Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.498
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 173(1): 208-220.e20, 2018 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-29551265

RESUMEN

Conjugative transposition drives the emergence of multidrug resistance in diverse bacterial pathogens, yet the mechanisms are poorly characterized. The Tn1549 conjugative transposon propagates resistance to the antibiotic vancomycin used for severe drug-resistant infections. Here, we present four high-resolution structures of the conserved Y-transposase of Tn1549 complexed with circular transposon DNA intermediates. The structures reveal individual transposition steps and explain how specific DNA distortion and cleavage mechanisms enable DNA strand exchange with an absolute minimum homology requirement. This appears to uniquely allow Tn916-like conjugative transposons to bypass DNA homology and insert into diverse genomic sites, expanding gene transfer. We further uncover a structural regulatory mechanism that prevents premature cleavage of the transposon DNA before a suitable target DNA is found and generate a peptide antagonist that interferes with the transposase-DNA structure to block transposition. Our results reveal mechanistic principles of conjugative transposition that could help control the spread of antibiotic resistance genes.


Asunto(s)
ADN Bacteriano/metabolismo , Transposasas/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Sitios de Unión , Dominio Catalítico , Cristalografía por Rayos X , División del ADN , Elementos Transponibles de ADN/genética , ADN Bacteriano/química , Farmacorresistencia Bacteriana , Enterococcus faecalis/genética , Modelos Moleculares , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Conformación de Ácido Nucleico , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Alineación de Secuencia , Transposasas/antagonistas & inhibidores , Transposasas/química , Transposasas/genética
2.
Proc Natl Acad Sci U S A ; 120(15): e2208737120, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-37011186

RESUMEN

The alarming rise in superbugs that are resistant to drugs of last resort, including vancomycin-resistant enterococci and staphylococci, has become a significant global health hazard. Here, we report the click chemistry synthesis of an unprecedented class of shapeshifting vancomycin dimers (SVDs) that display potent activity against bacteria that are resistant to the parent drug, including the ESKAPE pathogens, vancomycin-resistant Enterococcus (VRE), methicillin-resistant Staphylococcus aureus (MRSA), as well as vancomycin-resistant S. aureus (VRSA). The shapeshifting modality of the dimers is powered by a triazole-linked bullvalene core, exploiting the dynamic covalent rearrangements of the fluxional carbon cage and creating ligands with the capacity to inhibit bacterial cell wall biosynthesis. The new shapeshifting antibiotics are not disadvantaged by the common mechanism of vancomycin resistance resulting from the alteration of the C-terminal dipeptide with the corresponding d-Ala-d-Lac depsipeptide. Further, evidence suggests that the shapeshifting ligands destabilize the complex formed between the flippase MurJ and lipid II, implying the potential for a new mode of action for polyvalent glycopeptides. The SVDs show little propensity for acquired resistance by enterococci, suggesting that this new class of shapeshifting antibiotic will display durable antimicrobial activity not prone to rapidly acquired clinical resistance.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Enterococos Resistentes a la Vancomicina , Vancomicina/farmacología , Antibacterianos/uso terapéutico , Pruebas de Sensibilidad Microbiana
3.
Mol Microbiol ; 121(6): 1182-1199, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38690761

RESUMEN

The dipeptide D-Ala-D-Ala is an essential component of peptidoglycan and the target of vancomycin. Most Clostridioides difficile strains possess the vanG operon responsible for the synthesis of D-Ala-D-Ser, which can replace D-Ala-D-Ala in peptidoglycan. The C. difficile vanG operon is regulated by a two-component system, VanRS, but is not induced sufficiently by vancomycin to confer resistance to this antibiotic. Surprisingly, in the absence of the VanS histidine kinase (HK), the vanG operon is still induced by vancomycin and also by another antibiotic, ramoplanin, in a VanR-dependent manner. This suggested the cross-regulation of VanR by another HK or kinases that are activated in the presence of certain lipid II-targeting antibiotics. We identified these HKs as CD35990 and CD22880. However, mutations in either or both HKs did not affect the regulation of the vanG operon in wild-type cells suggesting that intact VanS prevents the cross-activation of VanR by non-cognate HKs. Overproduction of VanR in the absence of VanS, CD35990, and CD22880 led to high expression of the vanG operon indicating that VanR can potentially utilize at least one more phosphate donor for its activation. Candidate targets of CD35990- and CD22880-mediated regulation in the presence of vancomycin or ramoplanin were identified by RNA-Seq.


Asunto(s)
Antibacterianos , Proteínas Bacterianas , Clostridioides difficile , Regulación Bacteriana de la Expresión Génica , Histidina Quinasa , Operón , Resistencia a la Vancomicina , Vancomicina , Operón/genética , Clostridioides difficile/genética , Clostridioides difficile/efectos de los fármacos , Clostridioides difficile/metabolismo , Histidina Quinasa/metabolismo , Histidina Quinasa/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Vancomicina/farmacología , Resistencia a la Vancomicina/genética , Antibacterianos/farmacología , Depsipéptidos/farmacología , Factores de Transcripción
4.
J Infect Dis ; 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38546721

RESUMEN

BACKGROUND: Admission and discharge screening of patients for asymptomatic gut colonization with multidrug-resistant organisms (MDROs) is a traditional approach to active surveillance, but its sensitivity for detecting colonization is uncertain. METHODS: Daily rectal or fecal swab samples and clinical data were collected over 12 months from patients in one 25-bed intensive care unit (ICU) in Chicago, IL USA and tested for the following multidrug-resistant organisms (MDROs): vancomycin-resistant enterococci (VRE); third-generation cephalosporin-resistant Enterobacterales, including extended-spectrum ß-lactamase-producing Enterobacterales (ESBL); and carbapenem-resistant Enterobacterales (CRE). MDRO detection by (1) admission/discharge surveillance cultures or (2) clinical cultures were compared to daily surveillance cultures. Samples underwent 16S rRNA gene sequencing to measure the relative abundance of operational taxonomic units (OTUs) corresponding to each MDRO. RESULTS: Compared with daily surveillance cultures, admission/discharge cultures detected 91% of prevalent MDRO colonization and 63% of incident MDRO colonization among medical ICU patients. Only a minority (7%) of MDRO carriers were identified by clinical cultures. Higher relative abundance of MDRO-associated OTUs and specific antibiotic exposures were independently associated with higher probability of MDRO detection by culture. CONCLUSION: Admission and discharge surveillance cultures underestimated MDRO acquisitions in an ICU. These limitations should be considered when designing sampling strategies for epidemiologic studies that use culture-based surveillance.

5.
J Biol Chem ; 299(3): 103001, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36764524

RESUMEN

The VanRS two-component system regulates the resistance phenotype of vancomycin-resistant enterococci. VanS is a sensor histidine kinase that responds to the presence of vancomycin by autophosphorylating and subsequently transferring the phosphoryl group to the response regulator, VanR. The phosphotransfer activates VanR as a transcription factor, which initiates the expression of resistance genes. Structural information about VanS proteins has remained elusive, hindering the molecular-level understanding of their function. Here, we present X-ray crystal structures for the catalytic and ATP-binding (CA) domains of two VanS proteins, derived from vancomycin-resistant enterococci types A and C. Both proteins adopt the canonical Bergerat fold that has been observed for CA domains of other prokaryotic histidine kinases. We attempted to determine structures for the nucleotide-bound forms of both proteins; however, despite repeated efforts, these forms could not be crystallized, prompting us to measure the proteins' binding affinities for ATP. Unexpectedly, both CA domains displayed low affinities for the nucleotide, with KD values in the low millimolar range. Since these KD values are comparable to intracellular ATP concentrations, this weak substrate binding could reflect a way of regulating expression of the resistance phenotype.


Asunto(s)
Enterococos Resistentes a la Vancomicina , Enterococos Resistentes a la Vancomicina/metabolismo , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Factores de Transcripción/metabolismo , Histidina Quinasa/genética , Histidina Quinasa/metabolismo , Nucleótidos , Adenosina Trifosfato , Antibacterianos/metabolismo
6.
Clin Infect Dis ; 78(6): 1462-1472, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38305378

RESUMEN

BACKGROUND: Exposure to antibiotics predisposes to dysbiosis and Clostridioides difficile infection (CDI) that can be severe, recurrent (rCDI), and life-threatening. Nonselective drugs that treat CDI and perpetuate dysbiosis are associated with rCDI, in part due to loss of microbiome-derived secondary bile acid (SBA) production. Ridinilazole is a highly selective drug designed to treat CDI and prevent rCDI. METHODS: In this phase 3 superiority trial, adults with CDI, confirmed with a stool toxin test, were randomized to receive 10 days of ridinilazole (200 mg twice daily) or vancomycin (125 mg 4 times daily). The primary endpoint was sustained clinical response (SCR), defined as clinical response and no rCDI through 30 days after end of treatment. Secondary endpoints included rCDI and change in relative abundance of SBAs. RESULTS: Ridinilazole and vancomycin achieved an SCR rate of 73% versus 70.7%, respectively, a treatment difference of 2.2% (95% CI: -4.2%, 8.6%). Ridinilazole resulted in a 53% reduction in recurrence compared with vancomycin (8.1% vs 17.3%; 95% CI: -14.1%, -4.5%; P = .0002). Subgroup analyses revealed consistent ridinilazole benefit for reduction in rCDI across subgroups. Ridinilazole preserved microbiota diversity, increased SBAs, and did not increase the resistome. Conversely, vancomycin worsened CDI-associated dysbiosis, decreased SBAs, increased Proteobacteria abundance (∼3.5-fold), and increased the resistome. CONCLUSIONS: Although ridinilazole did not meet superiority in SCR, ridinilazole greatly reduced rCDI and preserved microbiome diversity and SBAs compared with vancomycin. These findings suggest that treatment of CDI with ridinilazole results in an earlier recovery of gut microbiome health. Clinical Trials Registration.Ri-CoDIFy 1 and 2: NCT03595553 and NCT03595566.


Asunto(s)
Antibacterianos , Clostridioides difficile , Infecciones por Clostridium , Microbioma Gastrointestinal , Vancomicina , Humanos , Vancomicina/uso terapéutico , Vancomicina/efectos adversos , Infecciones por Clostridium/tratamiento farmacológico , Infecciones por Clostridium/microbiología , Masculino , Femenino , Persona de Mediana Edad , Método Doble Ciego , Antibacterianos/uso terapéutico , Antibacterianos/efectos adversos , Anciano , Clostridioides difficile/efectos de los fármacos , Microbioma Gastrointestinal/efectos de los fármacos , Adulto , Resultado del Tratamiento , Metaboloma/efectos de los fármacos , Oxadiazoles/uso terapéutico , Oxadiazoles/efectos adversos , Disbiosis/inducido químicamente , Bencimidazoles , Piridinas
7.
Clin Infect Dis ; 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38382090

RESUMEN

BACKGROUND: Epidemiologic studies have shown decreasing vancomycin susceptibility among clinical Clostridioides difficile isolates, but the impact on patient outcomes is unknown. We hypothesized that reduced vancomycin susceptibility would be associated with decreased rates of sustained clinical response (SCR). METHODS: This multicenter cohort study included adults with C. difficile infection (CDI) treated with oral vancomycin between 2016-2021. C. difficile isolates underwent agar dilution vancomycin susceptibility testing, ribotyping, and Sanger sequencing of the vancomycin resistance vanR gene. Reduced susceptibility was defined as vancomycin minimum inhibitory concentration (MIC) >2 µg/mL. The primary outcome was 30-day SCR; secondary outcomes were 14-day initial cure, 30-day recurrence, and 30-day mortality. Exploratory analysis assessed the association between the VanR Thr115Ala polymorphism, susceptibility, and outcomes. RESULTS: A high proportion (34%, 102/300) of C. difficile isolates exhibited reduced vancomycin susceptibility (range: 0.5-16 µg/mL, MIC50/90 = 2/4 µg/mL). Ribotype (RT) 027 accounted for the highest proportion (77.4%, 41/53) of isolates with reduced vancomycin susceptibility. Overall, 83% (249) of patients achieved 30-day SCR. Reduced vancomycin susceptibility was associated with lower rates of 30-day SCR (76%, 78/102) than vancomycin susceptible strains (86%, 171/198; P=0.031). A significantly lower rate of 14-day initial cure was also observed among individuals infected with strains with reduced vancomycin susceptibility (89% vs. 96%; P=0.04). Reduced susceptibility remained an independent predictor of 30-day SCR in multivariable modeling (odds ratio, 0.52, 95% confidence interval 0.28-0.97; P=0.04). CONCLUSIONS: Reduced vancomycin susceptibility in C. difficile was associated with decreased odds of 30-day SCR and lower 14-day initial cure rates in the studied patient cohort.

8.
Antimicrob Agents Chemother ; 68(5): e0159123, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38578080

RESUMEN

We recruited 48 neonates (50 vancomycin treatment episodes) in a prospective study to validate a model-informed precision dosing (MIPD) software. The initial vancomycin dose was based on a population pharmacokinetic model and adjusted every 36-48 h. Compared with a historical control group of 53 neonates (65 episodes), the achievement of a target trough concentration of 10-15 mg/L improved from 37% in the study to 62% in the MIPD group (P = 0.01), with no difference in side effects.


Asunto(s)
Antibacterianos , Vancomicina , Vancomicina/farmacocinética , Vancomicina/administración & dosificación , Vancomicina/uso terapéutico , Humanos , Recién Nacido , Antibacterianos/farmacocinética , Antibacterianos/administración & dosificación , Antibacterianos/uso terapéutico , Estudios Prospectivos , Masculino , Femenino , Programas Informáticos
9.
Antimicrob Agents Chemother ; 68(3): e0089323, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38259090

RESUMEN

Staphylococcus aureus is an important human pathogen and vancomycin is widely used for the treatment of S. aureus infections. The global regulator agr is known as a well-described virulence regulator. Previous studies have found that agr-dysfunction strains are more likely to develop into vancomycin-resistant strains, but the mechanism for this phenomenon remains unknown. VraSR is a two-component regulatory system related to vancomycin resistance. In this study, we found that the expression levels of vraR were higher in agr-dysfunction clinical strains than in the agr-functional strains. We knocked out agr in a clinical strain, and quantitative reverse transcription PCR and ß-galactosidase activity assays revealed that agr repressed transcription of vraR. After vancomycin exposures, population analysis revealed larger subpopulations displaying reduced susceptibility in agr knockout strain compared with wild-type strain, and this pattern was also observed in agr-dysfunction clinical strains compared with the agr-functional strains. Electrophoretic mobility experiment demonstrated binding of purified AgrA to the promoter region of vraR. In conclusion, our results indicated that the loss of agr function in S. aureus may contribute to the evolution of reduced vancomycin susceptibility through the downregulation of vraSR.


Asunto(s)
Infecciones Estafilocócicas , Staphylococcus aureus , Humanos , Vancomicina/farmacología , Antibacterianos/farmacología , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/epidemiología , Regiones Promotoras Genéticas/genética , Proteínas Bacterianas/metabolismo
10.
Antimicrob Agents Chemother ; 68(1): e0090323, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38095427

RESUMEN

Vancomycin taper and pulse regimens are commonly used to treat recurrent Clostridioides difficile infections, but the mechanism by which these regimens might reduce recurrences is unclear. Here, we used a mouse model to test the hypothesis that pulse dosing of vancomycin after a 10-day treatment course enhances clearance of C. difficile from the intestinal tract. Mice with C. difficile colonization received 10 days of once-daily oral vancomycin followed by 20 days of treatment with saline (controls), daily vancomycin, or pulse dosing of vancomycin every 2 or 3 days. Stool samples were collected to measure the concentration of C. difficile during and after treatment, vancomycin concentrations, and growth of vegetative C. difficile during every 3 days dosing. Pulse dosing of vancomycin was not effective in maintaining suppression of C. difficile (P > 0.05 in comparison to saline controls); growth of vegetative C. difficile occurred between pulse doses when vancomycin decreased to undetectable levels. Daily dosing of vancomycin suppressed C. difficile during treatment, but recurrent colonization occurred after treatment in more than 75% of mice, and by post-treatment day 14, there was no significant difference among the control, pulse dosing, and daily dosing groups (P > 0.05). These findings demonstrate that pulse dosing of vancomycin every 2 or 3 days does not facilitate the clearance of C. difficile spores in mice. Studies are needed to examine the impact of vancomycin taper and pulsed regimens in patients.


Asunto(s)
Clostridioides difficile , Infecciones por Clostridium , Humanos , Animales , Ratones , Vancomicina/farmacología , Antibacterianos/farmacología , Infecciones por Clostridium/tratamiento farmacológico , Modelos Animales de Enfermedad
11.
Antimicrob Agents Chemother ; 68(5): e0115923, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38506549

RESUMEN

Vancomycin heteroresistance is prone to missed detection and poses a risk of clinical treatment failure. We encountered one clinical Enterococcus faecium strain, SRR12, that carried a complete vanM gene cluster but was determined as susceptible to vancomycin using the broth microdilution method. However, distinct subcolonies appeared within the clear zone of inhibition in the E-test assay, one of which, named SRR12-v1, showed high-level resistance to vancomycin. SRR12 was confirmed as heteroresistant to vancomycin using population analysis profiling and displayed "revive" growth curves with a lengthy lag phase of over 13 hours when exposed to 2-32 mg/L vancomycin. The resistant subcolony SRR12-v1 was found to carry an identical vanM gene cluster to that of SRR12 but a significantly increased vanM copy number in the genome. Long-read whole genome sequencing revealed that a one-copy vanM gene cluster was located on a pELF1-like linear plasmid in SRR12. In comparison, tandem amplification of the vanM gene cluster jointed with IS1216E was seated on a linear plasmid in the genome of SRR12-v1. These amplifications of the vanM gene cluster were demonstrated as unstable and would decrease accompanied by fitness reversion after serial passaging for 50 generations under increasing vancomycin pressure or without antibiotic pressure but were relatively stable under constant vancomycin pressure. Further, vanM resistance in resistant variants was verified to be carried by conjugative plasmids with variable sizes using conjugation assays and S1-pulsed field gel electrophoresis blotting, suggesting the instability/flexibility of vanM cluster amplification in the genome and an increased risk of vanM resistance dissemination.


Asunto(s)
Antibacterianos , Enterococcus faecium , Pruebas de Sensibilidad Microbiana , Familia de Multigenes , Plásmidos , Resistencia a la Vancomicina , Vancomicina , Enterococcus faecium/genética , Enterococcus faecium/efectos de los fármacos , Plásmidos/genética , Vancomicina/farmacología , Resistencia a la Vancomicina/genética , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Humanos , Secuenciación Completa del Genoma
12.
Antimicrob Agents Chemother ; 68(5): e0143923, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38591854

RESUMEN

Phage therapy has (re)emerged as a serious possibility for combating multidrug-resistant bacterial infections, including those caused by vancomycin-resistant Enterococcus faecium strains. These opportunistic pathogens belong to a specific clonal complex 17, against which relatively few phages have been screened. We isolated a collection of 21 virulent phages growing on these vancomycin-resistant isolates. Each of these phages harbored a typical narrow plaquing host range, lysing at most 5 strains and covering together 10 strains of our panel of 14 clinical isolates. To enlarge the host spectrum of our phages, the Appelmans protocol was used. We mixed four out of our most complementary phages in a cocktail that we iteratively grew on eight naive strains from our panel, of which six were initially refractory to at least three of the combined phages. Fifteen successive passages permitted to significantly improve the lytic activity of the cocktail, from which phages with extended host ranges within the E. faecium species could be isolated. A single evolved phage able to kill up to 10 of the 14 initial E. faecium strains was obtained, and it barely infected nearby species. All evolved phages had acquired point mutations or a recombination event in the tail fiber genetic region, suggesting these genes might have driven phage evolution by contributing to their extended host spectra.


Asunto(s)
Bacteriófagos , Enterococcus faecium , Especificidad del Huésped , Enterococos Resistentes a la Vancomicina , Enterococcus faecium/efectos de los fármacos , Bacteriófagos/genética , Enterococos Resistentes a la Vancomicina/efectos de los fármacos , Terapia de Fagos/métodos , Infecciones por Bacterias Grampositivas/microbiología , Resistencia a la Vancomicina , Vancomicina/farmacología , Humanos , Antibacterianos/farmacología
13.
Antimicrob Agents Chemother ; 68(5): e0171623, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38506550

RESUMEN

Outbreaks caused by vancomycin-resistant enterococci that transcend jurisdictional boundaries are occurring worldwide. This study focused on a vancomycin-resistant enterococcus outbreak that occurred between 2018 and 2021 across two cities in Hiroshima, Japan. The study involved genetic and phylogenetic analyses using whole-genome sequencing of 103 isolates of vancomycin-resistant enterococci to identify the source and transmission routes of the outbreak. Phylogenetic analysis was performed using core genome multilocus sequence typing and core single-nucleotide polymorphisms; infection routes between hospitals were inferred using BadTrIP. The outbreak was caused by Enterococcus faecium sequence type (ST) 80 carrying the vanA plasmid, which was derived from strain A10290 isolated in India. Of the 103 isolates, 93 were E. faecium ST80 transmitted across hospitals. The circular vanA plasmid of the Hiroshima isolates was similar to the vanA plasmid of strain A10290 and transferred from E. faecium ST80 to other STs of E. faecium and other Enterococcus species by conjugation. The inferred transmission routes across hospitals suggest the existence of a central hospital serving as a hub, propagating vancomycin-resistant enterococci to multiple hospitals. Our study highlights the importance of early intervention at the key central hospital to prevent the spread of the infection to small medical facilities, such as nursing homes, with limited medical resources and a high number of vulnerable individuals.


Asunto(s)
Brotes de Enfermedades , Enterococcus faecium , Infecciones por Bacterias Grampositivas , Tipificación de Secuencias Multilocus , Filogenia , Plásmidos , Enterococos Resistentes a la Vancomicina , Secuenciación Completa del Genoma , Enterococcus faecium/genética , Enterococcus faecium/efectos de los fármacos , Enterococcus faecium/aislamiento & purificación , Japón/epidemiología , Humanos , Enterococos Resistentes a la Vancomicina/genética , Enterococos Resistentes a la Vancomicina/efectos de los fármacos , Enterococos Resistentes a la Vancomicina/aislamiento & purificación , Plásmidos/genética , Infecciones por Bacterias Grampositivas/transmisión , Infecciones por Bacterias Grampositivas/microbiología , Infecciones por Bacterias Grampositivas/epidemiología , Infección Hospitalaria/microbiología , Infección Hospitalaria/transmisión , Infección Hospitalaria/epidemiología , Proteínas Bacterianas/genética , Antibacterianos/farmacología , Ligasas de Carbono-Oxígeno/genética , Pruebas de Sensibilidad Microbiana , Polimorfismo de Nucleótido Simple , Hospitales , Vancomicina/farmacología , Genoma Bacteriano/genética
14.
Antimicrob Agents Chemother ; : e0033524, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38690894

RESUMEN

Infections caused by methicillin-resistant Staphylococcus aureus (MRSA) are a leading cause of mortality worldwide. MRSA has acquired resistance to next-generation ß-lactam antibiotics through the horizontal acquisition of the mecA resistance gene. Development of high resistance is, however, often associated with additional mutations in a set of chromosomal core genes, known as potentiators, which, through poorly described mechanisms, enhance resistance. The yjbH gene was recently identified as a hot spot for adaptive mutations during severe infections. Here, we show that inactivation of yjbH increased ß-lactam MICs up to 16-fold and transformed MRSA cells with low levels of resistance to being homogenously highly resistant to ß-lactams. The yjbH gene encodes an adaptor protein that targets the transcriptional stress regulator Spx for degradation by the ClpXP protease. Using CRISPR interference (CRISPRi) to knock down spx transcription, we unambiguously linked hyper-resistance to the accumulation of Spx. Spx was previously proposed to be essential; however, our data suggest that Spx is dispensable for growth at 37°C but becomes essential in the presence of antibiotics with various targets. On the other hand, high Spx levels bypassed the role of PBP4 in ß-lactam resistance and broadly decreased MRSA susceptibility to compounds targeting the cell wall or the cell membrane, including vancomycin, daptomycin, and nisin. Strikingly, Spx potentiated resistance independently of its redox-sensing switch. Collectively, our study identifies a general stress pathway that, in addition to promoting the development of high-level, broad-spectrum ß-lactam resistance, also decreases MRSA susceptibility to critical antibiotics of last resort.

15.
Antimicrob Agents Chemother ; 68(5): e0108523, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38606975

RESUMEN

Piperacillin-tazobactam (TZP), cefepime (FEP), or meropenem (MEM) and vancomycin (VAN) are commonly used in combination for sepsis. Studies have shown an increased risk of acute kidney injury (AKI) with TZP and VAN compared to FEP or MEM. VAN guidelines recommend area under the curve (AUC) monitoring over trough (Tr) to minimize the risk of AKI. We investigated the association of AKI and MAKE-30 with the two VAN monitoring strategies when used in combination with TZP or FEP/MEM. Adult patients between 2015 and 2019 with VAN > 72 hours were included. Patients with AKI prior to or within 48 hours of VAN or baseline CrCl of ≤30 mL/min were excluded. Four cohorts were defined: FEP/MEM/Tr, FEP/MEM/AUC, TZP/Tr, and TZP/AUC. A Cox Proportional Hazard Model was used to model AKI as a function of the incidence rate of at-risk days, testing monitoring strategy as a treatment effect modification. Multivariable logistic regression was used to model MAKE-30. Overall incidence of AKI was 18.6%; FEP/MEM/Tr = 115 (14.6%), FEP/MEM/AUC = 52 (14.9%), TZP/Tr = 189 (26%), and TZP/AUC = 96 (17.1%) (P < 0.001). Both drug group [(TZP; P = 0.0085)] and monitoring strategy [(Tr; P = 0.0007)] were highly associated with the development of AKI; however, the effect was not modified with interaction term [(TZP*Tr); 0.085)]. The odds of developing MAKE-30 were not different between any group and FEP/MEM/AUC. The effect of VAN/TZP on the development of AKI was not modified by the VAN monitoring strategy (AUC vs trough). MAKE-30 outcomes were not different among the four cohorts.


Asunto(s)
Lesión Renal Aguda , Antibacterianos , Cefepima , Meropenem , Combinación Piperacilina y Tazobactam , Vancomicina , Humanos , Vancomicina/efectos adversos , Vancomicina/administración & dosificación , Vancomicina/uso terapéutico , Meropenem/administración & dosificación , Meropenem/uso terapéutico , Meropenem/efectos adversos , Lesión Renal Aguda/inducido químicamente , Cefepima/administración & dosificación , Cefepima/uso terapéutico , Cefepima/efectos adversos , Combinación Piperacilina y Tazobactam/efectos adversos , Combinación Piperacilina y Tazobactam/administración & dosificación , Combinación Piperacilina y Tazobactam/uso terapéutico , Masculino , Antibacterianos/administración & dosificación , Antibacterianos/efectos adversos , Femenino , Persona de Mediana Edad , Anciano , Área Bajo la Curva , Quimioterapia Combinada , Estudios Retrospectivos , Sepsis/tratamiento farmacológico
16.
Antimicrob Agents Chemother ; 68(1): e0099223, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38059634

RESUMEN

Vancomycin is the first-line agent to treat pulmonary infections caused by methicillin-resistant Staphylococcus aureus (MRSA) in people with cystic fibrosis (PwCF). However, there is no consensus on vancomycin initial dosing in this population among health institutions, and there is a large variability in initial dosing across the United States. In this study, we characterized the pharmacokinetics (PK) of vancomycin in PwCF using a population PK approach. The clinical PK data to develop the population PK model were obtained from vancomycin therapeutic monitoring data from PwCF undergoing treatment for infections due to MRSA. The population PK model was then used to perform comprehensive Monte Carlo simulations to evaluate the probability of target attainment (PTA) of 12 different initial dosing scenarios. The area under the curve to minimum inhibitory concentration (MIC) ratio ≥400 mg*h/L and <650 mg*h/L were used as efficacy and toxicity targets for PTA analysis. A total of 181 vancomycin plasma concentrations were included in the analysis. A one-compartment model with first-order elimination best described the data. Weight significantly influenced the vancomycin PK (P < 0.05). In the final model, clearance was estimated as 5.52 L/h/70 kg, and the volume of distribution was 31.5 L/70 kg. The PTA analysis showed that at MIC = 1 µg/mL, doses 1,500 q8h and 2,000 q12h showed the highest %PTA in achieving both efficacy and toxicity targets. The PTA results from this study may potentially inform the initial dosing regimens of vancomycin to treat pulmonary infections due to MRSA in PwCF.


Asunto(s)
Fibrosis Quística , Staphylococcus aureus Resistente a Meticilina , Adulto , Humanos , Vancomicina/farmacología , Antibacterianos/farmacología , Fibrosis Quística/tratamiento farmacológico , Pruebas de Sensibilidad Microbiana , Método de Montecarlo
17.
BMC Biotechnol ; 24(1): 47, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38978013

RESUMEN

The threat of methicillin-resistant Staphylococcus aureus (MRSA) is increasing worldwide, making it significantly necessary to discover a novel way of dealing with related infections. The quick spread of MRSA isolates among infected individuals has heightened public health concerns and significantly limited treatment options. Vancomycin (VAN) can be applied to treat severe MRSA infections, and the indiscriminate administration of this antimicrobial agent has caused several concerns in medical settings. Owing to several advantageous characteristics, a niosomal drug delivery system may increase the potential of loaded antimicrobial agents. This work aims to examine the antibacterial and anti-biofilm properties of VAN-niosome against MRSA clinical isolates with emphasis on cytotoxicity and stability studies. Furthermore, we aim to suggest an effective approach against MRSA infections by investigating the inhibitory effect of formulated niosome on the expression of the biofilm-associated gene (icaR). The thin-film hydration approach was used to prepare the niosome (Tween 60, Span 60, and cholesterol), and field emission scanning electron microscopy (FE-SEM), an in vitro drug release, dynamic light scattering (DLS), and entrapment efficiency (EE%) were used to investigate the physicochemical properties. The physical stability of VAN-niosome, including hydrodynamic size, polydispersity index (PDI), and EE%, was analyzed for a 30-day storage time at 4 °C and 25 °C. In addition, the human foreskin fibroblast (HFF) cell line was used to evaluate the cytotoxic effect of synthesized niosome. Moreover, minimum inhibitory and bactericidal concentrations (MICs/MBCs) were applied to assess the antibacterial properties of niosomal VAN formulation. Also, the antibiofilm potential of VAN-niosome was investigated by microtiter plate (MTP) and real-time PCR methods. The FE-SEM result revealed that synthesized VAN-niosome had a spherical morphology. The hydrodynamic size and PDI of VAN-niosome reported by the DLS method were 201.2 nm and 0.301, respectively. Also, the surface zeta charge of the prepared niosome was - 35.4 mV, and the EE% ranged between 58.9 and 62.5%. Moreover, in vitro release study revealed a sustained-release profile for synthesized niosomal formulation. Our study showed that VAN-niosome had acceptable stability during a 30-day storage time. Additionally, the VAN-niosome had stronger antibacterial and anti-biofilm properties against MRSA clinical isolates compared with free VAN. In conclusion, the result of our study demonstrated that niosomal VAN could be promising as a successful drug delivery system due to sustained drug release, negligible toxicity, and high encapsulation capacity. Also, the antibacterial and anti-biofilm studies showed the high capacity of VAN-niosome against MRSA clinical isolates. Furthermore, the results of real-time PCR exhibited that VAN-niosome could be proposed as a powerful strategy against MRSA biofilm via down-regulation of icaR gene expression.


Asunto(s)
Antibacterianos , Biopelículas , Sistemas de Liberación de Medicamentos , Liposomas , Staphylococcus aureus Resistente a Meticilina , Vancomicina , Biopelículas/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/fisiología , Vancomicina/farmacología , Vancomicina/química , Antibacterianos/farmacología , Antibacterianos/química , Liposomas/química , Humanos , Pruebas de Sensibilidad Microbiana , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/microbiología , Liberación de Fármacos
18.
J Virol ; 97(7): e0065623, 2023 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-37338411

RESUMEN

Mounting evidence suggests that gut microbial composition and its metabolites, including short-chain fatty acids (SCFAs), have beneficial effects in regulating host immunogenicity to vaccines. However, it remains unknown whether and how SCFAs improve the immunogenicity of the rabies vaccine. In this study, we investigated the effect of SCFAs on the immune response to rabies vaccine in vancomycin (Vanco)-treated mice and found that oral gavage with butyrate-producing bacteria (C. butyricum) and butyrate supplementation elevated RABV-specific IgM, IgG, and virus-neutralizing antibodies (VNAs) in Vanco-treated mice. Supplementation with butyrate expanded antigen-specific CD4+ T cells and IFN-γ-secreting cells, augmented germinal center (GC) B cell recruitment, promoted plasma cells (PCs) and RABV-specific antibody-secreting cells (ASCs) generation in Vanco-treated mice. Mechanistically, butyrate enhanced mitochondrial function and activated the Akt-mTOR pathway in primary B cells isolated from Vanco-treated mice, ultimately promoting B lymphocyte-induced maturation protein-1 (Blimp-1) expression and CD138+ PCs generation. These results highlight the important role of butyrate in alleviating Vanco-caused humoral immunity attenuation in rabies-vaccinated mice and maintaining host immune homeostasis. IMPORTANCE The gut microbiome plays many crucial roles in the maintenance of immune homeostasis. Alteration of the gut microbiome and metabolites has been shown to impact vaccine efficacy. SCFAs can act as an energy source for B-cells, thereby promoting both mucosal and systemic immunity in the host by inhibiting HDACs and activation of GPR receptors. This study investigates the impact of orally administered butyrate, an SCFA, on the immunogenicity of rabies vaccines in Vanco-treated mice. The results showed that butyrate ameliorated humoral immunity by facilitating the generation of plasma cells via the Akt-mTOR in Vanco-treated mice. These findings unveil the impact of SCFAs on the immune response of the rabies vaccine and confirm the crucial role of butyrate in regulating immunogenicity to rabies vaccines in antibiotic-treated mice. This study provides a fresh insight into the relationship of microbial metabolites and rabies vaccination.


Asunto(s)
Vacunas Antirrábicas , Rabia , Ratones , Animales , Rabia/prevención & control , Células Plasmáticas , Inmunidad Humoral , Vancomicina/farmacología , Proteínas Proto-Oncogénicas c-akt , Anticuerpos Antivirales , Serina-Treonina Quinasas TOR , Ácidos Grasos Volátiles , Butiratos
19.
Clin Exp Allergy ; 54(1): 21-33, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38177093

RESUMEN

BACKGROUND: Vancomycin, a glycopeptide antibiotic used for Gram-positive bacterial infections, has been linked with drug reaction with eosinophilia and systemic symptoms (DRESS) in HLA-A*32:01-expressing individuals. This is associated with activation of T lymphocytes, for which glycolysis has been isolated as a fuel pathway following antigenic stimulation. However, the metabolic processes that underpin drug-reactive T-cell activation are currently undefined and may shed light on the energetic conditions needed for the elicitation of drug hypersensitivity or tolerogenic pathways. Here, we sought to characterise the immunological and metabolic pathways involved in drug-specific T-cell activation within the context of DRESS pathogenesis using vancomycin as model compound and drug-reactive T-cell clones (TCCs) generated from healthy donors and vancomycin-hypersensitive patients. METHODS: CD4+ and CD8+ vancomycin-responsive TCCs were generated by serial dilution. The Seahorse XFe96 Analyzer was used to measure the extracellular acidification rate (ECAR) as an indicator of glycolytic function. Additionally, T-cell proliferation and cytokine release (IFN-γ) assay were utilised to correlate the bioenergetic characteristics of T-cell activation with in vitro assays. RESULTS: Model T-cell stimulants induced non-specific T-cell activation, characterised by immediate augmentation of ECAR and rate of ATP production (JATPglyc). There was a dose-dependent and drug-specific glycolytic shift when vancomycin-reactive TCCs were exposed to the drug. Vancomycin-reactive TCCs did not exhibit T-cell cross-reactivity with structurally similar compounds within proliferative and cytokine readouts. However, cross-reactivity was observed when analysing energetic responses; TCCs with prior specificity for vancomycin were also found to exhibit glycolytic switching after exposure to teicoplanin. Glycolytic activation of TCC was HLA restricted, as exposure to HLA blockade attenuated the glycolytic induction. CONCLUSION: These studies describe the glycolytic shift of CD4+ and CD8+ T cells following vancomycin exposure. Since similar glycolytic switching is observed with teicoplanin, which did not activate T cells, it is possible the master switch for T-cell activation is located upstream of metabolic signalling.


Asunto(s)
Teicoplanina , Vancomicina , Humanos , Vancomicina/efectos adversos , Linfocitos T CD8-positivos , Activación de Linfocitos , Citocinas , Glucólisis
20.
Int J Med Microbiol ; 315: 151624, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38838390

RESUMEN

Staphylococcus aureus is a notorious pathogen responsible for various severe diseases. Due to the emergence of drug-resistant strains, the prevention and treatment of S. aureus infections have become increasingly challenging. Vancomycin is considered to be one of the last-resort drugs for treating most methicillin-resistant S. aureus (MRSA), so it is of great significance to further reveal the mechanism of vancomycin resistance. VraFG is one of the few important ABC (ATP-binding cassette) transporters in S. aureus that can form TCS (two-component systems)/ABC transporter modules. ABC transporters can couple the energy released from ATP hydrolysis to translocate solutes across the cell membrane. In this study, we obtained a strain with decreased vancomycin susceptibility after serial passaging and selection. Subsequently, whole-genome sequencing was performed on this laboratory-derived strain MWA2 and a novel single point mutation was discovered in vraF gene, leading to decreased sensitivity to vancomycin and daptomycin. Furthermore, the mutation reduces autolysis of S. aureus and downregulates the expression of lytM, isaA, and atlA. Additionally, we observed that the mutant has a less net negative surface charge than wild-type strain. We also noted an increase in the expression of the dlt operon and mprF gene, which are associated with cell surface charge and serve to hinder the binding of cationic peptides by promoting electrostatic repulsion. Moreover, this mutation has been shown to enhance hemolytic activity, expand subcutaneous abscesses, reflecting an increased virulence. This study confirms the impact of a point mutation of VraF on S. aureus antibiotic resistance and virulence, contributing to a broader understanding of ABC transporter function and providing new targets for treating S. aureus infections.


Asunto(s)
Transportadoras de Casetes de Unión a ATP , Antibacterianos , Proteínas Bacterianas , Infecciones Estafilocócicas , Staphylococcus aureus , Vancomicina , Virulencia/genética , Infecciones Estafilocócicas/microbiología , Antibacterianos/farmacología , Vancomicina/farmacología , Animales , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Staphylococcus aureus/genética , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/patogenicidad , Staphylococcus aureus/metabolismo , Pruebas de Sensibilidad Microbiana , Resistencia a la Vancomicina/genética , Secuenciación Completa del Genoma , Daptomicina/farmacología , Ratones , Autólisis , Humanos , Mutación Puntual , Mutación , Femenino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA