanied by a considerable change of the fluorescence properties of the chromophores. The possibility of a fluorescent read-out enabled the detection of two-photon induced uncaging by confocal fluorescence microscopy.

6.
Angew Chem Int Ed Engl ; 62(5): e202209975, 2023 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-36417319

RESUMEN

The 5' cap is a hallmark of eukaryotic mRNA involved in the initiation of translation. Its modification with a single photo-cleavable group can bring translation of mRNA under the control of light. However, UV irradiation causes cell stress and downregulation of translation. Furthermore, complex processes often involve timed expression of more than one gene. The approach would thus greatly benefit from the ability to photo-cleave by blue light and to control more than one mRNA at a time. We report the synthesis of a 5' cap modified with a 7-(diethylamino)coumarin (CouCap) and adapted conditions for in vitro transcription. Translation of the resulting CouCap-mRNA is muted in vitro and in mammalian cells, and can be initiated by irradiation with 450 nm. The native cap is restored and no non-natural residues nor sequence alterations remain in the mRNA. Multiplexing for two different mRNAs was achieved by combining cap analogs with coumarin- and ortho-nitrobenzyl-based photo-cleavable groups.


Asunto(s)
Factor 4E Eucariótico de Iniciación , Biosíntesis de Proteínas , Animales , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factor 4E Eucariótico de Iniciación/metabolismo , Caperuzas de ARN/metabolismo , Mamíferos/metabolismo
7.
J Neurosci ; 41(33): 7003-7014, 2021 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-34266899

RESUMEN

The structural plasticity of dendritic spines is considered to be an important basis of synaptic plasticity, learning, and memory. Here, we induced input-specific structural LTP (sLTP) in single dendritic spines in organotypic hippocampal slices from mice of either sex and performed ultrastructural analyses of the spines using efficient correlative light and electron microscopy. We observed reorganization of the PSD nanostructure, such as perforation and segmentation, at 2-3, 20, and 120 min after sLTP induction. In addition, PSD and nonsynaptic axon-spine interface (nsASI) membrane expanded unevenly during sLTP. Specifically, the PSD area showed a transient increase at 2-3 min after sLTP induction. The PSD growth was to a degree less than spine volume growth at 2-3 min and 20 min after sLTP induction but became similar at 120 min. On the other hand, the nsASI area showed a profound and lasting expansion, to a degree similar to spine volume growth throughout the process. These rapid ultrastructural changes in PSD and surrounding membrane may contribute to rapid electrophysiological plasticity during sLTP.SIGNIFICANCE STATEMENT To understand the ultrastructural changes during synaptic plasticity, it is desired to efficiently image single dendritic spines that underwent structural plasticity in electron microscopy. We induced structural long-term potentiation (sLTP) in single dendritic spines by two-photon glutamate uncaging. We then identified the same spines at different phases of sLTP and performed ultrastructural analysis by using an efficient correlative light and electron microscopy method. We found that postsynaptic density undergoes dramatic modification in its structural complexity immediately after sLTP induction. Meanwhile, the nonsynaptic axon-spine interface area shows a rapid and sustained increase throughout sLTP. Our results indicate that the uneven modification of synaptic and nonsynaptic postsynaptic membrane might contribute to rapid electrophysiological plasticity during sLTP.


Asunto(s)
Espinas Dendríticas/ultraestructura , Hipocampo/ultraestructura , Potenciación a Largo Plazo , Densidad Postsináptica/ultraestructura , Animales , Axones/ultraestructura , Biolística , Membrana Celular/ultraestructura , Espinas Dendríticas/fisiología , Femenino , Glutamatos/efectos de la radiación , Procesamiento de Imagen Asistido por Computador , Indoles/efectos de la radiación , Masculino , Ratones , Microscopía Electrónica de Rastreo , Fotoquímica
8.
J Physiol ; 600(9): 2165-2187, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35194785

RESUMEN

Dendritic spines are the main receptacles of excitatory information in the brain. Their particular morphology, with a small head connected to the dendrite by a slender neck, has inspired theoretical and experimental work to understand how these structural features affect the processing, storage and integration of synaptic inputs in pyramidal neurons (PNs). The activation of glutamate receptors in spines triggers a large voltage change as well as calcium signals at the spine head. Thus, voltage-gated and calcium-activated potassium channels located in the spine head likely play a key role in synaptic transmission. Here we study the presence and function of large conductance calcium-activated potassium (BK) channels in spines from layer 5 PNs. We found that BK channels are localized to dendrites and spines regardless of their size, but their activity can only be detected in spines with small head volumes (≤0.09 µm3 ), which reduces the amplitude of two-photon uncaging excitatory postsynaptic potentials recorded at the soma. In addition, we found that calcium signals in spines with small head volumes are significantly larger than those observed in spines with larger head volumes. In accordance with our experimental data, numerical simulations predict that synaptic inputs impinging onto spines with small head volumes generate voltage responses and calcium signals within the spine head itself that are significantly larger than those observed in spines with larger head volumes, which are sufficient to activate spine BK channels. These results show that BK channels are selectively activated in small-headed spines, suggesting a new level of dendritic spine-mediated regulation of synaptic processing, integration and plasticity in cortical PNs. KEY POINTS: BK channels are expressed in the visual cortex and layer 5 pyramidal neuron somata, dendrites and spines regardless of their size. BK channels are selectively activated in small-headed spines (≤0.09 µm3 ), which reduces the amplitude of two-photon (2P) uncaging excitatory postsynaptic potentials (EPSPs) recorded at the soma. Two-photon imaging revealed that intracellular calcium responses in the head of 2P-activated spines are significantly larger in small-headed spines (≤0.09 µm3 ) than in spines with larger head volumes. In accordance with our experimental data, numerical simulations showed that synaptic inputs impinging onto spines with small head volumes (≤0.09 µm3 ) generate voltage responses and calcium signals within the spine head itself that are significantly larger than those observed in spines with larger head volumes, sufficient to activate spine BK channels and suppress EPSPs.


Asunto(s)
Espinas Dendríticas , Canales de Potasio de Gran Conductancia Activados por el Calcio , Calcio/metabolismo , Dendritas/fisiología , Espinas Dendríticas/fisiología , Potenciales Postsinápticos Excitadores/fisiología , Células Piramidales/fisiología
9.
Neurobiol Dis ; 170: 105772, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35605760

RESUMEN

Schizophrenia is a psychiatric disorder that affects over 20 million people globally. Notably, schizophrenia is associated with decreased density of dendritic spines and decreased levels of d-serine, a co-agonist required for opening of the N-methyl-d-aspartate receptor (NMDAR). We hypothesized that lowered d-serine levels associated with schizophrenia would enhance ion flux-independent signaling by the NMDAR, driving destabilization and loss of dendritic spines. We tested our hypothesis using the serine racemase knockout (SRKO) mouse model, which lacks the enzyme for d-serine production. We show that activity-dependent spine growth is impaired in SRKO mice, but can be acutely rescued by exogenous d-serine. Moreover, we find a significant bias of synaptic plasticity toward spine shrinkage in the SRKO mice as compared to wild-type littermates. Notably, we demonstrate that enhanced ion flux-independent signaling through the NMDAR contributes to this bias toward spine destabilization, which is exacerbated by an increase in synaptic NMDARs in hippocampal synapses of SRKO mice. Our results support a model in which lowered d-serine levels associated with schizophrenia enhance ion flux-independent NMDAR signaling and bias toward spine shrinkage and destabilization.


Asunto(s)
Receptores de N-Metil-D-Aspartato , Esquizofrenia , Animales , Espinas Dendríticas , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Noqueados , Plasticidad Neuronal , Serina
10.
Eur J Neurosci ; 56(5): 4505-4513, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35848658

RESUMEN

The antisecretory factor (AF) is an endogenous protein that counteracts intestinal hypersecretion and various inflammation conditions in vivo. It has been detected in many mammalian tissues and plasma, but its mechanisms of action are largely unknown. To study the pharmacological action of the AF on different GABAA receptor populations in cerebellar granule cells, we took advantage of the two-photon uncaging method as this technique allows to stimulate the cell locally in well-identified plasma membrane parts. We compared the electrophysiological response evoked by releasing a caged GABA compound on the soma, the axon initial segment and neurites before and after administering AF-16, a 16 amino acids long peptide obtained from the amino-terminal end of the AF protein. After the treatment with AF-16, we observed peak current increases of varying magnitude depending on the neuronal region. Thus, studying the effects of furosemide and AF-16 on the electrophysiological behaviour of cerebellar granules, we suggest that GABAA receptors, containing the α6 subunit, may be specifically involved in the increase of the peak current by AF, and different receptor subtype distribution may be responsible for differences in this increase on the cell.


Asunto(s)
Neuropéptidos , Receptores de GABA-A , Animales , Cerebelo/fisiología , Mamíferos/metabolismo , Neuronas/fisiología , Neuropéptidos/metabolismo , Ratas , Receptores de GABA-A/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Ácido gamma-Aminobutírico/farmacología
11.
Angew Chem Int Ed Engl ; 61(34): e202205855, 2022 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-35570750

RESUMEN

In this work, we developed a water-soluble caging group based on a π-extended BODIPY scaffold able to release carboxylate-containing cargo upon red light illumination (λirr =633 nm). We performed mechanistic studies showing new insights into the principles of the photoreactivity of these cages and demonstrated a significant influence of the structure of a carboxylate cargo on the rate and efficiency of the uncaging process and its side reactions. We used it for selective delivery, visualisation, and photorelease of a signaling lipid in cell plasma and internal membranes. With this approach, we successfully induced Ca2+ release in cells expressing the GPR40 receptor.


Asunto(s)
Compuestos de Boro , Agua , Compuestos de Boro/química , Luz , Lípidos
12.
J Neurosci ; 40(13): 2593-2605, 2020 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-32047054

RESUMEN

Coordinated long-term plasticity of nearby excitatory synaptic inputs has been proposed to shape experience-related neuronal information processing. To elucidate the induction rules leading to spatially structured forms of synaptic potentiation in dendrites, we explored plasticity of glutamate uncaging-evoked excitatory input patterns with various spatial distributions in perisomatic dendrites of CA1 pyramidal neurons in slices from adult male rats. We show that (1) the cooperativity rules governing the induction of synaptic LTP depend on dendritic location; (2) LTP of input patterns that are subthreshold or suprathreshold to evoke local dendritic spikes (d-spikes) requires different spatial organization; and (3) input patterns evoking d-spikes can strengthen nearby, nonsynchronous synapses by local heterosynaptic plasticity crosstalk mediated by NMDAR-dependent MEK/ERK signaling. These results suggest that multiple mechanisms can trigger spatially organized synaptic plasticity on various spatial and temporal scales, enriching the ability of neurons to use synaptic clustering for information processing.SIGNIFICANCE STATEMENT A fundamental question in neuroscience is how neuronal feature selectivity is established via the combination of dendritic processing of synaptic input patterns with long-term synaptic plasticity. As these processes have been mostly studied separately, the relationship between the rules of integration and rules of plasticity remained elusive. Here we explore how the fine-grained spatial pattern and the form of voltage integration determine plasticity of different excitatory synaptic input patterns in perisomatic dendrites of CA1 pyramidal cells. We demonstrate that the plasticity rules depend highly on three factors: (1) the location of the input within the dendritic branch (proximal vs distal), (2) the strength of the input pattern (subthreshold or suprathreshold for dendritic spikes), and (3) the stimulation of neighboring synapses.


Asunto(s)
Potenciales de Acción/fisiología , Región CA1 Hipocampal/fisiología , Dendritas/fisiología , Plasticidad Neuronal/fisiología , Células Piramidales/fisiología , Animales , Masculino , Técnicas de Placa-Clamp , Ratas , Ratas Wistar , Sinapsis/fisiología
13.
EMBO Rep ; 20(12): e47755, 2019 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-31663248

RESUMEN

The spatial and temporal dynamics of cell contractility plays a key role in tissue morphogenesis, wound healing, and cancer invasion. Here, we report a simple optochemical method to induce cell contractions in vivo during Drosophila morphogenesis at single-cell resolution. We employed the photolabile Ca2+ chelator o-nitrophenyl EGTA to induce bursts of intracellular free Ca2+ by laser photolysis in the epithelial tissue. Ca2+ bursts appear within seconds and are restricted to individual target cells. Cell contraction reliably followed within a minute, causing an approximately 50% drop in the cross-sectional area. Increased Ca2+ levels are reversible, and the target cells further participated in tissue morphogenesis. Depending on Rho kinase (ROCK) activity but not RhoGEF2, cell contractions are paralleled with non-muscle myosin II accumulation in the apico-medial cortex, indicating that Ca2+ bursts trigger non-muscle myosin II activation. Our approach can be, in principle, adapted to many experimental systems and species, as no specific genetic elements are required.


Asunto(s)
Drosophila melanogaster/citología , Células Epiteliales/fisiología , Animales , Animales Modificados Genéticamente , Fenómenos Biomecánicos , Quelantes del Calcio/farmacología , Señalización del Calcio/efectos de los fármacos , Señalización del Calcio/fisiología , Forma de la Célula/efectos de los fármacos , Forma de la Célula/fisiología , Proteínas de Drosophila/fisiología , Drosophila melanogaster/genética , Drosophila melanogaster/fisiología , Ácido Egtácico/análogos & derivados , Ácido Egtácico/farmacología , Células Epiteliales/citología , Células Epiteliales/efectos de los fármacos , Femenino , Miosina Tipo II/fisiología , Procesos Fotoquímicos , Análisis de la Célula Individual , Análisis Espacio-Temporal
14.
J Neurosci ; 39(4): 584-595, 2019 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-30674614

RESUMEN

In the mammalian olfactory bulb, the inhibitory axonless granule cells (GCs) feature reciprocal synapses that interconnect them with the principal neurons of the bulb, mitral, and tufted cells. These synapses are located within large excitable spines that can generate local action potentials (APs) upon synaptic input ("spine spike"). Moreover, GCs can fire global APs that propagate throughout the dendrite. Strikingly, local postsynaptic Ca2+ entry summates mostly linearly with Ca2+ entry due to coincident global APs generated by glomerular stimulation, although some underlying conductances should be inactivated. We investigated this phenomenon by constructing a compartmental GC model to simulate the pairing of local and global signals as a function of their temporal separation Δt. These simulations yield strongly sublinear summation of spine Ca2+ entry for the case of perfect coincidence Δt = 0 ms. Summation efficiency (SE) sharply rises for both positive and negative Δt. The SE reduction for coincident signals depends on the presence of voltage-gated Na+ channels in the spine head, while NMDARs are not essential. We experimentally validated the simulated SE in slices of juvenile rat brain (both sexes) by pairing two-photon uncaging of glutamate at spines and APs evoked by somatic current injection at various intervals Δt while imaging spine Ca2+ signals. Finally, the latencies of synaptically evoked global APs and EPSPs were found to correspond to Δt ≈ 10 ms, explaining the observed approximately linear summation of synaptic local and global signals. Our results provide additional evidence for the existence of the GC spine spike.SIGNIFICANCE STATEMENT Here we investigate the interaction of local synaptic inputs and global activation of a neuron by a backpropagating action potential within a dendritic spine with respect to local Ca2+ signaling. Our system of interest, the reciprocal spine of the olfactory bulb granule cell, is known to feature a special processing mode, namely, a synaptically triggered action potential that is restricted to the spine head. Therefore, coincidence detection of local and global signals follows different rules than in more conventional synapses. We unravel these rules using both simulations and experiments and find that signals coincident within ≈±7 ms around 0 ms result in sublinear summation of Ca2+ entry because of synaptic activation of voltage-gated Na+ channels within the spine.


Asunto(s)
Neuronas/fisiología , Bulbo Olfatorio/citología , Potenciales de Acción/fisiología , Algoritmos , Animales , Señalización del Calcio/fisiología , Simulación por Computador , Dendritas/fisiología , Potenciales Postsinápticos Excitadores/fisiología , Femenino , Masculino , Modelos Neurológicos , Ratas , Ratas Wistar , Receptores de N-Metil-D-Aspartato/metabolismo , Canales de Sodio/fisiología
15.
Cereb Cortex ; 29(7): 2771-2781, 2019 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-30113619

RESUMEN

The location of GABAergic synapses on dendrites is likely key for neuronal integration. In particular, inhibitory inputs on dendritic spines could serve to selectively veto or modulate individual excitatory inputs, greatly expanding the computational power of individual neurons. To investigate this, we have undertaken a combined functional, molecular, and ultrastructural mapping of the location of GABAergic inputs onto dendrites of pyramidal neurons from upper layers of juvenile mouse somatosensory cortex. Using two-photon uncaging of GABA, intracellular labeling with gerphyrin intrabodies, and focused ion beam milling with scanning electron microscopy, we find that most (96-98%) spines lack GABAergic synapses, although they still display GABAergic responses, potentially due to extrasynaptic GABA receptors. We conclude that GABAergic inputs, in practice, contact dendritic shafts and likely control clusters of excitatory inputs, defining functional zones on dendrites.


Asunto(s)
Espinas Dendríticas/ultraestructura , Neuronas GABAérgicas/ultraestructura , Corteza Somatosensorial/ultraestructura , Sinapsis/ultraestructura , Animales , Espinas Dendríticas/fisiología , Neuronas GABAérgicas/fisiología , Ratones , Células Piramidales/fisiología , Células Piramidales/ultraestructura , Corteza Somatosensorial/fisiología , Sinapsis/fisiología
16.
Molecules ; 25(9)2020 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-32365635

RESUMEN

Photoactivatable cyclic caged morpholino oligomers (ccMOs) represent a promising tool to selectively regulate gene expression with spatiotemporal control. Nevertheless, some challenges associated with the preparation of these reagents have limited their broader use in biological settings. We describe a novel ccMO design that overcomes many of the challenges and considerably expedites the synthetic preparation. The key factor is the introduction of an ethynyl function on the photocleavable linker to facilitate the use of a Huisgen 1,3-dipolar cycloaddition for the coupling reaction with the oligonucleotide. Compared to previous strategies, this modification reduces the number of synthetic steps and significantly improves the total yield and the stability of the linker. We used the alkynyl-functionalized linker for the preparation of two different ccMOs targeting the mRNA of the glutamic acid decarboxylase genes, gad1 and gad2. HPLC analysis confirms that the caging strategy successfully inhibits the DNA binding ability, and the activity can be restored by brief illumination with 405-nm light. Overall, the straightforward preparation together with the clean and fast photochemistry make these caged antisense reagents excellent tools to modulate gene function in-vivo with spatial and temporal precision.


Asunto(s)
Regulación de la Expresión Génica/efectos de la radiación , Luz , Morfolinos/síntesis química , Morfolinos/farmacología , Oligonucleótidos/síntesis química , Oligonucleótidos/farmacología , Quinolinas/química , Cromatografía Líquida de Alta Presión , Química Clic , Ciclización , Morfolinos/química , Oligonucleótidos/química , Fotólisis
17.
Angew Chem Int Ed Engl ; 59(22): 8608-8615, 2020 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-32124529

RESUMEN

Remote and minimally-invasive modulation of biological systems with light has transformed modern biology and neuroscience. However, light absorption and scattering significantly prevents penetration to deep brain regions. Herein, we describe the use of gold-coated mechanoresponsive nanovesicles, which consist of liposomes made from the artificial phospholipid Rad-PC-Rad as a tool for the delivery of bioactive molecules into brain tissue. Near-infrared picosecond laser pulses activated the gold-coating on the surface of nanovesicles, creating nanomechanical stress and leading to near-complete vesicle cargo release in sub-seconds. Compared to natural phospholipid liposomes, the photo-release was possible at 40 times lower laser energy. This high photosensitivity enables photorelease of molecules down to a depth of 4 mm in mouse brain. This promising tool provides a versatile platform to optically release functional molecules to modulate brain circuits.


Asunto(s)
Encéfalo/metabolismo , Encéfalo/efectos de la radiación , Rayos Infrarrojos , Nanotecnología/métodos , Animales , Fenómenos Biomecánicos , Oro/química , Ratones , Fosfolípidos/metabolismo
18.
Glia ; 67(6): 1167-1178, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30730592

RESUMEN

Coordination of gastrointestinal function relies on joint efforts of enteric neurons and glia, whose crosstalk is vital for the integration of their activity. To investigate the signaling mechanisms and to delineate the spatial aspects of enteric neuron-to-glia communication within enteric ganglia we developed a method to stimulate single enteric neurons while monitoring the activity of neighboring enteric glial cells. We combined cytosolic calcium uncaging of individual enteric neurons with calcium imaging of enteric glial cells expressing a genetically encoded calcium indicator and demonstrate that enteric neurons signal to enteric glial cells through pannexins using paracrine purinergic pathways. Sparse labeling of enteric neurons and high-resolution analysis of the structural relation between neuronal cell bodies, varicose release sites and enteric glia uncovered that this form of neuron-to-glia communication is contained between the cell body of an enteric neuron and its surrounding enteric glial cells. Our results reveal the spatial and functional foundation of neuro-glia units as an operational cellular assembly in the enteric nervous system.


Asunto(s)
Comunicación Celular/fisiología , Sistema Nervioso Entérico/citología , Sistema Nervioso Entérico/fisiología , Neuroglía/fisiología , Neuronas/fisiología , Transducción de Señal/fisiología , Animales , Células Cultivadas , Sistema Nervioso Entérico/química , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuroglía/química , Neuronas/química
19.
Chemistry ; 25(70): 16017-16021, 2019 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-31648409

RESUMEN

Interfacing biocompatible, small-molecule catalysis with cellular metabolism promises a straightforward introduction of new function into organisms without the need for genetic manipulation. However, identifying and optimizing synthetic catalysts that perform new-to-nature transformations under conditions that support life is a cumbersome task. To enable the rapid discovery and fine-tuning of biocompatible catalysts, we describe a 96-well screening platform that couples the activity of synthetic catalysts to yield non-canonical amino acids from appropriate precursors with the subsequent incorporation of these nonstandard building blocks into GFP (quantifiable readout). Critically, this strategy does not only provide a common readout (fluorescence) for different reaction/catalyst combinations, but also informs on the organism's fitness, as stop codon suppression relies on all steps of the central dogma of molecular biology. To showcase our approach, we have applied it to the evaluation and optimization of transition-metal-catalyzed deprotection reactions.

20.
Proc Natl Acad Sci U S A ; 113(44): E6877-E6886, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27791158

RESUMEN

Localization of mRNA is required for protein synthesis to occur within discrete intracellular compartments. Neurons represent an ideal system for studying the precision of mRNA trafficking because of their polarized structure and the need for synapse-specific targeting. To investigate this targeting, we derived a quantitative and analytical approach. Dendritic spines were stimulated by glutamate uncaging at a diffraction-limited spot, and the localization of single ß-actin mRNAs was measured in space and time. Localization required NMDA receptor activity, a dynamic actin cytoskeleton, and the transacting RNA-binding protein, Zipcode-binding protein 1 (ZBP1). The ability of the mRNA to direct newly synthesized proteins to the site of localization was evaluated using a Halo-actin reporter so that RNA and protein were detected simultaneously. Newly synthesized Halo-actin was enriched at the site of stimulation, required NMDA receptor activity, and localized preferentially at the periphery of spines. This work demonstrates that synaptic activity can induce mRNA localization and local translation of ß-actin where the new actin participates in stabilizing the expanding synapse in dendritic spines.


Asunto(s)
Ácido Glutámico/metabolismo , Neuronas/metabolismo , Transporte de ARN/fisiología , Citoesqueleto de Actina/metabolismo , Actinas/biosíntesis , Actinas/genética , Actinas/metabolismo , Animales , Movimiento Celular , Citoplasma/metabolismo , Dendritas/metabolismo , Espinas Dendríticas/metabolismo , Hipocampo/citología , Hipocampo/metabolismo , Ratones , Neuronas/citología , Transporte de Proteínas/fisiología , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapsis/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA