RESUMEN
Compared to γ-addition, the α-addition of α-branched ß,γ-unsaturated aldehydes faces larger steric hindrance and disrupts the π-π conjugation, which might be why very few examples are reported. In this article, a highly diastereo- and enantioselective α-regioselective Mannich reaction of isatin-derived ketimines with α-, ß- or γ-branched ß,γ-unsaturated aldehydes, generated in situ from Meinwald rearrangement of vinyl epoxides, is realized by using chiral N,N'-dioxide/ScIII catalysts. A series of chiral α-quaternary allyl aldehydes and homoallylic alcohols with vicinal multisubstituted stereocenters are constructed in excellent yields, good d.r. and excellent ee values. Experimental studies and DFT (density functional theory) calculations reveal that the large steric hindrance of the ligand and the Boc (tButyloxy carbonyl) protecting group of imines are critical factors for the α-regioselectivity.
RESUMEN
The asymmetric synthesis of 2,2-difluorinated tetrahydrofurans was accomplished via enantioselective formal [3+2] cycloaddition catalyzed by palladium. The asymmetric reaction between gem-difluoroalkenes and racemic vinyl epoxides or vinylethylene carbonates resulted in the formation of enantioenriched 2,2-difluorotetrahydrofurans with an enantioselectivity up to 98 %. Notably, the reaction used the readily available (R)-BINAP as the ligand at a low loading and yielded a wide variety of difluorinated products in moderate to high yields. Both chiral diastereomers could be obtained in a single sequence.
RESUMEN
A study of the stereochemical control on the asymmetric dihydroxylation of the double bond of optically active vinyl epoxides and their derivatives (bromo derivatives, azido derivatives, and vinyl aziridines) was carried out and the obtained results are herein reported. The most interesting results were obtained on trans α,ß-unsaturated epoxy esters, which were successfully converted with a diastereomeric ratio >80% into the corresponding diols using either the matched or the mismatched conditions, depending on the ligand used. Unprotected bromo derivatives and unprotected aziridines did not afford significant results, while for the protected bromo derivatives, azido derivatives, and N-Boc protected aziridines the matched conditions led to a diastereomeric ratio >95%. Chirality 28:387-393, 2016. © 2016 Wiley Periodicals, Inc.
RESUMEN
Chitosan (Cs) being a natural biopolymer serves as an excellent template to construct active packaging materials for achieving sustainable development. In this study, Cs was chemically modified via epoxide ring opening click reaction using vinyl epoxide to obtain a novel chitosan vinyl epoxide (Cs-VE) derivative with hydroxyl and olefinic functional groups. The Cs-VE transparent film was fabricated through the eco-friendly solution casting technique. A meticulous investigation into the chemical structure and physicochemical properties of the synthesized films was conducted using FT-IR, 1H NMR and XRD analyses. The thermal stability and homogeneity of the film were verified by thermogram and FE-SEM images respectively. Improved mechanical properties (tensile strength of 24.64â¯MPa and 12.08â¯% elongation at break) and excellent UV-light blocking ability (9.3â¯% transmittance at 350â¯nm and 22.15â¯% transparency at 600â¯nm) were observed. Also, important parameters such as water vapor permeability (WVP), swelling degree, water solubility and UV-barrier properties were found to be adequate for food packaging application. Similarly, enhanced antioxidant activity with 27.2â¯% and 73.6â¯% radical scavenging against DPPH and ABTS radicals respectively was observed for the synthesized Cs-VE film. The film showed antimicrobial activity against both bacteria and fungi. These results along with food packaging studies on Grewia asiatica fruit established the developed Cs-VE film as a suitable candidate for active food packaging application.