Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 706
Filtrar
Más filtros

Intervalo de año de publicación
1.
Immunity ; 49(2): 235-246.e4, 2018 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-30076100

RESUMEN

HIV-1 Envelope (Env) mediates viral-host membrane fusion after binding host-receptor CD4 and coreceptor. Soluble envelopes (SOSIPs), designed to mimic prefusion conformational states of virion-bound envelopes, are proposed immunogens for eliciting neutralizing antibodies, yet only static structures are available. To evaluate conformational landscapes of ligand-free, CD4-bound, inhibitor-bound, and antibody-bound SOSIPs, we measured inter-subunit distances throughout spin-labeled SOSIPs using double electron-electron resonance (DEER) spectroscopy and compared results to soluble and virion-bound Env structures, and single-molecule fluorescence resonance energy transfer (smFRET)-derived dynamics of virion-bound Envs. Unliganded SOSIP measurements were consistent with closed, neutralizing antibody-bound structures and shielding of non-neutralizing epitopes, demonstrating homogeneity at Env apex, increased flexibility near Env base, and no evidence for the intra-subunit flexibility near Env apex suggested by smFRET. CD4 binding increased inter-subunit distances and heterogeneity, consistent with rearrangements required for coreceptor binding. Results suggest similarities between SOSIPs and virion-bound Envs and demonstrate DEER's relevance for immunogen design.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Antígenos CD4/metabolismo , Anticuerpos Anti-VIH/inmunología , VIH-1/inmunología , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunología , Productos del Gen env del Virus de la Inmunodeficiencia Humana/metabolismo , Sitios de Unión de Anticuerpos/inmunología , Línea Celular , Espectroscopía de Resonancia por Spin del Electrón , Epítopos/inmunología , Transferencia Resonante de Energía de Fluorescencia , Células HEK293 , Proteína gp120 de Envoltorio del VIH/genética , Proteína gp41 de Envoltorio del VIH/genética , Humanos
2.
J Virol ; 98(2): e0154623, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38299865

RESUMEN

Vaccine-induced mucosal immunity and broad protective capacity against various severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants remain inadequate. Formyl peptide receptor-like 1 inhibitory protein (FLIPr), produced by Staphylococcus aureus, can bind to various Fcγ receptor subclasses. Recombinant lipidated FLIPr (rLF) was previously found to be an effective adjuvant. In this study, we developed a vaccine candidate, the recombinant Delta SARS-CoV-2 spike (rDS)-FLIPr fusion protein (rDS-F), which employs the property of FLIPr binding to various Fcγ receptors. Our study shows that rDS-F plus rLF promotes rDS capture by dendritic cells. Intranasal vaccination of mice with rDS-F plus rLF increases persistent systemic and mucosal antibody responses and CD4/CD8 T-cell responses. Importantly, antibodies induced by rDS-F plus rLF vaccination neutralize Delta, Wuhan, Alpha, Beta, and Omicron strains. Additionally, rDS-F plus rLF provides protective effects against various SARS-CoV-2 variants in hamsters by reducing inflammation and viral loads in the lung. Therefore, rDS-F plus rLF is a potential vaccine candidate to induce broad protective responses against various SARS-CoV-2 variants.IMPORTANCEMucosal immunity is vital for combating pathogens, especially in the context of respiratory diseases like COVID-19. Despite this, most approved vaccines are administered via injection, providing systemic but limited mucosal protection. Developing vaccines that stimulate both mucosal and systemic immunity to address future coronavirus mutations is a growing trend. However, eliciting strong mucosal immune responses without adjuvants remains a challenge. In our study, we have demonstrated that using a recombinant severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike-formyl peptide receptor-like 1 inhibitory protein (FLIPr) fusion protein as an antigen, in combination with recombinant lipidated FLIPr as an effective adjuvant, induced simultaneous systemic and mucosal immune responses through intranasal immunization in mice and hamster models. This approach offered protection against various SARS-CoV-2 strains, making it a promising vaccine candidate for broad protection. This finding is pivotal for future broad-spectrum vaccine development.


Asunto(s)
Proteínas Bacterianas , Vacunas contra la COVID-19 , COVID-19 , Inmunidad Mucosa , Lípidos , Proteínas Recombinantes de Fusión , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Animales , Cricetinae , Ratones , Adyuvantes Inmunológicos , Anticuerpos Antivirales/inmunología , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/inmunología , Proteínas Bacterianas/metabolismo , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , COVID-19/inmunología , COVID-19/prevención & control , COVID-19/virología , Vacunas contra la COVID-19/administración & dosificación , Vacunas contra la COVID-19/química , Vacunas contra la COVID-19/genética , Vacunas contra la COVID-19/inmunología , Células Dendríticas/inmunología , Modelos Animales de Enfermedad , Receptores de IgG/clasificación , Receptores de IgG/inmunología , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/inmunología , Proteínas Recombinantes de Fusión/metabolismo , SARS-CoV-2/clasificación , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/metabolismo , Staphylococcus aureus , Desarrollo de Vacunas , Carga Viral
3.
J Virol ; 98(3): e0162723, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38305150

RESUMEN

Ebola virus disease (EVD) caused by Ebola virus (EBOV) is a severe, often fatal, hemorrhagic disease. A critical component of the public health response to curb EVD epidemics is the use of a replication-competent, recombinant vesicular stomatitis virus (rVSV)-vectored Ebola vaccine, rVSVΔG-ZEBOV-GP (ERVEBO). In this Gem, we will discuss the past and ongoing development of rVSVΔG-ZEBOV-GP, highlighting the importance of basic science and the strength of public-private partnerships to translate fundamental virology into a licensed VSV-vectored Ebola vaccine.


Asunto(s)
Vacunas contra el Virus del Ébola , Ebolavirus , Vectores Genéticos , Fiebre Hemorrágica Ebola , Vesiculovirus , Humanos , Vacunas contra el Virus del Ébola/genética , Vacunas contra el Virus del Ébola/inmunología , Ebolavirus/genética , Ebolavirus/inmunología , Vectores Genéticos/genética , Fiebre Hemorrágica Ebola/inmunología , Fiebre Hemorrágica Ebola/prevención & control , Vesiculovirus/genética , Asociación entre el Sector Público-Privado
4.
J Biol Chem ; 299(4): 103062, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36841484

RESUMEN

The hydrophobic pocket found in the N-heptad repeat (NHR) region of HIV-1 gp41 is a highly conserved epitope that is the target of various HIV-1-neutralizing monoclonal antibodies. Although the high conservation of the pocket makes it an attractive vaccine candidate, it has been challenging to elicit potent anti-NHR antibodies via immunization. Here, we solved a high-resolution structure of the NHR mimetic IQN17, and, consistent with previous ligand-bound gp41 pocket structures, we observed remarkable conformational plasticity of the pocket. The high malleability of this pocket led us to test whether we could improve the immunogenicity of the gp41 pocket by stabilizing its conformation. We show that the addition of five amino acids at the C terminus of IQN17, to generate IQN22, introduces a stabilizing salt bridge at the base of the peptide that rigidifies the pocket. Mice immunized with IQN22 elicited higher avidity antibodies against the gp41 pocket and a more potent, albeit still weak, neutralizing response against HIV-1 compared with IQN17. Stabilized epitope-focused immunogens could serve as the basis for future HIV-1 fusion-inhibiting vaccines.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Anti-VIH , Proteína gp41 de Envoltorio del VIH , VIH-1 , Animales , Ratones , Epítopos/metabolismo , Proteína gp41 de Envoltorio del VIH/química , Proteína gp41 de Envoltorio del VIH/inmunología , VIH-1/metabolismo
5.
Biochem Biophys Res Commun ; 710: 149878, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38608492

RESUMEN

Sapovirus (SaV) is a nonenveloped RNA virus that causes acute gastroenteritis in humans. Although SaV is a clinically important pathogen in children, an effective vaccine is currently unavailable. The capsid protein VP1 of SaVs forms the outer shell of the virion and is highly diverse, as often seen in the virion-surface proteins of RNA viruses, creating an obstacle for vaccine development. We here report a unique phenomenon pertaining to the variation of SaV VP1. Phylogenetic and information entropy analyses using full-length VP1 sequences from a public database consistently showed that the amino acid sequences of the VP1 protein have been highly conserved over more than 40 years in the major epidemic genotype GI.1 but not in GI.2. Structural modeling showed that even the VP1 P2 subdomain, which is arranged on the outermost shell of the virion and presumably exposed to anti-SaV antibodies, remained highly homogeneous in GI.1 but not in GI.2. These results suggest strong evolutionary constraints against amino acid changes in the P2 subdomain of the SaV GI.1 capsid and illustrate a hitherto unappreciated mechanism, i.e., preservation of the VP1 P2 subdomain, involved in SaV survival. Our findings could have important implications for the development of an anti-SaV vaccine.


Asunto(s)
Sapovirus , Vacunas , Niño , Humanos , Sapovirus/genética , Proteínas de la Cápside/genética , Filogenia , Aminoácidos/genética , Genotipo , Heces
6.
Brief Bioinform ; 23(5)2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-35947964

RESUMEN

Several new viral infections have emerged in the human population and establishing as global pandemics. With advancements in translation research, the scientific community has developed potential therapeutics to eradicate or control certain viral infections, such as smallpox and polio, responsible for billions of disabilities and deaths in the past. Unfortunately, some viral infections, such as dengue virus (DENV) and human immunodeficiency virus-1 (HIV-1), are still prevailing due to a lack of specific therapeutics, while new pathogenic viral strains or variants are emerging because of high genetic recombination or cross-species transmission. Consequently, to combat the emerging viral infections, bioinformatics-based potential strategies have been developed for viral characterization and developing new effective therapeutics for their eradication or management. This review attempts to provide a single platform for the available wide range of bioinformatics-based approaches, including bioinformatics methods for the identification and management of emerging or evolved viral strains, genome analysis concerning the pathogenicity and epidemiological analysis, computational methods for designing the viral therapeutics, and consolidated information in the form of databases against the known pathogenic viruses. This enriched review of the generally applicable viral informatics approaches aims to provide an overview of available resources capable of carrying out the desired task and may be utilized to expand additional strategies to improve the quality of translation viral informatics research.


Asunto(s)
Biología Computacional , Virosis , Humanos , Pandemias , Virosis/tratamiento farmacológico , Virosis/genética
7.
Microb Pathog ; 190: 106630, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38556102

RESUMEN

Porcine circovirus type 2 (PCV2) is a globally prevalent infectious pathogen affecting swine, with its capsid protein (Cap) being the sole structural protein critical for vaccine development. Prior research has demonstrated that PCV2 Cap proteins produced in Escherichia coli (E. coli) can form virus-like particles (VLPs) in vitro, and nuclear localization signal peptides (NLS) play a pivotal role in stabilizing PCV2 VLPs. Recently, PCV2d has emerged as an important strain within the PCV2 epidemic. In this study, we systematically optimized the PCV2d Cap protein and successfully produced intact PCV2d VLPs containing NLS using E. coli. The recombinant PCV2d Cap protein was purified through affinity chromatography, yielding 7.5 mg of recombinant protein per 100 ml of bacterial culture. We augmented the conventional buffer system with various substances such as arginine, ß-mercaptoethanol, glycerol, polyethylene glycol, and glutathione to promote VLP assembly. The recombinant PCV2d Cap self-assembled into VLPs approximately 20 nm in diameter, featuring uniform distribution and exceptional stability in the optimized buffer. We developed the vaccine and immunized pigs and mice, evaluating the immunogenicity of the PCV2d VLPs vaccine by measuring PCV2-IgG, IL-4, TNF-α, and IFN-γ levels, comparing them to commercial vaccines utilizing truncated PCV2 Cap antigens. The HE staining and immunohistochemical tests confirmed that the PCV2 VLPs vaccine offered robust protection. The results revealed that animals vaccinated with the PCV2d VLPs vaccine exhibited high levels of PCV2 antibodies, with TNF-α and IFN-γ levels rapidly increasing at 14 days post-immunization, which were higher than those observed in commercially available vaccines, particularly in the mouse trial. This could be due to the fact that full-length Cap proteins can assemble into more stable PCV2d VLPs in the assembling buffer. In conclusion, our produced PCV2d VLPs vaccine elicited stronger immune responses in pigs and mice compared to commercial vaccines. The PCV2d VLPs from this study serve as an excellent candidate vaccine antigen, providing insights for PCV2d vaccine research.


Asunto(s)
Anticuerpos Antivirales , Proteínas de la Cápside , Circovirus , Escherichia coli , Proteínas Recombinantes , Vacunas de Partículas Similares a Virus , Animales , Circovirus/inmunología , Circovirus/genética , Porcinos , Vacunas de Partículas Similares a Virus/inmunología , Vacunas de Partículas Similares a Virus/genética , Proteínas de la Cápside/inmunología , Proteínas de la Cápside/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Ratones , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/sangre , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/genética , Infecciones por Circoviridae/prevención & control , Infecciones por Circoviridae/inmunología , Enfermedades de los Porcinos/prevención & control , Vacunas Virales/inmunología , Vacunas Virales/genética , Desarrollo de Vacunas , Antígenos Virales/inmunología , Antígenos Virales/genética , Inmunoglobulina G/sangre , Análisis Costo-Beneficio , Femenino , Interferón gamma/metabolismo , Inmunogenicidad Vacunal
8.
J Biomed Sci ; 31(1): 73, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39010093

RESUMEN

Enteroviruses (EVs) are the most prevalent viruses in humans. EVs can cause a range of acute symptoms, from mild common colds to severe systemic infections such as meningitis, myocarditis, and flaccid paralysis. They can also lead to chronic diseases such as cardiomyopathy. Although more than 280 human EV serotypes exist, only four serotypes have licenced vaccines. No antiviral drugs are available to treat EV infections, and global surveillance of EVs has not been effectively coordinated. Therefore, poliovirus still circulates, and there have been alarming epidemics of non-polio enteroviruses. Thus, there is a pressing need for coordinated preparedness efforts against EVs.This review provides a perspective on recent enterovirus outbreaks and global poliovirus eradication efforts with continuous vaccine development initiatives. It also provides insights into the challenges and opportunities in EV vaccine development. Given that traditional whole-virus vaccine technologies are not suitable for many clinically relevant EVs and considering the ongoing risk of enterovirus outbreaks and the potential for new emerging pathogenic strains, the need for new effective and adaptable enterovirus vaccines is emphasized.This review also explores the difficulties in translating promising vaccine candidates for clinical use and summarizes information from published literature and clinical trial databases focusing on existing enterovirus vaccines, ongoing clinical trials, the obstacles faced in vaccine development as well as the emergence of new vaccine technologies. Overall, this review contributes to the understanding of enterovirus vaccines, their role in public health, and their significance as a tool for future preparedness.


Asunto(s)
Infecciones por Enterovirus , Enterovirus , Vacunas Virales , Humanos , Infecciones por Enterovirus/epidemiología , Infecciones por Enterovirus/prevención & control , Infecciones por Enterovirus/virología , Enterovirus/inmunología , Vacunas Virales/inmunología , Desarrollo de Vacunas , Brotes de Enfermedades/prevención & control , Epidemias/prevención & control
9.
Fish Shellfish Immunol ; 149: 109567, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38641215

RESUMEN

Streptococcosis, an emerging infectious disease caused by Streptococcus agalactiae, has had adverse effects on farmed tilapia. Several vaccines have been developed to prevent this disease and induce a specific immune response against S. agalactiae infection. In this study the use of MONTANIDE™ GR01, a new adjuvant for oral vaccination, was optimized for use in tilapia under laboratory and field studies. In the laboratory trial the immune response and protective efficacy of two doses of MONTANIDE™ GR01, 20 % (w/w) and 2 % (w/w), included into the feed-based adjuvanted vaccines were assessed comparatively. Following immunization, the innate immune parameters studied in serum, including lysozyme, myeloperoxidase, catalase and glutathione peroxidase activity, were all increased significantly. Furthermore, specific IgM antibodies against S. agalactiae were induced significantly in serum post-vaccination, with higher levels observed in both groups that received the feed-based adjuvanted vaccine. Under both injection and immersion challenge conditions, the relative percent survival for the feed-based adjuvanted vaccine groups ranged from 78 % to 84 %. Following use of the low dose concentration of MONTANIDE™ GR01 for oral vaccination of tilapia in cage culture systems, several innate immune parameters were effectively enhanced in the immunized fish. Similarly, the levels of specific IgM antibodies in the serum of feed-based vaccinated fish were significantly enhanced, reaching their highest levels 2-5 months post-vaccination. Cytokines associated with innate and adaptive immunity were also examined, and the expression levels of several genes showed significant up-regulation. This indicates that both cellular and humoral immune responses were induced by the feed-based adjuvanted vaccine. The economic impact of a feed-based adjuvanted vaccine was examined following vaccination, considering the growth performance and feed utilization of the fish. It was found that the Economic Performance Index and Economic Conversion Ratio were unaffected by vaccination, further demonstrating that there are no negative impacts associated with administering a feed-based vaccine to fish. In conclusion, the data from this study indicate that MONTANIDE™ GR01 is a highly valuable adjuvant for oral vaccination, as demonstrated by its ability to induce a strong immune response and effectively prevent streptococcal disease in Nile tilapia.


Asunto(s)
Adyuvantes Inmunológicos , Cíclidos , Enfermedades de los Peces , Inmunidad Innata , Infecciones Estreptocócicas , Streptococcus agalactiae , Animales , Streptococcus agalactiae/inmunología , Infecciones Estreptocócicas/veterinaria , Infecciones Estreptocócicas/prevención & control , Infecciones Estreptocócicas/inmunología , Enfermedades de los Peces/prevención & control , Enfermedades de los Peces/inmunología , Cíclidos/inmunología , Adyuvantes Inmunológicos/administración & dosificación , Adyuvantes Inmunológicos/farmacología , Administración Oral , Alimentación Animal/análisis , Vacunas Estreptocócicas/inmunología , Vacunas Estreptocócicas/administración & dosificación , Vacunación/veterinaria
10.
Mol Biol Rep ; 51(1): 551, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38642170

RESUMEN

Fish health management is critical to aquaculture and fisheries as it directly affects sustainability and productivity. Fish disease diagnosis has taken a massive stride because of advances in immunological and molecular diagnostic tools which provide a sensitive, quick, and accurate means of identifying diseases. This review presents an overview of the main molecular and immunological diagnostic methods for determining the health of fish. The immunological techniques help to diagnose different fish diseases by detecting specific antigens and antibodies. The application of immunological techniques to vaccine development is also examined in this review. The genetic identification of pathogens is made possible by molecular diagnostic techniques that enable the precise identification of bacterial, viral, and parasitic organisms in addition to evaluating host reactions and genetic variation associated with resistance to disease. The combination of molecular and immunological methods has resulted in the creation of novel techniques for thorough evaluation of fish health. These developments improve treatment measures, pathogen identification and provide new information about the variables affecting fish health, such as genetic predispositions and environmental stresses. In the framework of sustainable fish farming and fisheries management, this paper focuses on the importance of these diagnostic techniques that play a crucial role in protecting fish populations and the aquatic habitats. This review also examines the present and potential future directions in immunological and molecular diagnostic techniques in fish health.


Asunto(s)
Acuicultura , Enfermedades de los Peces , Animales , Explotaciones Pesqueras , Anticuerpos , Técnicas de Diagnóstico Molecular , Enfermedades de los Peces/diagnóstico , Enfermedades de los Peces/genética , Peces/genética
11.
Semin Immunol ; 50: 101413, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-33127296

RESUMEN

The urgency to develop vaccines against Covid-19 is putting pressure on the long and expensive development timelines that are normally required for development of lifesaving vaccines. There is a unique opportunity to take advantage of new technologies, the smart and flexible design of clinical trials, and evolving regulatory science to speed up vaccine development against Covid-19 and transform vaccine development altogether.


Asunto(s)
Vacunas contra la COVID-19/uso terapéutico , COVID-19/prevención & control , Aprobación de Drogas , Biología de Sistemas/métodos , COVID-19/inmunología , Humanos , Aprendizaje Automático , Salud Pública/métodos , SARS-CoV-2/inmunología , Vacunología/métodos
12.
Int J Mol Sci ; 25(13)2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-39000332

RESUMEN

Fasciolosis, a globally re-emerging zoonotic disease, is mostly caused by the parasitic infection with Fasciola hepatica, often known as the liver fluke. This disease has a considerable impact on livestock productivity. This study aimed to evaluate the fluke burdens and faecal egg counts in goats that were administered phage clones of cathepsin L mimotopes and then infected with F. hepatica metacercariae. Additionally, the impact of vaccination on the histology of the reproductive system, specifically related to egg generation in adult parasites, was examined. A total of twenty-four goats, which were raised in sheds, were divided into four groups consisting of six animals each. These groups were randomly assigned. The goats were then subjected to two rounds of vaccination. Each vaccination involved the administration of 1 × 1013 phage particles containing specific mimotopes for cathepsin L2 (group 1: PPIRNGK), cathepsin L1 (group 2: DPWWLKQ), and cathepsin L1 (group 3: SGTFLFS). The immunisations were carried out on weeks 0 and 4, and the Quil A adjuvant was used in combination with the mimotopes. The control group was administered phosphate-buffered saline (PBS) (group 4). At week 6, all groups were orally infected with 200 metacercariae of F. hepatica. At week 22 following the initial immunisation, the subjects were euthanised, and adult F. hepatica specimens were retrieved from the bile ducts and liver tissue, and subsequently quantified. The specimens underwent whole-mount histology for the examination of the reproductive system, including the testis, ovary, vitellaria, Mehlis' gland, and uterus. The mean fluke burdens following the challenge were seen to decrease by 50.4%, 62.2%, and 75.3% (p < 0.05) in goats that received vaccinations containing cathepsin L2 PPIRNGK, cathepsin L1 DPWWLKQ, and cathepsin L1 SGTFLFS, respectively. Animals that received vaccination exhibited a significant reduction in the production of parasite eggs. The levels of IgG1 and IgG2 isotypes in vaccinated goats were significantly higher than in the control group, indicating that protection is associated with the induction of a mixed Th1/Th2 immune response. The administration of cathepsin L to goats exhibits a modest level of efficacy in inducing histological impairment in the reproductive organs of liver flukes, resulting in a reduction in egg output.


Asunto(s)
Catepsina L , Fasciola hepatica , Fascioliasis , Cabras , Vacunación , Animales , Fasciola hepatica/inmunología , Catepsina L/metabolismo , Fascioliasis/veterinaria , Fascioliasis/prevención & control , Fascioliasis/inmunología , Fascioliasis/parasitología , Vacunación/métodos , Femenino , Masculino , Enfermedades de las Cabras/parasitología , Enfermedades de las Cabras/prevención & control , Enfermedades de las Cabras/inmunología , Recuento de Huevos de Parásitos , Bacteriófagos/inmunología
13.
Molecules ; 29(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38731563

RESUMEN

The concept of nanomedicine has evolved significantly in recent decades, leveraging the unique phenomenon known as the enhanced permeability and retention (EPR) effect. This has facilitated major advancements in targeted drug delivery, imaging, and individualized therapy through the integration of nanotechnology principles into medicine. Numerous nanomedicines have been developed and applied for disease treatment, with a particular focus on cancer therapy. Recently, nanomedicine has been utilized in various advanced fields, including diagnosis, vaccines, immunotherapy, gene delivery, and tissue engineering. Multifunctional nanomedicines facilitate concurrent medication delivery, therapeutic monitoring, and imaging, allowing for immediate responses and personalized treatment plans. This review concerns the major advancement of nanomaterials and their potential applications in the biological and medical fields. Along with this, we also mention the various clinical translations of nanomedicine and the major challenges that nanomedicine is currently facing to overcome the clinical translation barrier.


Asunto(s)
Sistemas de Liberación de Medicamentos , Nanomedicina , Humanos , Nanomedicina/métodos , Neoplasias/terapia , Neoplasias/tratamiento farmacológico , Animales , Inmunoterapia/métodos , Nanoestructuras/química , Nanoestructuras/uso terapéutico
14.
J Biol Chem ; 298(1): 101453, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34838818

RESUMEN

In the preparation of commercial conjugate vaccines, capsular polysaccharides (CPSs) must undergo chemical modification to generate the reactive groups necessary for covalent attachment to a protein carrier. One of the most common approaches employed for this derivatization is sodium periodate (NaIO4) oxidation of vicinal diols found within CPS structures. This procedure is largely random and structurally damaging, potentially resulting in significant changes in the CPS structure and therefore its antigenicity. Additionally, periodate activation of CPS often gives rise to heterogeneous conjugate vaccine products with variable efficacy. Here, we explore the use of an alternative agent, galactose oxidase (GOase) isolated from Fusarium sp. in a chemoenzymatic approach to generate a conjugate vaccine against Streptococcus pneumoniae. Using a colorimetric assay and NMR spectroscopy, we found that GOase generated aldehyde motifs on the CPS of S. pneumoniae serotype 14 (Pn14p) in a site-specific and reversible fashion. Direct comparison of Pn14p derivatized by either GOase or NaIO4 illustrates the functionally deleterious role chemical oxidation can have on CPS structures. Immunization with the conjugate synthesized using GOase provided a markedly improved humoral response over the traditional periodate-oxidized group. Further, functional protection was validated in vitro by measure of opsonophagocytic killing and in vivo through a lethality challenge in mice. Overall, this work introduces a strategy for glycoconjugate development that overcomes limitations previously known to play a role in the current approach of vaccine design.


Asunto(s)
Galactosa Oxidasa , Vacunas Neumococicas , Polisacáridos Bacterianos , Streptococcus pneumoniae , Animales , Anticuerpos Antibacterianos/química , Anticuerpos Antibacterianos/inmunología , Galactosa Oxidasa/química , Galactosa Oxidasa/inmunología , Galactosa Oxidasa/metabolismo , Glicoconjugados , Ratones , Vacunas Neumococicas/química , Vacunas Neumococicas/inmunología , Polisacáridos Bacterianos/química , Polisacáridos Bacterianos/inmunología , Serogrupo , Streptococcus pneumoniae/química , Streptococcus pneumoniae/inmunología , Vacunas Conjugadas
15.
J Biol Chem ; 298(7): 102079, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35643320

RESUMEN

Dengue viruses (DENV serotypes 1-4) and Zika virus (ZIKV) are related flaviviruses that continue to be a public health concern, infecting hundreds of millions of people annually. The traditional live-attenuated virus vaccine approach has been challenging for the four DENV serotypes because of the need to achieve balanced replication of four independent vaccine components. Subunit vaccines represent an alternative approach that may circumvent problems inherent with live-attenuated DENV vaccines. In mature virus particles, the envelope (E) protein forms a homodimer that covers the surface of the virus and is the major target of neutralizing antibodies. Many neutralizing antibodies bind to quaternary epitopes that span across both E proteins in the homodimer. For soluble E (sE) protein to be a viable subunit vaccine, the antigens should be easy to produce and retain quaternary epitopes recognized by neutralizing antibodies. However, WT sE proteins are primarily monomeric at conditions relevant for vaccination and exhibit low expression yields. Previously, we identified amino acid mutations that stabilize the sE homodimer from DENV2 and dramatically raise expression yields. Here, we tested whether these same mutations raise the stability of sE from other DENV serotypes and ZIKV. We show that the mutations raise thermostability for sE from all the viruses, increase production yields from 4-fold to 250-fold, stabilize the homodimer, and promote binding to dimer-specific neutralizing antibodies. Our findings suggest that these sE variants could be valuable resources in the efforts to develop effective subunit vaccines for DENV serotypes 1 to 4 and ZIKV.


Asunto(s)
Virus del Dengue , Vacunas de Subunidad , Proteínas del Envoltorio Viral , Vacunas Virales , Virus Zika , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Reacciones Cruzadas , Dengue/prevención & control , Virus del Dengue/genética , Epítopos , Humanos , Mutación , Vacunas Atenuadas , Vacunas de Subunidad/genética , Proteínas del Envoltorio Viral/genética , Vacunas Virales/genética , Virus Zika/genética , Infección por el Virus Zika/prevención & control
16.
Clin Infect Dis ; 77(Suppl 3): S257-S261, 2023 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-37579208

RESUMEN

For any controlled human infection model (CHIM), a safe, standardized, and biologically relevant challenge inoculum is necessary. For hepatitis C virus (HCV) CHIM, we propose that human-derived high-titer inocula of several viral genotypes with extensive virologic, serologic, and molecular characterizations should be the most appropriate approach. These inocula should first be tested in human volunteers in a step-wise manner to ensure safety, reproducibility, and curability prior to using them for testing the efficacy of candidate vaccines.


Asunto(s)
Hepacivirus , Hepatitis C , Humanos , Hepacivirus/genética , Reproducibilidad de los Resultados
17.
Small ; 19(51): e2207731, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36916701

RESUMEN

The rapid transmission and resilience of coronavirus disease 2019 (COVID-19) have led to urgent demands in monitoring humoral response for effective vaccine development, thus a multiplex co-detection platform to discriminate infection-induced from vaccine-induced antibodies is needed. Here a duplex electrochemical immunosensor for co-detection of anti-nucleocapsid IgG (N-IgG) and anti-spike IgG (S-IgG) is developed by using a two-working electrode system, via an indirect immunoassay, with antibody quantification obtained by differential pulse voltammetry. The screen-printed electrodes (SPEs) are modified by carbon black and electrodeposited gold nanoflowers for maximized surface areas, enabling the construction of an immunological chain for S-IgG and N-IgG electrochemical detection with enhanced performance. Using an optimized immunoassay protocol, a wide linear range between 30-750 and 20-1000 ng mL-1 , and a limit of detection of 28 and 15 ng mL-1 are achieved to detect N-IgG and S-IgG simultaneously in serum samples. This duplex immunosensor is then integrated in a microfluidic device to obtain significantly reduced detection time (≤ 7 min) while maintaining its analytical performance. The duplex microfluidic immunosensor can be easily expanded into multiplex format to achieve high throughput screening for the sero-surveillance of COVID-19  and other infectious diseases.


Asunto(s)
Técnicas Biosensibles , COVID-19 , Vacunas , Humanos , COVID-19/diagnóstico , Inmunoensayo/métodos , Microfluídica , Anticuerpos Antivirales , Inmunoglobulina G , Técnicas Electroquímicas/métodos , Electrodos , Oro
18.
J Virol ; 96(6): e0205921, 2022 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-35044208

RESUMEN

The Gammacoronavirus infectious bronchitis virus (IBV) is a highly contagious global pathogen prevalent in all types of poultry flocks. IBV is responsible for economic losses and welfare issues in domestic poultry, resulting in a significant risk to food security. IBV vaccines are currently generated by serial passage of virulent IBV field isolates through embryonated hens' eggs. The different patterns of genomic variation accumulated during this process means that the exact mechanism of attenuation is unknown and presents a risk of reversion to virulence. Additionally, the passaging process adapts the virus to replicate in chicken embryos, increasing embryo lethality. Vaccines produced in this manner are therefore unsuitable for in ovo application. We have developed a reverse genetics system, based on the pathogenic IBV strain M41, to identify genes which can be targeted for rational attenuation. During the development of this reverse genetics system, we identified four amino acids, located in nonstructural proteins (nsps) 10, 14, 15, and 16, which resulted in attenuation both in vivo and in ovo. Further investigation highlighted a role of amino acid changes, Pro85Leu in nsp 10 and Val393Leu in nsp 14, in the attenuated in vivo phenotype observed. This study provides evidence that mutations in nsps offer a promising mechanism for the development of rationally attenuated live vaccines against IBV, which have the potential for in ovo application. IMPORTANCE The Gammacoronavirus infectious bronchitis virus (IBV) is the etiological agent of infectious bronchitis, an acute, highly contagious, economically important disease of poultry. Vaccination is achieved using a mixture of live attenuated vaccines for young chicks and inactivated vaccines as boosters for laying hens. Live attenuated vaccines are generated through serial passage in embryonated hens' eggs, an empirical process which achieves attenuation but retains immunogenicity. However, these vaccines have a risk of reversion to virulence, and they are lethal to the embryo. In this study, we identified amino acids in the replicase gene which attenuated IBV strain M41, both in vivo and in ovo. Stability assays indicate that the attenuating amino acids are stable and unlikely to revert. The data in this study provide evidence that specific modifications in the replicase gene offer a promising direction for IBV live attenuated vaccine development, with the potential for in ovo application.


Asunto(s)
Aminoácidos , Infecciones por Coronavirus , Virus de la Bronquitis Infecciosa , Enfermedades de las Aves de Corral , Proteínas no Estructurales Virales , Vacunas Virales , Aminoácidos/química , Aminoácidos/genética , Animales , Embrión de Pollo , Pollos , Infecciones por Coronavirus/prevención & control , Infecciones por Coronavirus/veterinaria , Infecciones por Coronavirus/virología , Femenino , Virus de la Bronquitis Infecciosa/genética , Enfermedades de las Aves de Corral/prevención & control , Enfermedades de las Aves de Corral/virología , Vacunas Atenuadas/genética , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/genética , Vacunas Virales/genética
19.
J Virol ; 96(11): e0046922, 2022 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-35583324

RESUMEN

Coronavirus (CoV) nonstructural protein 1 (nsp1) inhibits cellular gene expression and antagonizes interferon (IFN) response. Porcine epidemic diarrhea virus (PEDV) infects pigs and causes high mortality in neonatal piglets. We hypothesized that a recombinant PEDV carrying mutations at the conserved residues N93 and N95 of nsp1 induces higher IFN responses and is more sensitive to IFN responses, leading to virus attenuation. We mutated PEDV nsp1 N93 and N95 to A93 and A95 to generate the recombinant N93/95A virus using the infectious clone of a highly virulent PEDV strain, PC22A (icPC22A), and evaluated N93/95A virus in vitro and in vivo. Compared with icPC22A, the N93/95A mutant replicated to significantly lower infectious titers, triggered stronger type I and III IFN responses, and was more sensitive to IFN treatment in vitro. To evaluate the pathogenicity and immunogenicity, 5-day-old gnotobiotic piglets were orally inoculated with the N93/95A or icPC22A strain or mock inoculated and then challenged at 22 days postinoculation (dpi) with icPC22A. icPC22A in all pigs (100% [5/5]) caused severe diarrhea and death within 6 dpi. Only one pig (25% [1/4]) died in the N93/95A group. Compared with the icPC22A group, significantly delayed and diminished fecal PEDV shedding was detected in the N93/95A group. Postchallenge, all piglets in N93/95A group were protected from severe diarrhea and death, whereas all pigs in the mock-challenged group developed severe diarrhea, and 25% (1/4) of them died. In summary, nsp1 N93A and N95A mutations attenuated PEDV but retained viral immunogenicity and can be targets for the development of live attenuated vaccines for PEDV. IMPORTANCE PEDV causes porcine epidemic diarrhea (PED) and remains a great threat to the swine industry worldwide because no effective vaccines are available yet. Safe and effective live attenuated vaccines can be designed using reverse genetics to induce lactogenic immunity in pregnant sows to protect piglets from the deadly PED. We found that an engineered PEDV mutant carrying N93A and N95A mutations of nsp1 was partially attenuated and remained immunogenic in neonatal pigs. Our study suggested that nsp1 N93 and N95 can be good targets for the rational design of live attenuated vaccines for PEDV using reverse genetics. Because CoV nsp1 is conserved among alphacoronaviruses (α-CoVs) and betacoronaviruses (ß-CoVs), it may be a good target for vaccine development for other α-CoVs or ß-CoVs.


Asunto(s)
Infecciones por Coronavirus , Interferones , Virus de la Diarrea Epidémica Porcina , Enfermedades de los Porcinos , Proteínas no Estructurales Virales , Animales , Animales Recién Nacidos , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/veterinaria , Diarrea/veterinaria , Diarrea/virología , Femenino , Interferones/inmunología , Mutación , Porcinos , Enfermedades de los Porcinos/inmunología , Enfermedades de los Porcinos/virología , Proteínas no Estructurales Virales/genética
20.
Trop Med Int Health ; 28(6): 420-431, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37095630

RESUMEN

OBJECTIVE: Lassa fever (LF) is caused by a viral pathogen with pandemic potential. LF vaccines have the potential to prevent significant disease in individuals at risk of infection, but no such vaccine has been licensed or authorised for use thus far. We conducted a scoping review to identify and compare registered phase 1, 2 or 3 clinical trials of LF vaccine candidates, and appraise the current trajectory of LF vaccine development. METHOD: We systematically searched 24 trial registries, PubMed, relevant conference abstracts and additional grey literature sources up to 27 October 2022. After extracting key details about each vaccine candidate and each eligible trial, we qualitatively synthesised the evidence. RESULTS: We found that four LF vaccine candidates (INO-4500, MV-LASV, rVSV∆G-LASV-GPC, and EBS-LASV) have entered the clinical stage of assessment. Five phase 1 trials (all focused on healthy adults) and one phase 2 trial (involving a broader age group from 18 months to 70 years) evaluating one of these vaccines have been registered to date. Here, we describe the characteristics of each vaccine candidate and trial and compare them to WHO's target product profile for Lassa vaccines. CONCLUSION: Though LF vaccine development is still in early stages, current progress towards a safe and effective vaccine is encouraging.


Asunto(s)
Fiebre de Lassa , Vacunas Virales , Humanos , Fiebre de Lassa/prevención & control , Fiebre de Lassa/tratamiento farmacológico , Virus Lassa , Vacunas Virales/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA