Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Genet Epidemiol ; 45(4): 402-412, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33604919

RESUMEN

Advances in high-throughput biotechnologies have culminated in a wide range of omics (such as genomics, epigenomics, transcriptomics, metabolomics, and metagenomics) studies, and increasing evidence in these studies indicates that the biological architecture of complex traits involves a large number of omics variants each with minor effects but collectively accounting for the full phenotypic variability. Thus, a major challenge in many "ome-wide" association analyses is to achieve adequate statistical power to identify multiple variants of small effect sizes, which is notoriously difficult for studies with relatively small-sample sizes. A small-sample adjustment incorporated in the kernel machine regression framework was proposed to solve this for association studies under various settings. However, such an adjustment in the generalized linear mixed model (GLMM) framework, which accounts for both sample relatedness and non-Gaussian outcomes, has not yet been attempted. In this study, we fill this gap by extending small-sample adjustment in kernel machine association test to GLMM. We propose a new Variant-Set Association Test (VSAT), a powerful and efficient analysis tool in GLMM, to examine the association between a set of omics variants and correlated phenotypes. The usefulness of VSAT is demonstrated using both numerical simulation studies and applications to data collected from multiple association studies. The software for implementing the proposed method in R is available at https://www.github.com/jchen1981/SSKAT.


Asunto(s)
Genómica , Modelos Genéticos , Simulación por Computador , Humanos , Modelos Lineales , Tamaño de la Muestra
2.
Am J Hum Genet ; 104(2): 260-274, 2019 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-30639324

RESUMEN

With advances in whole-genome sequencing (WGS) technology, more advanced statistical methods for testing genetic association with rare variants are being developed. Methods in which variants are grouped for analysis are also known as variant-set, gene-based, and aggregate unit tests. The burden test and sequence kernel association test (SKAT) are two widely used variant-set tests, which were originally developed for samples of unrelated individuals and later have been extended to family data with known pedigree structures. However, computationally efficient and powerful variant-set tests are needed to make analyses tractable in large-scale WGS studies with complex study samples. In this paper, we propose the variant-set mixed model association tests (SMMAT) for continuous and binary traits using the generalized linear mixed model framework. These tests can be applied to large-scale WGS studies involving samples with population structure and relatedness, such as in the National Heart, Lung, and Blood Institute's Trans-Omics for Precision Medicine (TOPMed) program. SMMATs share the same null model for different variant sets, and a virtue of this null model, which includes covariates only, is that it needs to be fit only once for all tests in each genome-wide analysis. Simulation studies show that all the proposed SMMATs correctly control type I error rates for both continuous and binary traits in the presence of population structure and relatedness. We also illustrate our tests in a real data example of analysis of plasma fibrinogen levels in the TOPMed program (n = 23,763), using the Analysis Commons, a cloud-based computing platform.


Asunto(s)
Estudios de Asociación Genética , Modelos Genéticos , Secuenciación Completa del Genoma , Cromosomas Humanos Par 4/genética , Nube Computacional , Femenino , Fibrinógeno/análisis , Fibrinógeno/genética , Genética de Población , Humanos , Masculino , National Heart, Lung, and Blood Institute (U.S.) , Medicina de Precisión , Proyectos de Investigación , Factores de Tiempo , Estados Unidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA