Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
J Virol ; 98(2): e0159423, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38289101

RESUMEN

The human immunodeficiency virus (HIV-1) envelope (Env) glycoprotein precursor (gp160) trimerizes, is modified by high-mannose glycans in the endoplasmic reticulum, and is transported via Golgi and non-Golgi secretory pathways to the infected cell surface. In the Golgi, gp160 is partially modified by complex carbohydrates and proteolytically cleaved to produce the mature functional Env trimer, which is preferentially incorporated into virions. Broadly neutralizing antibodies (bNAbs) generally recognize the cleaved Env trimer, whereas poorly neutralizing antibodies (pNAbs) bind the conformationally flexible gp160. We found that expression of bNAbs, pNAbs, or soluble/membrane forms of the receptor, CD4, in cells producing HIV-1 all decreased viral infectivity. Four patterns of co-expressed ligand:Env were observed: (i) ligands (CD4, soluble CD4-Ig, and some pNAbs) that specifically recognize the CD4-bound Env conformation resulted in uncleaved Envs lacking complex glycans that were not incorporated into virions; (ii) other pNAbs produced Envs with some complex carbohydrates and severe defects in cleavage, which were relieved by brefeldin A treatment; (iii) bNAbs that recognize gp160 as well as mature Envs resulted in Envs with some complex carbohydrates and moderate decreases in virion Env cleavage; and (iv) bNAbs that preferentially recognize mature Envs produced cleaved Envs with complex glycans in cells and on virions. The low infectivity observed upon co-expression of pNAbs or CD4 could be explained by disruption of Env trafficking, reducing the level of Env and/or increasing the fraction of uncleaved Env on virions. In addition to bNAb effects on virion Env cleavage, the secreted bNAbs neutralized the co-expressed viruses.IMPORTANCEThe Env trimers on the HIV-1 mediate virus entry into host cells. Env is synthesized in infected cells, modified by complex sugars, and cleaved to form a mature, functional Env, which is incorporated into virus particles. Env elicits antibodies in infected individuals, some of which can neutralize the virus. We found that antibodies co-expressed in the virus-producing cell can disrupt Env transit to the proper compartment for cleavage and sugar modification and, in some cases, block incorporation into viruses. These studies provide insights into the processes by which Env becomes functional in the virus-producing cell and may assist attempts to interfere with these events to inhibit HIV-1 infection.


Asunto(s)
Anticuerpos ampliamente neutralizantes , Infecciones por VIH , VIH-1 , Productos del Gen env del Virus de la Inmunodeficiencia Humana , Humanos , Anticuerpos Neutralizantes , Carbohidratos , Productos del Gen env del Virus de la Inmunodeficiencia Humana/metabolismo , Anticuerpos Anti-VIH , Proteína gp120 de Envoltorio del VIH/metabolismo , Infecciones por VIH/metabolismo , VIH-1/fisiología , Polisacáridos/metabolismo
2.
Mol Biol Rep ; 50(2): 1677-1686, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36402937

RESUMEN

Viruses are extremely complex and highly evolving microorganisms; thus, it is difficult to analyse them in detail. The virion is believed to contain all the essential components required from its entry to the establishment of a successful infection in a susceptible host cell. Hence, the virion composition is the principal source for its transmissibility and immunogenicity. A virus is completely dependent on a host cell for its replication and progeny production. Occasionally, they recruit and package host proteins into mature virion. These incorporated host proteins are believed to play crucial roles in the subsequent infection, although the significance and the molecular mechanism regulated are poorly understood. One such host protein which is hijacked by several viruses is the glycolytic enzyme, Enolase (Eno-1) and is also packaged into mature virion of several viruses. This enzyme exhibits a highly flexible nature of functions, ranging from metabolic to several non-metabolic activities. All the glycolytic enzymes are known to be moonlighting proteins including enolase. The non-metabolic functions of this moonlighting protein are also highly diverse with respect to its cellular localization. Although very little is known about the virological significance of this enzyme, several of its non-metabolic functions have been observed to influence the virus replication cycle in infected cells. In this review, we have attempted to provide a comprehensive picture of the non-metabolic role of Eno-1, its significance in the virus replication cycle and to stimulate interest around its scope as a therapeutic target for treating viral pathologies.


Asunto(s)
Replicación Viral , Virus , Virión , Fosfopiruvato Hidratasa/genética , Fosfopiruvato Hidratasa/metabolismo
3.
J Virol ; 95(3)2021 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-33148792

RESUMEN

The human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env) trimer is transported through the secretory pathway to the infected cell surface and onto virion particles. In the Golgi, the gp160 Env precursor is modified by complex sugars and proteolytically cleaved to produce the mature functional Env trimer, which resists antibody neutralization. We observed mostly uncleaved gp160 and smaller amounts of cleaved gp120 and gp41 Envs on the surface of HIV-1-infected or Env-expressing cells; however, cleaved Envs were relatively enriched in virions and virus-like particles (VLPs). This relative enrichment of cleaved Env in VLPs was observed for wild-type Envs, for Envs lacking the cytoplasmic tail, and for CD4-independent, conformationally flexible Envs. On the cell surface, we identified three distinct populations of Envs: (i) the cleaved Env was transported through the Golgi, was modified by complex glycans, formed trimers that cross-linked efficiently, and was recognized by broadly neutralizing antibodies; (ii) a small fraction of Env modified by complex carbohydrates escaped cleavage in the Golgi; and (iii) the larger population of uncleaved Env lacked complex carbohydrates, cross-linked into diverse oligomeric forms, and was recognized by poorly neutralizing antibodies. This last group of more "open" Env oligomers reached the cell surface in the presence of brefeldin A, apparently bypassing the Golgi apparatus. Relative to Envs transported through the Golgi, these uncleaved Envs were counterselected for virion incorporation. By employing two pathways for Env transport to the surface of infected cells, HIV-1 can misdirect host antibody responses toward conformationally flexible, uncleaved Env without compromising virus infectivity.IMPORTANCE The envelope glycoprotein (Env) trimers on the surface of human immunodeficiency virus type 1 (HIV-1) mediate the entry of the virus into host cells and serve as targets for neutralizing antibodies. The cleaved, functional Env is incorporated into virus particles from the surface of the infected cell. We found that an uncleaved form of Env is transported to the cell surface by an unconventional route, but this nonfunctional Env is mostly excluded from the virus. Thus, only one of the pathways by which Env is transported to the surface of infected cells results in efficient incorporation into virus particles, potentially allowing the uncleaved Env to act as a decoy to the host immune system without compromising virus infectivity.


Asunto(s)
Anticuerpos Anti-VIH/inmunología , Infecciones por VIH/virología , VIH-1/fisiología , Multimerización de Proteína , Virión/metabolismo , Productos del Gen env del Virus de la Inmunodeficiencia Humana/química , Productos del Gen env del Virus de la Inmunodeficiencia Humana/metabolismo , Células A549 , Infecciones por VIH/inmunología , Infecciones por VIH/metabolismo , Infecciones por VIH/patología , Humanos , Unión Proteica , Conformación Proteica , Transporte de Proteínas , Virión/inmunología
4.
J Virol ; 92(13)2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29669828

RESUMEN

Alphaherpesvirus envelope glycoprotein N (gN) and gM form a covalently linked complex. Bovine herpesvirus type 1 (BHV-1) UL49.5 (a gN homolog) contains two predicted cysteine residues, C42 and C78. The C42 is highly conserved among the alphaherpesvirus gN homologs (e.g., herpes simplex virus 1 and pseudorabies virus). To identify which cysteine residue is required for the formation of the UL49.5/gM complex and to characterize the functional significance of the UL49.5/gM complex, we constructed and analyzed C42S and C78S substitution mutants in either a BHV-1 wild type (wt) or BHV-1 UL49.5 cytoplasmic tail-null (CT-null) virus background. The results demonstrated that BHV-1 UL49.5 residue C42 but not C78 was essential for the formation of the covalently linked functional UL49.5/gM complex, gM maturation in the Golgi compartment, and efficient cell-to-cell spread of the virus. Interestingly, the C42S and CT-null mutations separately did not affect mutant UL49.5 virion incorporation. However, when both of the mutations were introduced simultaneously, the UL49.5 C42S/CT-null protein virion incorporation was severely reduced. Incidentally, the anti-VP22 antibody coimmunoprecipitated the UL49.5 C42S/CT-null mutant protein at a noticeably reduced level compared to that of the individual UL49.5 C42S and CT-null mutant proteins. As expected, in a dual UL49.5 C42S/VP22Δ virus with deletion of VP22 (VP22Δ), the UL49.5 C42S virion incorporation was also severely reduced while in a gMΔ virus, UL49.5 virion incorporation was affected only slightly. Together, these results suggested that UL49.5 virion incorporation is mediated redundantly, by both UL49.5/gM functional complex and VP22, through a putative gM-independent novel UL49.5 and VP22 interaction.IMPORTANCE Bovine herpesvirus 1 (BHV-1) envelope protein UL49.5 is an important virulence determinant because it downregulates major histocompatibility complex class I (MHC-I). UL49.5 also forms a covalently linked complex with gM. The results of this study demonstrate that UL49.5 regulates gM maturation and virus cell-to-cell spread since gM maturation in the Golgi compartment depends on covalently linked UL49.5/gM complex. The results also show that the UL49.5 residue cysteine 42 (C42) mediates the formation of the covalently linked UL49.5-gM interaction. Furthermore, a C42S mutant virus in which UL49.5 cannot interact with gM has defective cell-to-cell spread. Interestingly, UL49.5 also interacts with the tegument protein VP22 via its cytoplasmic tail (CT). The putative UL49.5 CT-VP22 interaction is essential for a gM-independent UL49.5 virion incorporation and is revealed when UL49.5 and gM are not linked. Therefore, UL49.5 virion incorporation is mediated by UL49.5-gM complex interaction and through a gM-independent interaction between UL49.5 and VP22.


Asunto(s)
Infecciones por Herpesviridae/virología , Herpesvirus Bovino 1/fisiología , Glicoproteínas de Membrana/metabolismo , Proteínas del Envoltorio Viral/metabolismo , Proteínas Virales/metabolismo , Proteínas Estructurales Virales/metabolismo , Virión/fisiología , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Bovinos , Chlorocebus aethiops , Infecciones por Herpesviridae/metabolismo , Homología de Secuencia , Células Vero , Replicación Viral
5.
Viruses ; 13(10)2021 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-34696365

RESUMEN

Nascent HIV-1 particles incorporate the viral envelope glycoprotein and multiple host transmembrane proteins during assembly at the plasma membrane. At least some of these host transmembrane proteins on the surface of virions are reported as pro-viral factors that enhance virus attachment to target cells or facilitate trans-infection of CD4+ T cells via interactions with non-T cells. In addition to the pro-viral factors, anti-viral transmembrane proteins are incorporated into progeny virions. These virion-incorporated transmembrane proteins inhibit HIV-1 entry at the point of attachment and fusion. In infected polarized CD4+ T cells, HIV-1 Gag localizes to a rear-end protrusion known as the uropod. Regardless of cell polarization, Gag colocalizes with and promotes the virion incorporation of a subset of uropod-directed host transmembrane proteins, including CD162, CD43, and CD44. Until recently, the functions of these virion-incorporated proteins had not been clear. Here, we review the recent findings about the roles played by virion-incorporated CD162, CD43, and CD44 in HIV-1 spread to CD4+ T cells.


Asunto(s)
Infecciones por VIH/metabolismo , Receptores de Hialuranos/metabolismo , Leucosialina/metabolismo , Glicoproteínas de Membrana/metabolismo , Membrana Celular/metabolismo , Infecciones por VIH/genética , VIH-1/genética , VIH-1/metabolismo , VIH-1/patogenicidad , Interacciones Huésped-Patógeno , Humanos , Receptores de Hialuranos/genética , Leucosialina/genética , Glicoproteínas de Membrana/genética , Proteínas de la Membrana/metabolismo , Linfocitos T/metabolismo , Linfocitos T/virología , Virión/metabolismo , Ensamble de Virus , Acoplamiento Viral , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/metabolismo
6.
Viruses ; 11(12)2019 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-31835517

RESUMEN

Bovine leukemia virus (BLV), which is closely related to human T-cell leukemia viruses, is the causative agent of enzootic bovine leukosis, the most common neoplastic disease of cattle. The transmembrane subunit of the BLV envelope glycoprotein, gp30, contains three completely conserved YXXL sequences that fit an endocytic sorting motif. The two N-terminal YXXL sequences are reportedly critical for viral infection. However, their actual function in the viral life cycle remains undetermined. Here, we identified the novel roles of each YXXL sequence. Syncytia formation ability was upregulated by a single mutation of the tyrosine (Tyr) residue in any of the three YXXL sequences, indicating that each YXXL sequence is independently able to regulate the fusion event. The alteration resulted from significantly high expression of gp51 on the cell surface, thereby decreasing the amount of gp51 in early endosomes and further revealing that the three YXXL sequences are independently required for internalization of the envelope (Env) protein, following transport to the cell surface. Moreover, the 2nd and 3rd YXXL sequences contributed to Env protein incorporation into the virion by functionally distinct mechanisms. Our findings provide new insights regarding the three YXXL sequences toward the BLV viral life cycle and for developing new anti-BLV drugs.


Asunto(s)
Secuencias de Aminoácidos , Membrana Celular/metabolismo , Membrana Celular/virología , Interacciones Huésped-Patógeno , Virus de la Leucemia Bovina/fisiología , Fusión de Membrana , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/metabolismo , Secuencia de Aminoácidos , Animales , Bovinos , Línea Celular , Células Cultivadas , Técnica del Anticuerpo Fluorescente , Expresión Génica , Humanos , Mutación , Transporte de Proteínas , Proteínas del Envoltorio Viral/química , Acoplamiento Viral , Liberación del Virus
7.
Trends Microbiol ; 24(3): 164-166, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26803378

RESUMEN

The human immunodeficiency virus type 1 (HIV-1) envelope (Env) plays a critical role in viral replication and represents a potential target for host antiviral factors. Recent work by Tada and colleagues identifies membrane-associated-RING-CH8 (MARCH8) as a potent anti-HIV factor blocking virion incorporation of Env. Thus, MARCH8 joins a growing list of host factors attacking HIV-1 Env.


Asunto(s)
Infecciones por VIH/metabolismo , VIH-1/fisiología , Glicoproteínas de Membrana/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas del Envoltorio Viral/metabolismo , Virión/metabolismo , Productos del Gen env del Virus de la Inmunodeficiencia Humana/metabolismo , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA