Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.323
Filtrar
Más filtros

Intervalo de año de publicación
1.
Annu Rev Biochem ; 90: 535-558, 2021 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-33556281

RESUMEN

Members of the mitochondrial carrier family [solute carrier family 25 (SLC25)] transport nucleotides, amino acids, carboxylic acids, fatty acids, inorganic ions, and vitamins across the mitochondrial inner membrane. They are important for many cellular processes, such as oxidative phosphorylation of lipids and sugars, amino acid metabolism, macromolecular synthesis, ion homeostasis, cellular regulation, and differentiation. Here, we describe the functional elements of the transport mechanism of mitochondrial carriers, consisting of one central substrate-binding site and two gates with salt-bridge networks on either side of the carrier. Binding of the substrate during import causes three gate elements to rotate inward, forming the cytoplasmic network and closing access to the substrate-binding site from the intermembrane space. Simultaneously, three core elements rock outward, disrupting the matrix network and opening the substrate-binding site to the matrix side of the membrane. During export, substrate binding triggers conformational changes involving the same elements but operating in reverse.


Asunto(s)
Proteínas de Transporte de Membrana Mitocondrial/química , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Agrecanos/química , Agrecanos/genética , Agrecanos/metabolismo , Secuencia de Aminoácidos , Aminoácidos/química , Aminoácidos/metabolismo , Sitios de Unión , Transporte Biológico , Calcio/metabolismo , Cardiolipinas/metabolismo , Secuencia Conservada , Citoplasma/metabolismo , Humanos , Translocasas Mitocondriales de ADP y ATP/química , Translocasas Mitocondriales de ADP y ATP/metabolismo , Mutación , Conformación Proteica , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
Cell ; 176(1-2): 167-181.e21, 2019 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-30595447

RESUMEN

Covalent DNA-protein cross-links (DPCs) impede replication fork progression and threaten genome integrity. Using Xenopus egg extracts, we previously showed that replication fork collision with DPCs causes their proteolysis, followed by translesion DNA synthesis. We show here that when DPC proteolysis is blocked, the replicative DNA helicase CMG (CDC45, MCM2-7, GINS), which travels on the leading strand template, bypasses an intact leading strand DPC. Single-molecule imaging reveals that GINS does not dissociate from CMG during bypass and that CMG slows dramatically after bypass, likely due to uncoupling from the stalled leading strand. The DNA helicase RTEL1 facilitates bypass, apparently by generating single-stranded DNA beyond the DPC. The absence of RTEL1 impairs DPC proteolysis, suggesting that CMG must bypass the DPC to enable proteolysis. Our results suggest a mechanism that prevents inadvertent CMG destruction by DPC proteases, and they reveal CMG's remarkable capacity to overcome obstacles on its translocation strand.


Asunto(s)
ADN Helicasas/metabolismo , ADN Helicasas/fisiología , Reparación del ADN/fisiología , Animales , Proteínas de Ciclo Celular/metabolismo , ADN/metabolismo , Replicación del ADN , ADN de Cadena Simple , Proteínas de Unión al ADN/fisiología , Femenino , Masculino , Proteolisis , Imagen Individual de Molécula/métodos , Xenopus laevis/metabolismo
3.
Immunity ; 54(11): 2531-2546.e5, 2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34644537

RESUMEN

Alternatively activated macrophages (AAMs) contribute to the resolution of inflammation and tissue repair. However, molecular pathways that govern their differentiation have remained incompletely understood. Here, we show that uncoupling protein-2-mediated mitochondrial reprogramming and the transcription factor GATA3 specifically controlled the differentiation of pro-resolving AAMs in response to the alarmin IL-33. In macrophages, IL-33 sequentially triggered early expression of pro-inflammatory genes and subsequent differentiation into AAMs. Global analysis of underlying signaling events revealed that IL-33 induced a rapid metabolic rewiring of macrophages that involved uncoupling of the respiratory chain and increased production of the metabolite itaconate, which subsequently triggered a GATA3-mediated AAM polarization. Conditional deletion of GATA3 in mononuclear phagocytes accordingly abrogated IL-33-induced differentiation of AAMs and tissue repair upon muscle injury. Our data thus identify an IL-4-independent and GATA3-dependent pathway in mononuclear phagocytes that results from mitochondrial rewiring and controls macrophage plasticity and the resolution of inflammation.


Asunto(s)
Metabolismo Energético , Inflamación/inmunología , Inflamación/metabolismo , Interleucina-33/metabolismo , Activación de Macrófagos/inmunología , Macrófagos/inmunología , Macrófagos/metabolismo , Biomarcadores , Diferenciación Celular/genética , Diferenciación Celular/inmunología , Inflamación/etiología , Activación de Macrófagos/genética , Mitocondrias/genética , Mitocondrias/inmunología , Mitocondrias/metabolismo , Fagocitos , Transducción de Señal
4.
Bioessays ; 46(9): e2400037, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39030821

RESUMEN

Genotoxic stress, arising from various environmental sources and endogenous cellular processes, pose a constant threat to genomic stability. Cells have evolved intricate mechanisms to detect and repair DNA damage, orchestrating a robust genotoxic stress response to safeguard the integrity of the genome. Recent research has shed light on the crucial role of co- and post-transcriptional regulatory mechanisms in modulating the cellular response to genotoxic stress. Here we highlight recent advances illustrating the intricate interplay between pre-mRNA processing, with a focus on 3'-end processing, and genotoxic stress response.


Asunto(s)
Daño del ADN , Precursores del ARN , Humanos , Precursores del ARN/metabolismo , Precursores del ARN/genética , Animales , Reparación del ADN , Procesamiento de Término de ARN 3' , Inestabilidad Genómica , ARN Mensajero/metabolismo , ARN Mensajero/genética , Procesamiento Postranscripcional del ARN
5.
Annu Rev Physiol ; 84: 381-407, 2022 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-34758268

RESUMEN

Mitochondria of all tissues convert various metabolic substrates into two forms of energy: ATP and heat. Historically, the primary focus of research in mitochondrial bioenergetics was on the mechanisms of ATP production, while mitochondrial thermogenesis received significantly less attention. Nevertheless, mitochondrial heat production is crucial for the maintenance of body temperature, regulation of the pace of metabolism, and prevention of oxidative damage to mitochondria and the cell. In addition, mitochondrial thermogenesis has gained significance as a pharmacological target for treating metabolic disorders. Mitochondria produce heat as the result of H+ leak across their inner membrane. This review provides a critical assessment of the current field of mitochondrial H+ leak and thermogenesis, with a focus on the molecular mechanisms involved in the function and regulation of uncoupling protein 1 and the ADP/ATP carrier, the two proteins that mediate mitochondrial H+ leak.


Asunto(s)
Mitocondrias , Termogénesis , Metabolismo Energético/fisiología , Humanos , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Termogénesis/fisiología , Proteína Desacopladora 1/metabolismo
6.
J Biol Chem ; 300(3): 105702, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38301896

RESUMEN

Elevated levels of branched chain amino acids (BCAAs) and branched-chain α-ketoacids are associated with cardiovascular and metabolic disease, but the molecular mechanisms underlying a putative causal relationship remain unclear. The branched-chain ketoacid dehydrogenase kinase (BCKDK) inhibitor BT2 (3,6-dichlorobenzo[b]thiophene-2-carboxylic acid) is often used in preclinical models to increase BCAA oxidation and restore steady-state BCAA and branched-chain α-ketoacid levels. BT2 administration is protective in various rodent models of heart failure and metabolic disease, but confoundingly, targeted ablation of Bckdk in specific tissues does not reproduce the beneficial effects conferred by pharmacologic inhibition. Here, we demonstrate that BT2, a lipophilic weak acid, can act as a mitochondrial uncoupler. Measurements of oxygen consumption, mitochondrial membrane potential, and patch-clamp electrophysiology show that BT2 increases proton conductance across the mitochondrial inner membrane independently of its inhibitory effect on BCKDK. BT2 is roughly sixfold less potent than the prototypical uncoupler 2,4-dinitrophenol and phenocopies 2,4-dinitrophenol in lowering de novo lipogenesis and mitochondrial superoxide production. The data suggest that the therapeutic efficacy of BT2 may be attributable to the well-documented effects of mitochondrial uncoupling in alleviating cardiovascular and metabolic disease.


Asunto(s)
Lipogénesis , Enfermedades Metabólicas , Membranas Mitocondriales , Inhibidores de Proteínas Quinasas , Especies Reactivas de Oxígeno , Humanos , 2,4-Dinitrofenol/farmacología , 3-Metil-2-Oxobutanoato Deshidrogenasa (Lipoamida)/metabolismo , Aminoácidos de Cadena Ramificada/metabolismo , Lipogénesis/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Especies Reactivas de Oxígeno/metabolismo , Animales , Ratones , Ratas , Línea Celular , Membranas Mitocondriales/efectos de los fármacos , Células Cultivadas
7.
Cancer Metastasis Rev ; 43(2): 777-794, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38194152

RESUMEN

Pancreatic cancer has an exaggerated dependence on mitochondrial metabolism, but methods to specifically target the mitochondria without off target effects in normal tissues that rely on these organelles is a significant challenge. The mitochondrial uncoupling protein 2 (UCP2) has potential as a cancer-specific drug target, and thus, we will review the known biology of UCP2 and discuss its potential role in the pathobiology and future therapy of pancreatic cancer.


Asunto(s)
Canales Iónicos , Neoplasias Pancreáticas , Proteína Desacopladora 2 , Humanos , Proteína Desacopladora 2/metabolismo , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/terapia , Animales , Canales Iónicos/metabolismo , Proteínas Mitocondriales/metabolismo , Mitocondrias/metabolismo
8.
Development ; 149(12)2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35588208

RESUMEN

As one of the post-transcriptional regulatory mechanisms, uncoupling of transcription and translation plays an essential role in development and adulthood physiology. However, it remains elusive how thousands of mRNAs get translationally silenced while stability is maintained for hours or even days before translation. In addition to oocytes and neurons, developing spermatids display significant uncoupling of transcription and translation for delayed translation. Therefore, spermiogenesis represents an excellent in vivo model for investigating the mechanism underlying uncoupled transcription and translation. Through full-length poly(A) deep sequencing, we discovered dynamic changes in poly(A) length through deadenylation and re-polyadenylation. Deadenylation appeared to be mediated by microRNAs (miRNAs), and transcripts with shorter poly(A) tails tend to be sequestered into ribonucleoprotein (RNP) granules for translational repression and stabilization. In contrast, re-polyadenylation might allow for translocation of the translationally repressed transcripts from RNP granules to polysomes. Overall, our data suggest that miRNA-dependent poly(A) length control represents a previously unreported mechanism underlying uncoupled translation and transcription in haploid male mouse germ cells.


Asunto(s)
MicroARNs , Poli A , Animales , Haploidia , Masculino , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Poli A/metabolismo , Biosíntesis de Proteínas , ARN Mensajero/metabolismo , Espermátides/metabolismo
9.
FASEB J ; 38(1): e23362, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38102979

RESUMEN

Endothelial dysfunction (ED) is commonly considered a crucial initiating step in the pathogenesis of numerous cardiovascular diseases. The coupling of endothelial nitric oxide synthase (eNOS) is important in maintaining normal endothelial functions. However, it still remains elusive whether and how eNOS SUMOylation affects the eNOS coupling. In the study, we investigate the roles and possible action mechanisms of protein inhibitor of activated STAT 1 (PIAS1) in ED. Human umbilical vein endothelial cells (HUVECs) treated with palmitate acid (PA) in vitro and ApoE-/- mice fed with high-fat diet (HFD) in vivo were constructed as the ED models. Our in vivo data show that PIAS1 alleviates the dysfunction of vascular endothelium by increasing nitric oxide (NO) level, reducing malondialdehyde (MDA) level, and activating the phosphatidylinositol 3-kinase-protein kinase B-endothelial nitric oxide synthase (PI3K-AKT-eNOS) signaling in ApoE-/- mice. Our in vitro data also show that PIAS1 can SUMOylate eNOS under endogenous conditions; moreover, it antagonizes the eNOS uncoupling induced by PA. The findings demonstrate that PIAS1 alleviates the dysfunction of vascular endothelium by promoting the SUMOylation and inhibiting the uncoupling of eNOS, suggesting that PIAS1 would become an early predictor of atherosclerosis and a new potential target of the hyperlipidemia-related cardiovascular diseases.


Asunto(s)
Homeostasis , Animales , Humanos , Ratones , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Enfermedades Cardiovasculares/metabolismo , Endotelio Vascular/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo III/genética , Óxido Nítrico Sintasa de Tipo III/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Inhibidoras de STAT Activados/genética , Proteínas Inhibidoras de STAT Activados/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Sumoilación
10.
Circ Res ; 133(4): 353-365, 2023 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-37462036

RESUMEN

BACKGROUND: Despite advances in treatment, myocardial infarction (MI) is a leading cause of heart failure and death worldwide, with both ischemia and reperfusion (I/R) causing cardiac injury. A previous study using a mouse model of nonreperfused MI showed activation of brown adipose tissue (BAT). Recent studies showed that molecules secreted by BAT target the heart. We investigated whether BAT attenuates cardiac injury in I/R and sought to identify potential cardioprotective proteins secreted by BAT. METHODS: Myocardial I/R surgery with or without BAT transplantation was performed in wild-type (WT) mice and in mice with impaired BAT function (uncoupling protein 1 [Ucp1]-deficient mice). To identify potential cardioprotective factors produced by BAT, RNA-seq (RNA sequencing) was performed in BAT from WT and Ucp1-/- mice. Subsequently, myocardial I/R surgery with or without BAT transplantation was performed in Bmp3b (bone morphogenetic protein 3b)-deficient mice, and WT mice subjected to myocardial I/R were treated using BMP3b. RESULTS: Dysfunction of BAT in mice was associated with larger MI size after I/R; conversely, augmenting BAT by transplantation decreased MI size. We identified Bmp3b as a protein secreted by BAT after I/R. Compared with WT mice, Bmp3b-deficient mice developed larger MIs. Increasing functional BAT by transplanting BAT from WT mice to Bmp3b-deficient mice reduced I/R injury whereas transplanting BAT from Bmp3b-deficient mice did not. Treatment of WT mice with BMP3b before reperfusion decreased MI size. The cardioprotective effect of BMP3b was mediated through SMAD1/5/8. In humans, the plasma level of BMP3b increased after MI and was positively correlated with the extent of cardiac injury. CONCLUSIONS: The results of this study suggest a cardioprotective role of BAT and BMP3b, a protein secreted by BAT, in a model of I/R injury. Interventions increasing BMP3b levels or targeting Smad 1/5 may represent novel therapeutic approaches to decrease myocardial damage in I/R injury.


Asunto(s)
Enfermedad de la Arteria Coronaria , Factor 10 de Diferenciación de Crecimiento , Infarto del Miocardio , Isquemia Miocárdica , Daño por Reperfusión Miocárdica , Animales , Humanos , Ratones , Tejido Adiposo Pardo/metabolismo , Factor 10 de Diferenciación de Crecimiento/metabolismo , Ratones Endogámicos C57BL , Infarto del Miocardio/metabolismo , Daño por Reperfusión Miocárdica/genética , Daño por Reperfusión Miocárdica/prevención & control , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Reperfusión
11.
Trends Biochem Sci ; 45(3): 244-258, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31787485

RESUMEN

Members of the mitochondrial carrier family (SLC25) provide the transport steps for amino acids, carboxylic acids, fatty acids, cofactors, inorganic ions, and nucleotides across the mitochondrial inner membrane and are crucial for many cellular processes. Here, we use new insights into the transport mechanism of the mitochondrial ADP/ATP carrier to examine the structure and function of other mitochondrial carriers. They all have a single substrate-binding site and two gates, which are present on either side of the membrane and involve salt-bridge networks. Transport is likely to occur by a common mechanism, in which the coordinated movement of six structural elements leads to the alternating opening and closing of the matrix or cytoplasmic side of the carriers.


Asunto(s)
Translocasas Mitocondriales de ADP y ATP/química , Translocasas Mitocondriales de ADP y ATP/metabolismo , Animales , Transporte Biológico , Citoplasma/metabolismo , Humanos , Mitocondrias/química , Mitocondrias/metabolismo
12.
Am J Physiol Endocrinol Metab ; 327(1): E134-E144, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38747899

RESUMEN

Perigonadal adipose tissue is a homogeneous white adipose tissue (WAT) in adult male mice without any brown adipose tissue (BAT). However, there are congenital differences in the gonads between male and female mice. Whether heterogeneity existed in perigonadal adipose tissues (ATs) in female mice remains unknown. This study reported a perigonadal brown-like AT located between abdominal lymph nodes and the uterine cervix in female mice, termed lymph node-cervical adipose tissue (LNCAT). Its counterpart, lymph node-prostatic adipose tissue (LNPAT), exhibited white phenotype in adult virgin male mice. When exposed to cold, LNCAT/LNPAT increased uncoupling protein 1 (UCP1) expression via activation of tyrosine hydroxylase (TH), in which abdominal lymph nodes were involved. Interestingly, the UCP1 expression in LNCAT/LNPAT varied under different reproductive stages. The UCP1 expression in LNCAT was upregulated at early pregnancy, declined at midlate pregnancy, and reverted in weaning dams. Mating behavior stimulated LNPAT browning in male mice. We found that androgen but not estrogen or progesterone inhibited UCP1 expression in LNCAT. Androgen administration reversed the castration-induced LNPAT browning. Our results identified a perigonadal brown-like AT in female mice and characterized its UCP1 expression patterns under various conditions.NEW & NOTEWORTHY A novel perigonadal brown-like AT (LNCAT) of female mice was identified. Abdominal lymph nodes were involved in cold-induced browning in this newly discovered adipose tissue. The UCP1 expression in LNCAT/LNPAT was also related to ages, sexes, and reproductive stages, in which androgen acted as an inhibitor role.


Asunto(s)
Tejido Adiposo Pardo , Cuello del Útero , Ganglios Linfáticos , Próstata , Proteína Desacopladora 1 , Animales , Masculino , Femenino , Ratones , Ganglios Linfáticos/metabolismo , Proteína Desacopladora 1/metabolismo , Proteína Desacopladora 1/genética , Tejido Adiposo Pardo/metabolismo , Cuello del Útero/metabolismo , Próstata/metabolismo , Embarazo , Tejido Adiposo Blanco/metabolismo , Ratones Endogámicos C57BL , Tejido Adiposo/metabolismo , Andrógenos/farmacología , Andrógenos/metabolismo , Conducta Sexual Animal/fisiología
13.
Chembiochem ; 25(7): e202300848, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38353515

RESUMEN

We have recently discovered that ester-stabilized phosphorus ylides, resulting from deprotonation of a phosphonium salt such as [Ph3PCH2COOR], can transfer protons across artificial and biological membranes. To create more effective cationic protonophores, we synthesized similar phosphonium salts with one ((heptyloxycarbonylmethyl)(p-tolyl)bromide) or two ((butyloxycarbonylmethyl)(3,5-xylyl)osphonium bromide) methyl substituents in the phenyl groups. The methylation enormously augmented both protonophoric activity of the ylides on planar bilayer lipid membrane (BLM) and uncoupling of mammalian mitochondria, which correlated with strongly accelerated flip-flop of their cationic precursors across the BLM.


Asunto(s)
Mitocondrias Hepáticas , Fósforo , Animales , Mitocondrias Hepáticas/metabolismo , Fósforo/metabolismo , Ésteres/metabolismo , Bromuros/metabolismo , Metilación , Membrana Dobles de Lípidos/metabolismo , Mamíferos
14.
J Cardiovasc Electrophysiol ; 35(6): 1185-1195, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38591763

RESUMEN

INTRODUCTION: Biventricular pacing (BiVp) improves outcomes in systolic heart failure patients with electrical dyssynchrony. BiVp is delivered from epicardial left ventricular (LV) and endocardial right ventricular (RV) electrodes. Acute electrical activation changes with different LV-RV stimulation offsets can help guide individually optimized BiVp programming. We sought to study the BiVp ventricular activation with different LV-RV offsets and compare with 12-lead ECG. METHODS: In five patients with BiVp (63 ± 17-year-old, 80% male, LV ejection fraction 27 ± 6%), we evaluated acute ventricular epicardial activation, varying LV-RV offsets in 20 ms increments from -40 to 80 ms, using electrocardiographic imaging (ECGI) to obtain absolute ventricular electrical uncoupling (VEUabs, absolute difference in average LV and average RV activation time) and total activation time (TAT). For each patient, we calculated the correlation between ECGI and corresponding ECG (3D-QRS-area and QRS duration) with different LV-RV offsets. RESULTS: The LV-RV offset to attain minimum VEUabs in individual patients ranged 20-60 ms. In all patients, a larger LV-RV offset was required to achieve minimum VEUabs (36 ± 17 ms) or 3D-QRS-area (40 ± 14 ms) than that for minimum TAT (-4 ± 9 ms) or QRS duration (-8 ± 11 ms). In individual patients, 3D-QRS-area correlated with VEUabs (r 0.65 ± 0.24) and QRS duration correlated with TAT (r 0.95 ± 0.02). Minimum VEUabs and minimum 3D-QRS-area were obtained by LV-RV offset within 20 ms of each other in all five patients. CONCLUSIONS: LV-RV electrical uncoupling, as assessed by ECGI, can be minimized by optimizing LV-RV stimulation offset. 3D-QRS-area is a surrogate to identify LV-RV offset that minimizes LV-RV uncoupling.


Asunto(s)
Potenciales de Acción , Terapia de Resincronización Cardíaca , Electrocardiografía , Valor Predictivo de las Pruebas , Función Ventricular Izquierda , Función Ventricular Derecha , Humanos , Masculino , Proyectos Piloto , Femenino , Persona de Mediana Edad , Anciano , Resultado del Tratamiento , Frecuencia Cardíaca , Factores de Tiempo , Volumen Sistólico , Ventrículos Cardíacos/fisiopatología , Ventrículos Cardíacos/diagnóstico por imagen
15.
J Vasc Res ; 61(3): 109-121, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38615660

RESUMEN

INTRODUCTION: Following our recent finding that Ucp2 knockout promotes ferroptosis, we aimed to examine whether UCP2 alleviates myocardial ischemia/reperfusion injury (MI/RI) by inhibiting ferroptosis. METHODS: The left anterior descending coronary arteries of wild-type and Ucp2-/- C57BL/6 mice were ligated for 30 min and reperfused for 2 h to establish an MI/RI model. The effects of UCP2 on ferroptosis and MI/RI were determined by echocardiography, 2,3,5-triphenylttrazolium chloride staining, hematoxylin-eosin staining, Masson's trichrome staining, Sirius red staining, and analysis of myocardial injury markers and ferroptosis indicators. Ferrostatin-1 (Fer-1) and erastin (Era) were used to investigate whether UCP2 alleviated MI/RI by inhibiting ferroptosis and the molecular mechanism. RESULTS: UCP2 was upregulated in the MI/RI model in WT mice. Deletion of Ucp2 exacerbated ferroptosis, altered the expression levels of multiple ferroptosis-related genes, and significantly exacerbated MI/RI. Knockout of Ucp2 promoted ferroptosis induced by Era and inhibited the antiferroptotic effects of Fer-1. Knockout of Ucp2 activated the p53/TfR1 pathway to exacerbate ferroptosis. CONCLUSION: Our results showed that UCP2 inhibited ferroptosis in MI/RI, which might be related to regulation of the p53/TfR1 pathway.


Asunto(s)
Modelos Animales de Enfermedad , Ferroptosis , Ratones Endogámicos C57BL , Ratones Noqueados , Daño por Reperfusión Miocárdica , Miocitos Cardíacos , Proteína Desacopladora 2 , Animales , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Daño por Reperfusión Miocárdica/prevención & control , Daño por Reperfusión Miocárdica/genética , Proteína Desacopladora 2/metabolismo , Proteína Desacopladora 2/genética , Proteína Desacopladora 2/deficiencia , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Masculino , Transducción de Señal , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética , Ratones
16.
Chemistry ; 30(46): e202400931, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-38838073

RESUMEN

Mitochondrial uncoupling by small molecule protonophores is a promising strategy for developing novel anticancer agents. Recently, aryl urea substituted fatty acids (aryl ureas) were identified as a new class of protonophoric anticancer agents. To mediate proton transport these molecules self-assemble into membrane-permeable anionic dimers in which intermolecular hydrogen bonds between the carboxylate and aryl-urea anion receptor delocalise the negative charge across the aromatic π-system. In this work, we extend the aromatic π-system by introducing a second phenyl substituent to the aryl urea scaffold and compare the proton transport mechanisms and mitochondrial uncoupling actions of these compounds to their monoaryl analogues. It was found that incorporation of meta-linked phenyl substituents into the aryl urea scaffold enhanced proton transport in vesicles and demonstrated superior capacity to depolarise mitochondria, inhibit ATP production and reduce the viability of MDA-MB-231 breast cancer cells. In contrast, diphenyl ureas linked through a 1,4-distribution across the phenyl ring displayed diminished proton transport activity, despite both diphenyl urea isomers possessing similar binding affinities for carboxylates. Mechanistic studies suggest that inclusion of a second aryl ring changes the proton transport mechanism, presumably due to steric factors that impose higher energy penalties for dimer formation.


Asunto(s)
Ácidos Grasos , Mitocondrias , Protones , Urea , Humanos , Ácidos Grasos/química , Ácidos Grasos/metabolismo , Mitocondrias/metabolismo , Urea/química , Urea/análogos & derivados , Urea/farmacología , Línea Celular Tumoral , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/metabolismo , Desacopladores/farmacología , Desacopladores/química , Transporte Iónico , Aniones/química , Aniones/metabolismo , Adenosina Trifosfato/metabolismo , Adenosina Trifosfato/química
17.
Front Zool ; 21(1): 4, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38350982

RESUMEN

BACKGROUND: Proper adjustments of metabolic thermogenesis play an important role in thermoregulation in endotherm to cope with cold and/or warm ambient temperatures, however its roles in energy balance and fat accumulation remain uncertain. Our study aimed to investigate the effect of previous cold exposure (10 and 0 °C) on the energy budgets and fat accumulation in the striped hamsters (Cricetulus barabensis) in response to warm acclimation. The body mass, energy intake, resting metabolic rate (RMR) and nonshivering thermogenesis (NST), serum thyroid hormone levels (THs: T3 and T4), and the activity of brown adipose tissue (BAT), indicated by cytochrome c oxidase (COX) activity and uncoupling protein 1 (ucp1) expression, were measured following exposure to the cold (10 °C and 0 °C) and transition to the warm temperature (30 °C). RESULTS: The hamsters at 10 °C and 0 °C showed significant increases in energy intake, RMR and NST, and a considerable reduction in body fat than their counterparts kept at 21 °C. After being transferred from cold to warm temperature, the hamsters consumed less food, and decreased RMR and NST, but they significantly increased body fat content. Interestingly, the hamsters that were previously exposed to the colder temperature showed significantly more fat accumulation after transition to the warm. Serum T3 levels, BAT COX activity and ucp1 mRNA expression were significantly increased following cold exposure, and were considerably decreased after transition to the warm. Furthermore, body fat content was negatively correlated with serum T3 levels, BAT COX activity and UCP1 expression. CONCLUSION: The data suggest that the positive energy balance resulting from the decreased RMR and NST in BAT under the transition from the cold to the warm plays important roles in inducing fat accumulation. The extent of fat accumulation in the warm appears to reflect the temperature of the previous cold acclimation.

18.
J Theor Biol ; 587: 111825, 2024 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-38621584

RESUMEN

In this paper we use simulation methods to study a hypothetical uncoupling agent as a therapy for dementia. We simulate the proliferation of mitochondrial deletion mutants amongst a population of wild-type in human neurons. Mitochondria play a key role in ATP generation. Clonal expansion can lead to the wild-type being overwhelmed by deletions such that a diminished population can no longer fulfil a cell's energy requirement, eventually leading to its demise. The intention of uncoupling is to reduce the formation of deletion mutants by reducing mutation rate. However, a consequence of uncoupling is that the energy production efficacy is also reduced which in turn increases wild-type copy number in order to compensate for the energy deficit. The results of this paper showed that uncoupling reduced the severity of dementia, however, there was some increase in cognitive dysfunction pre-onset of dementia. The effectiveness of uncoupling was dependent upon the timing of intervention relative to the onset of dementia and would necessitate predicting its onset many years in advance.


Asunto(s)
Demencia , Humanos , Mitocondrias/metabolismo , Desacopladores/farmacología , Neuronas/metabolismo , Simulación por Computador
19.
Biogerontology ; 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39377866

RESUMEN

Brown Adipose Tissue (BAT) is a type of fat tissue that can generate heat and plays an important role in regulating body temperature and energy metabolism. Enhancing BAT activity through medication, exercise and other means has become a potential effective method for treating metabolic disorders. Recently, there has been increasing evidence suggesting a link between BAT and aging. As humans age, the volume and activity of BAT decrease, which may contribute to the development of age-related diseases. Multiple organelles signaling pathways have been reported to be involved in the aging process associated with BAT. Therefore, we aimed to review the evidence related to the association between aging process and BAT decreasing, analyze the potential of BAT as a predictive marker for age-related diseases, and explore potential therapeutic strategies targeting BAT for aging interventions and healthy longevity.

20.
Neuroradiology ; 66(6): 985-998, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38605104

RESUMEN

PURPOSE: To examine hemodynamic and functional connectivity alterations and their association with neurocognitive and mental health indices in patients with chronic mild traumatic brain injury (mTBI). METHODS: Resting-state functional MRI (rs-fMRI) and neuropsychological assessment of 37 patients with chronic mTBI were performed. Intrinsic connectivity contrast (ICC) and time-shift analysis (TSA) of the rs-fMRI data allowed the assessment of regional hemodynamic and functional connectivity disturbances and their coupling (or uncoupling). Thirty-nine healthy age- and gender-matched participants were also examined. RESULTS: Patients with chronic mTBI displayed hypoconnectivity in bilateral hippocampi and parahippocampal gyri and increased connectivity in parietal areas (right angular gyrus and left superior parietal lobule (SPL)). Slower perfusion (hemodynamic lag) in the left anterior hippocampus was associated with higher self-reported symptoms of depression (r = - 0.53, p = .0006) and anxiety (r = - 0.484, p = .002), while faster perfusion (hemodynamic lead) in the left SPL was associated with lower semantic fluency (r = - 0.474, p = .002). Finally, functional coupling (high connectivity and hemodynamic lead) in the right anterior cingulate cortex (ACC)) was associated with lower performance on attention and visuomotor coordination (r = - 0.50, p = .001), while dysfunctional coupling (low connectivity and hemodynamic lag) in the left ventral posterior cingulate cortex (PCC) and right SPL was associated with lower scores on immediate passage memory (r = - 0.52, p = .001; r = - 0.53, p = .0006, respectively). Uncoupling in the right extrastriate visual cortex and posterior middle temporal gyrus was negatively associated with cognitive flexibility (r = - 0.50, p = .001). CONCLUSION: Hemodynamic and functional connectivity differences, indicating neurovascular (un)coupling, may be linked to mental health and neurocognitive indices in patients with chronic mTBI.


Asunto(s)
Imagen por Resonancia Magnética , Pruebas Neuropsicológicas , Humanos , Masculino , Femenino , Imagen por Resonancia Magnética/métodos , Adulto , Estudios de Casos y Controles , Conmoción Encefálica/diagnóstico por imagen , Conmoción Encefálica/fisiopatología , Conmoción Encefálica/complicaciones , Hemodinámica/fisiología , Persona de Mediana Edad , Enfermedad Crónica , Mapeo Encefálico/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA