Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 378
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Crit Rev Food Sci Nutr ; : 1-15, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38961829

RESUMEN

During the application of Whey proteins (WPs), they often have complex interactions with saccharides (Ss), another important biopolymer in food substrate. The texture and sensory qualities of foods containing WPs and Ss are largely influenced by the interactions of WPs-Ss. Moreover, the combination of WPs and Ss is possible to produce many excellent functional properties including emulsifying properties and thermal stability. However, the interactions between WPs-Ss are complex and susceptible to some processing conditions. In addition, with different interaction ways, they can be applied in different fields. Therefore, the non-covalent interaction mechanisms between WPs-Ss are firstly summarized in detail, including electrostatic interaction, hydrogen bond, hydrophobic interaction, van der Waals force. Furthermore, the existence modes of WPs-Ss are introduced, including complex coacervates, soluble complexes, segregation, and co-solubility. The covalent interactions of WPs-Ss in food applications are often formed by Maillard reaction (dry or wet heat reaction) and occasionally through enzyme induction. Then, two common influencing factors, pH and temperature, on non-covalent/covalent bonds are introduced. Finally, the applications of WPs-Ss complexes and conjugations in improving WP stability, delivery system, and emulsification are described. This review can improve our understanding of the interactions between WPs-Ss and further promote their wider application.

2.
J Dairy Sci ; 107(9): 6629-6642, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38788845

RESUMEN

Residual lipids (RL) in whey protein isolate (WPI) are detrimental to optimal functional applications (e.g., foaming and low turbidity) and contribute to off-flavor development during powder storage. The objective of this research was to prepare an experimental WPI by removing RL without using the traditional microfiltration process and compare its properties with commercially available WPI made using microfiltration and some other whey powders. We hypothesize that by adjusting the pH of whey to <5.0, we would be close to the isoelectric point of any remaining denatured proteins (DP) and phospholipoproteins (PLP), and therefore reduce electrostatic repulsion between these molecules. Furthermore, demineralization of the acidified whey protein solution by UF combined with diafiltration (DF) should reduce ionic hindrance to aggregation and thereby help with the aggregation of these DP as well as most RL; centrifugation or clarification could be used to remove these materials. Calcium should also be more extensively removed by this approach, which should improve the heat stability of the experimental WPI. Demineralization was achieved on a pilot scale by acidifying liquid (cheese) whey protein concentrate containing 34% protein (WPC-34) to pH 4.5 using HCl, and UF of the whey protein solution along with extensive DF using acidified (pH ∼3.5) reverse osmosis filtered water. Demineralized whey protein solution was adjusted to various combinations of pH (4.1-4.9), conductivities (500-2,000 µS/cm), and protein concentrations (1%-7%) and then centrifuged at 10,000 × g for 10 min. The effective sedimentation (precipitation) of RL in these treatments was estimated by measuring the turbidity of the supernatants. Maximum precipitation was observed at pH 4.5 to 4.7. Reducing conductivity via UF/DF increased the precipitation of RL due to reduced ionic hindrance to aggregation. Maximum sedimentation of RL was observed at protein concentrations ≤3% because of a higher density difference between the precipitate and serum phase. Analysis by sodium dodecyl sulfate polyacrylamide gel electrophoresis analysis confirmed the sedimentation of phospholipoproteins, caseins, and DP upon isoelectric precipitation at pH ∼4.5, while native whey proteins or undenatured whey proteins remained soluble in the supernatant, unaffected by the pretreatment. To scale up the process, 750 L of fluid WPC-34 was acidified and demineralized by UF (volume concentration factor = 1.35) and DF until the permeate solids reached 0.1% (when desired demineralization was achieved), clarified using a pilot-scale desludging clarifier to remove RL, neutralized, ultrafiltered to concentrate the protein, and then spray-dried to produce an experimental WPI (91% protein and 1.8% fat on a dry basis [db]). In another trial, demineralized UF concentrate was clarified by gravity sedimentation and the supernatant was neutralized, ultrafiltered, and spray-dried to produce a second experimental WPI (91% protein and <1% fat db). These experimental WPI powders were compared with several commercially available WPI powders to assess functional properties such as solubility, heat stability, foamability and foam strength, gelation, and sensory attributes over accelerated storage. Experimental WPI had excellent functional properties, had low turbidity, were highly heat stable, and only developed very slight-to-slight off-flavors upon accelerated storage, and their properties were comparable to the WPI manufactured commercially using microfiltration even after accelerated storage.


Asunto(s)
Proteína de Suero de Leche , Proteína de Suero de Leche/química , Proteínas de la Leche/química , Calor , Concentración de Iones de Hidrógeno , Precipitación Química , Animales , Suero Lácteo/química
3.
J Dairy Sci ; 107(7): 4308-4319, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38490543

RESUMEN

The effects of partial or full replacement of margarine by alginate/whey protein isolate-based olive oil emulgel on nutritional, physicochemical, mechanical, and rheological properties of processed cheese (PC) were investigated in this work. All formulated samples had the same amount of total fat, DM, and pH. According to the results of the fatty acids profile, the PC sample in which the margarine was fully replaced by the emulgel (EPC100) had the highest (49.84%) oleic acid content and showed a reduction of 23.7% in SFA compared with the control sample (EPC0; formulated just with margarine). In addition, EPC0 had the highest hardness among various cheese samples, which was also confirmed by its compact microstructure. Dynamic oscillatory measurements revealed that EPC100 had the highest crossover strain (or resistance to deformation). The high rigidity of this sample was related to the 3-dimensional structure of emulgel. According to the creep test results, EPC100 showed the lowest relative recovery (flowability). A high temperature dependency of viscoelastic moduli was observed in EPC0 at 42°C. No significant differences were observed between the color attributes and sensory properties of the various cheese samples. Alginate/whey protein isolate-based olive oil emulgel can be considered as a healthy margarine replacer in PC.


Asunto(s)
Alginatos , Queso , Reología , Proteína de Suero de Leche , Queso/análisis , Margarina/análisis , Animales , Manipulación de Alimentos
4.
Int J Mol Sci ; 25(10)2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38791364

RESUMEN

The use of natural active substances and the development of new formulations are promising directions in the cosmetic and pharmacy industries. The primary purpose of this research was the production of microparticles based on whey protein isolate (WPI) and calcium alginate (ALG) containing Calendula officinalis flower extract and their incorporation into films composed of gelatin, WPI, and glycerol. Both swollen and dry microparticles were studied by optical microscopy and their sizes were measured. Water absorption by the microparticles, their loading capacity, and the release profile of flower extract were also characterized. The films were analyzed by mechanical tests (Young's modulus, tensile strength, elongation at break), swelling capacity, contact angle, and moisture content measurements. The presented data showed that the active ingredient was successfully enclosed in spherical microparticles and completely released after 75 min of incubation at 37 °C. The incorporation of the microparticles into polymer films caused a decrease in stiffness and tensile strength, simultaneously increasing the ductility of the samples. Moreover, the films containing microparticles displayed higher swelling ability and moisture content compared to those without them. Hence, the materials prepared in this study with Calendula officinalis flower extract encapsulated into polymeric microspheres can be a starting point for the development of new products intended for skin application; advantages include protection of the extract against external factors and a controlled release profile.


Asunto(s)
Calendula , Preparaciones de Acción Retardada , Flores , Extractos Vegetales , Resistencia a la Tracción , Proteína de Suero de Leche , Calendula/química , Flores/química , Extractos Vegetales/química , Proteína de Suero de Leche/química , Preparaciones de Acción Retardada/química , Alginatos/química , Gelatina/química , Microesferas
5.
Molecules ; 29(9)2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38731538

RESUMEN

Adenosine, as a water-soluble active substance, has various pharmacological effects. This study proposes a layer-by-layer assembly method of composite wall materials, using hydroxypropyl-ß-cyclodextrin as the inner wall and whey protein isolate as the outer wall, to encapsulate adenosine within the core material, aiming to enhance adenosine microcapsules' stability through intermolecular interactions. By combining isothermal titration calorimetry with molecular modeling analysis, it was determined that the core material and the inner wall and the inner wall and the outer wall interact through intermolecular forces. Adenosine and hydroxypropyl-ß-cyclodextrin form an optimal 1:1 complex through hydrophobic interactions, while hydroxypropyl-ß-cyclodextrin and whey protein isolate interact through hydrogen bonds. The embedding rate of AD/Hp-ß-CD/WPI microcapsules was 36.80%, and the 24 h retention rate under the release behavior test was 76.09%. The method of preparing adenosine microcapsules using composite wall materials is environmentally friendly and shows broad application prospects in storage and delivery systems with sustained release properties.


Asunto(s)
2-Hidroxipropil-beta-Ciclodextrina , Adenosina , Cápsulas , Proteína de Suero de Leche , Proteína de Suero de Leche/química , 2-Hidroxipropil-beta-Ciclodextrina/química , Cápsulas/química , Adenosina/química , Composición de Medicamentos/métodos , Interacciones Hidrofóbicas e Hidrofílicas , Liberación de Fármacos , Modelos Moleculares , Enlace de Hidrógeno , Nanopartículas Capa por Capa
6.
Food Technol Biotechnol ; 62(1): 78-88, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38601957

RESUMEN

Research background: Peanut oil (Arachis hypogaea L.) is a rich source of unsaturated fatty acids. Its consumption has been reported to have biological effects on human health. Unsaturated, especially polyunsaturated fatty acids (PUFA) found in peanut oil are highly susceptible to oxidation, leading to the formation of harmful compounds during processing and storage. The aim of this study is to prevent the oxidation of peanut oil PUFA by encapsulation in a protein-polysaccharide complex using microwave drying. Experimental approach: The combined effect of corn starch (CS) and whey protein isolate (WPI) was evaluated for ultrasound-assisted microwave encapsulation of peanut oil to prevent oxidative degradation. The effect of independent parameters, viz. CS:WPI mass ratio (1:1 to 5:1), lecithin mass fraction (0-5 %), ultrasonication time (0-10 min) and microwave power (150-750 W) on the encapsulation of peanut oil was evaluated using response surface methodology (RSM). The process responses, viz. viscosity and stability of the emulsion, encapsulation efficiency, peroxide value, antioxidant activity, free fatty acids (FFA), moisture, angle of repose and flowability (Hausner ratio (HR) and Carr's Index (CI)) were recorded and analysed to optimize the independent variables. Results and conclusions: The viscosity of all emulsions prepared for encapsulation by ultrasonication ranged from 0.0069 to 0.0144 Pa·s and more than 90 % of prepared combinations were stable over 7 days. The observed encapsulation efficiency of peanut oil was 21.82-74.25 %. The encapsulation efficiency was significantly affected by the CS:WPI mass ratio and ultrasonication. The peroxide value, antioxidant activity and FFA ranged from 1.789 to 3.723 mg/kg oil, 19.81-72.62 % and 0.042-0.127 %, respectively. Physical properties such as moisture content, angle of repose, HR and CI were 1.94-8.70 %, 46.5-58.3°, 1.117-1.246 and 10.48-22.14 %, respectively. The physical properties were significantly affected by surface properties of the capsules. The higher efficiency (74.25 %) of peanut oil encapsulation was achieved under optimised conditions of CS:WPI mass ratio 1.25, 0.25 % lecithin, 9.99 min ultrasonication and 355.41 W microwave power. Novelty and scientific contribution: The results of this work contribute to the fields of food science and technology by providing a practical approach to preserving the nutritional quality of peanut oil and improving its stability through encapsulation, thereby promoting its potential health benefits to consumers and applications in various industries such as dairy and bakery.

7.
J Sci Food Agric ; 104(2): 841-848, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-37714816

RESUMEN

BACKGROUND: Whey protein isolate (WPI) nanoparticles can be used in a strategy to improve the bioavailability of curcumin (CUR) although they are generally not stable. Previous studies have indicated that Tremella fuciformis polysaccharides (TFPs) can increase the stability of WPI. This work investigated systematically the characterization and structure of TFP/WPI nanoparticles with differing CUR content. RESULTS: The highest encapsulation efficiency of CUR was 98.8% and the highest loading content was 47.88%. The TFP-WPI-CUR with 20 mg mL-1 of CUR had the largest particle size (653.67 ± 21.50 nm) and lowest zeta potential (-38.97 ± 2.51 mV), and the capacity to retain stability across a variety of salt ion and pH conditions for 21 days. According to the findings of the structural analysis, the addition of TFPs and CUR rendered the structure of WPI amorphous, and the ß-sheet was reduced. Finally, in vitro release indicated that the TFP-WPI-CUR combination could regulate the sustained release behavior of CUR. CONCLUSION: In summary, TFP-WPI nanoparticles can be used as carriers for the delivery of CUR, and can expand applications of CUR in the functional food, dietary supplement, pharmaceutical, and beverage industries. © 2023 Society of Chemical Industry.


Asunto(s)
Curcumina , Nanopartículas , Curcumina/química , Proteína de Suero de Leche/química , Preparaciones de Acción Retardada , Nanopartículas/química , Tamaño de la Partícula , Portadores de Fármacos/química
8.
J Sci Food Agric ; 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38925572

RESUMEN

BACKGROUND: Proteins and anionic octenyl succinic anhydride (OSA)-modified starch (OSA-starch) are common ingredients in food systems. The interactions between OSA-starch and protein are found to alter the structural and functional properties of the protein-OSA-starch complexes. In this regard, the close understanding of the relationship among the molecular interactions between whey protein isolate (WPI) and OSA-high amylose corn starch (HAS), structure changes and rheological, digestibility and release properties of WPI-OSA-HAS was investigated. RESULTS: The molecular interactions of WPI-OSA-HAS were significant for increasing the surface rough, solubility, storage modulus and loss modulus, but decreasing the R1047/1022 values. For the nutritional evaluation, the anti-digestibility of WPI-OSA-HAS was enhanced with increased resistant starch + slowly digestible starch contents and decreased equilibrium hydrolysis percentage and kinetic constant. During the digestion, part of the starch granule, OSA groups and WPI were lost, but the loss was lower than for OSA-HAS. Furthermore, the results of curcumin-loaded WPI-OSA-HAS in simulated gastrointestinal fluids demonstrated that curcumin could be gradually released to simulate colonic fluid. Notably, the interaction between WPI and OSA-HAS depended on the WPI concentration with the stronger molecular interactions obtained at 35% concentration. CONCLUSION: These results provided important information concerning how to adjust the rheological, anti-digestibility and release properties of WPI-OSA-HAS through altering the electrostatic interactions and hydrophobic interactions of WPI-OSA-HAS. © 2024 Society of Chemical Industry.

9.
J Sci Food Agric ; 104(12): 7281-7290, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38655901

RESUMEN

BACKGROUND: Whey protein isolate (WPI) generally represents poor functional properties such as thermal stability, emulsifying activity and antioxidant activity near its isoelectric point or high temperatures, which limit its application in the food industry. The preparation of WPI-polysaccharide covalent conjugates based on Maillard reaction is a promising method to improve the physical and chemical stability and functional properties of WPI. In this research, WPI-inulin conjugates were prepared through wet heating method and ultrasound method and their structural and functional properties were examined. RESULTS: In conjugates, the free amino acid content was reduced, the high molecular bands were emerged at sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), new C-N bonds were formed in Fourier-transform infrared (FTIR) spectroscopy, and fluorescence intensity was reduced compared with WPI. Furthermore, the result of circular dichroism (CD) spectroscopy also showed that the secondary structure of conjugates was changed. Conjugates with ultrasound treatment had better structural properties compared with those prepared by wet heating treatment. The functional properties such as thermal stability, emulsifying activity index (EAI), emulsion stability (ES) and antioxidant activity of conjugates with wet heating treatment were significantly improved compared with WPI. The EAI and ES of conjugates with ultrasound treatment were the highest, but the thermal stability and antioxidant activity were only close to that of the conjugates with wet heating treatment for 2 h. CONCLUSION: This study revealed that WPI-inulin conjugates prepared with ultrasound or wet heating method not only changed the structural characteristics of WPI but also could promote its functional properties including thermal stability, EAI, ES and antioxidant activity. © 2024 Society of Chemical Industry.


Asunto(s)
Antioxidantes , Emulsiones , Calor , Proteína de Suero de Leche , Proteína de Suero de Leche/química , Antioxidantes/química , Emulsiones/química , Reacción de Maillard , Calefacción
10.
J Sci Food Agric ; 104(12): 7649-7655, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38767462

RESUMEN

BACKGROUND: Protein-polysaccharide complexes have been successfully used for emulsion stabilization. However, it is unclear how the complex's surface charge influences aggregation stability and coalescence stability of emulsions, and whether a low charged interfacial film can still maintain the coalescence stability of oil droplets. In the present study, the effects of pH (around the pI of protein) on the aggregation and coalescence stability of emulsions were investigated. RESULTS: Whey protein isolate (WPI) and peach gum polysaccharides (PGP) complexes (WPI-PGP complexes) were synthesized at pH 3, 4 and 5. Their sizes were 598, 274 and 183 nm, respectively, and their ζ-potentials were +2.9, -8.6 and -22.8 mV, respectively. Interface rheological experiments showed that WPI-PGP complex at pH 3 had the lowest interfacial tension, and formed the softest film compared to the complexes at pH 4 and 5. Microfluidic experiments showed that all WPI-PGP complexes were able to stabilize droplets against coalescence within short timescales (milliseconds). At pH 3, no coalescence was observed even under conditions where the continuous phase flow influenced the shape of oil droplets (from spheres to ellipsoids). At pH 4 and 5, the model emulsions were stable over 16 days of storage, extensive aggregation and creaming occurred at pH 3 after 8 days. Importantly, no coalescence took place. CONCLUSION: The present study confirmed that the aggregation stability of the emulsions was mainly determined by the surface charge of the complex, whereas the coalescence stability of emulsions is expectedly determined by steric repulsion, providing new insights into how to prepare stable food emulsions. © 2024 Society of Chemical Industry.


Asunto(s)
Emulsiones , Polisacáridos , Reología , Proteína de Suero de Leche , Concentración de Iones de Hidrógeno , Emulsiones/química , Proteína de Suero de Leche/química , Polisacáridos/química , Emulsionantes/química , Prunus persica/química , Tamaño de la Partícula , Gomas de Plantas/química
11.
J Sci Food Agric ; 104(5): 2842-2850, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38012057

RESUMEN

BACKGROUND: Encapsulation is commonly used to protect probiotics against harsh stresses. Thus, the fabrication of microcapsules with special structure is critical. In this work, microcapsules with the structure of S/O/W (solid-in-oil-in-water) emulsion were prepared for probiotics, with butterfat containing probiotics as the inner core and with whey protein isolate fibrils (WPIF) and antioxidants (epigallocatechin gallate, EGCG; glutathione, GSH) as the outer shell. RESULTS: Based on the high viscosity and good emulsifying ability of WPIF, dry well-dispersed microcapsules were successfully prepared via the stabilization of the butterfat emulsion during freeze-drying with 30-50 g L-1 WPIF. WPIF, WPIF + EGCG, and WPIF + GSH microcapsules with 50 g L-1 WPIF protected probiotics very well against different stresses and exhibited similar inactivation results, indicating that EGCG and GSH exerted neither harm or protection on probiotics. This significantly reduced the harmful effects of antioxidants on probiotics. Almost all the probiotics survived after pasteurization, which was critical for the use of probiotics in other foods. The inactivation values of probiotics in microcapsules were around 1 log in simulated gastric juice (SGJ), about 0.5 log in simulated intestinal juice (SIJ), and around 1 log after 40 days of ambient storage. CONCLUSION: Dry S/O/W microcapsule, with butterfat containing probiotics as the inner core and WPIF as the outer shell, significantly increased the resistance of probiotics to harsh environments. This work proposed a preparation method of dry S/O/W microcapsule with core/shell structure, which could be used in the encapsulation of probiotics and other bioactive ingredients.


Asunto(s)
Probióticos , Cápsulas/química , Composición de Medicamentos/métodos , Emulsiones/química , Liofilización , Probióticos/química
12.
Plant Foods Hum Nutr ; 79(1): 189-193, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38315314

RESUMEN

Due to the limitations of the properties of chestnut flour, its applications have been restricted. The objective of this study is to investigate the impact of whey protein isolate (WPI) and xanthan gum (XG) on the functional and digestive properties of chestnut flour, specifically focusing on gel texture, solubility and swelling power, water absorption capacity, freeze-thaw stability and starch digestibility. The addition of both WPI and XG reduced the gel hardness, gumminess and chewiness of the co-gelatinized and physically mixed samples. Furthermore, the inclusion of physically mixed WPI and XG led to an increase in the solubility (from 58.2 to 75.0%) and water absorption capacity (from 3.11 to 5.45 g/g) of chestnut flour. The swelling power of the chestnut flour was inhibited by both additives. WPI was superior to XG at maintaining freeze-thaw stability, by reducing the syneresis from 71.9 to 68.1%. Additionally, WPI and XG contributed to the inhibition of starch hydrolysis in the early stage of digestion, resulting in a lower starch digestibility of chestnut flours. This research provides insights into the interaction mechanisms between WPI, XG, and chestnut flour, offering valuable information for the development of chestnut flour products with enhanced properties.


Asunto(s)
Harina , Polisacáridos Bacterianos , Almidón , Proteína de Suero de Leche , Agua
13.
J Dairy Sci ; 106(12): 8221-8238, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37641311

RESUMEN

The manufacture of camel milk (CM) yogurt has been associated with several challenges, such as the weak structure and watery texture, thereby decreasing its acceptability. Therefore, this study aimed to investigate the effect of whey protein isolate (WPI) addition on the health-promoting benefits, texture profile, and rheological properties of CM yogurt after 1 and 15 d of storage. Yogurt was prepared from CM supplemented with 0, 3, and 5% of WPI and compared with bovine milk yogurt. The results show that the water holding capacity was affected by WPI addition representing 31.3%, 56.8%, 64.7%, and 45.1% for yogurt from CM containing 0, 3 or 5% WPI, and bovine milk yogurt, respectively, after 15 d. The addition of WPI increased yogurt hardness, adhesiveness, and decreased the resilience. CM yogurt without WPI showed lower apparent viscosity, storage modulus, and loss modulus values compared with other samples. The supplementation of CM with WPI improved the rheological properties of the obtained yogurt. Furthermore, the antioxidant activities of yogurt before and after in vitro digestion varied among yogurt treatments, which significantly increased after digestion except the superoxide anion scavenging and lipid oxidation inhibition. After in vitro digestion at d 1, the superoxide anion scavenging of the 4 yogurt treatments respectively decreased from 83.7%, 83.0%, 79.1%, and 87.4% to 36.7%, 38.3%, 44.6%, and 41.3%. The inhibition of α-amylase and α-glucosidase, angiotensin-converting enzyme inhibition, cholesterol removal, and degree of hydrolysis exhibited different values before and after in vitro digestion.


Asunto(s)
Proteínas de la Leche , Leche , Animales , Leche/química , Proteína de Suero de Leche/química , Proteínas de la Leche/análisis , Yogur , Camelus/metabolismo , Superóxidos
14.
Molecules ; 28(15)2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37570702

RESUMEN

The aim of this study was to microencapsulate probiotic bacteria (Lactobacillus acidophilus 11073) using whey-protein-isolate (WPI)-octenyl-succinic-anhydride-starch (OSA-starch)-complex coacervates and to investigate the effects on probiotic bacterial viability during spray drying, simulated gastrointestinal digestion, thermal treatment and long-term storage. The optimum mixing ratio and pH for the preparation of WPI-OSA-starch-complex coacervates were determined to be 2:1 and 4.0, respectively. The combination of WPI and OSA starch under these conditions produced microcapsules with smoother surfaces and more compact structures than WPI-OSA starch alone, due to the electrostatic attraction between WPI and OSA starch. As a result, WPI-OSA-starch microcapsules showed significantly (p < 0.05) higher viability (95.94 ± 1.64%) after spray drying and significantly (p < 0.05) better protection during simulated gastrointestinal digestion, heating (65 °C/30 min and 75 °C/10 min) and storage (4/25 °C for 12 weeks) than WPI-OSA-starch microcapsules. These results demonstrated that WPI-OSA-starch-complex coacervates have excellent potential as a novel wall material for probiotic microencapsulation.


Asunto(s)
Probióticos , Suero Lácteo , Cápsulas/química , Almidón/química , Anhídridos , Viabilidad Microbiana
15.
Molecules ; 28(8)2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-37110618

RESUMEN

The development of intelligent indicator film that can detect changes in food quality is a new trend in the food packaging field. The WPNFs-PU-ACN/Gly film was prepared based on whey protein isolate nanofibers (WPNFs). Anthocyanin (ACN) and glycerol (Gly) were used as the color indicator and the plasticizer, respectively, while pullulan (PU) was added to enhance mechanical properties of WPNFs-PU-ACN/Gly edible film. In the study, the addition of ACN improved the hydrophobicity and oxidation resistance of the indicator film; with an increase in pH, the color of the indicator film shifted from dark pink to grey, and its surface was uniform and smooth. Therefore, the WPNFs-PU-ACN/Gly edible film would be suitable for sensing the pH of salmon, which changes with deterioration, as the color change of ACN was completely consistent with fish pH. Furthermore, the color change after being exposed to grey was evaluated in conjunction with hardness, chewiness, and resilience of salmon as an indication. This shows that intelligent indicator film made of WPNFs, PU, ACN, and Gly could contribute to the development of safe food.


Asunto(s)
Películas Comestibles , Embalaje de Alimentos , Animales , Alimentos Marinos , Peces , Antocianinas/química , Concentración de Iones de Hidrógeno
16.
J Sci Food Agric ; 103(7): 3346-3352, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36799110

RESUMEN

BACKGROUND: Protein-polysaccharide gels have significant and unique properties in food formulations. However, they are susceptible to environmental influences like heat and pH. The present work investigated the effects of acid and alkali treatments on the gel properties and microstructural changes of whey protein isolate (WPI) high acyl gellan gum (HG). RESULTS: The results showed that the pH had a strong effect on the gel hardness, water-holding capacity (WHC), free sulfhydryl groups (-SH), and other properties of the composite gel. The hardness reached a maximum level of 282.50 g and the best WHC was 98.33% at pH 7, indicating that a suitable pH could promote this cross-linking between the WPI and HG molecules. The rheological analysis demonstrated that the pH affected the gel formation time. Meanwhile, the gel formation time reached a maximum at pH 7, and the gel's storage modulus G' value was the largest in the final state. Fourier transform infrared spectroscopy (FTIR) results showed that pH affected the interaction between WPI and HG. Scanning electron microscopy (SEM) analysis also indicated that the composite gel formed a three-dimensional network structure at pH 7-9. CONCLUSION: These results could broaden the application of protein-polysaccharide gels in food and delivery systems. © 2023 Society of Chemical Industry.


Asunto(s)
Polisacáridos Bacterianos , Proteína de Suero de Leche/química , Geles , Polisacáridos Bacterianos/química , Reología , Concentración de Iones de Hidrógeno
17.
J Sci Food Agric ; 103(7): 3674-3684, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36799350

RESUMEN

BACKGROUND: This research was aimed at the fabrication of jujube extract (JE)-loaded beads by extrusion, using whey protein isolate (WPI), chickpea protein concentrate (PPC) and a combination of two types of hydrocolloid insoluble fraction of Persian gum (IFPG) and sodium alginate (Al). RESULTS: JE-loaded beads with the highest encapsulation efficiency (10.87%) and polyphenol content (120.8 mg L-1 gallic acid) were obtained using Al-IFPG/PPC at 4 °C. The Al-IFPG, Al-IFPG/WPI and Al-IFPG/PPC beads revealed 5.66, 6.85 and 5.76 mm bead size, respectively, and almost all of them demonstrated a homogeneous and spherical structure. Fourier transform infrared spectroscopy data proved that the stable structure of the Al-IFPG beads was due to hydrogen bonding and electrostatic interactions. The thermostability of beads loaded with JE based on Al-IFPG/WPI was significantly enhanced compared to pure Al-IFPG. Texture evaluation of JE-loaded beads based on Al-IFPG incorporation with WPI revealed an increment in the hardness of beads. CONCLUSION: This study confirmed the potential of Al-IFPG complex beads for the effective delivery of jujube extract via incorporation into pea and whey proteins and for the expansion of its use in products. © 2023 Society of Chemical Industry.


Asunto(s)
Proteínas de Guisantes , Ziziphus , Alginatos/química , Proteína de Suero de Leche/química
18.
J Dairy Sci ; 105(6): 4829-4842, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35450710

RESUMEN

The use of polymer blends as carriers for probiotic cells or using multi-strain probiotic culture mixture in film formulations has a high potential to maintain the stability of probiotics throughout storage. In this study, the survival of Lactobacillus acidophilus, Lactobacillus plantarum, and mixed culture (Lactobacillus spp., Lactococcus spp., and Bifidobacterium spp.) in whey protein isolate (W), carrageenan (C), and W/C blend (W to C on a wt/wt basis at 100 to 0, 75 to 25, 50 to 50, and 0 to 100) films were investigated during 30 d of storage at 4 and 25°C. The water vapor, mechanical, optical, and morphological properties of film samples were also determined. A significant decrease in total lactic acid bacteria counts of all strains (5-6 log cfu/g in reduction) for W and C films was observed during storage at 25°C, whereas blended films had 2 to 3 log cfu/g reduction. The mixed culture-incorporated films had higher cell counts during all storage temperatures. The incorporation of probiotic bacteria significantly influenced the water vapor permeability and color values of films while decreasing tensile strength and elongation at break values. This study reveals that a multi-strain mixed culture presented more chance for survival inside the polymer matrix, especially when carbohydrate- and protein-based polymers were blended.


Asunto(s)
Películas Comestibles , Probióticos , Animales , Carragenina , Lactobacillus acidophilus , Polímeros , Vapor , Proteína de Suero de Leche
19.
J Dairy Sci ; 105(1): 56-71, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34756432

RESUMEN

We investigated the effects of different concentrations of whey protein isolate (WPI) on oat starch characteristics in terms of pasting, thermal, and structural properties. The pasting properties of the starch showed that hot paste viscosity increased with the addition of WPI in the system, and relative breakdown decreased. Thermal analysis showed a significant effect of WPI on oat starch by increasing the peak temperature of differential scanning calorimeter endotherms. The X-ray diffraction and Fourier transform infrared spectroscopy studies revealed that WPI increased the ordered structuration of starch paste, as evident by an increase in relative crystallinity; in addition, a decrease in infrared bands at 1,024 cm-1 and 1,080 cm-1 suggested decreased gelatinization of oat starch granules. Overall, WPI at different concentrations affected the oat starch gelatinization properties.


Asunto(s)
Avena , Almidón , Animales , Viscosidad , Proteína de Suero de Leche , Difracción de Rayos X/veterinaria
20.
J Dairy Res ; : 1-8, 2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35225181

RESUMEN

Caseinomacropeptide (CMP) is derived from the chymosin cleavage of κ-casein during cheese production. This study developed gels from CMPs, which were isolated by different ultrafiltration systems, and whey protein isolate (WPI), and studied their rheological and ultrastructural characteristics. The 30% WPI gel showed high elastic modulus (G') values and stronger structure than the other samples with CMP. Another gel, with 50% protein, 30% WPI and 20% CMP sample isolated from the 30 kDa retentate, had a weaker structure and lower G' value. The third gel, with 30% WPI and 20% CMP sample from the 5 kDa retentate derived from the 30 kDa retentate, presented intermediate structural strength. Despite the increase in protein concentration from the addition of CMP, there was a decrease in the strength of the gel network. Different CMP isolation processes also contributed to differences in the microscopic analysis of gel structures with the same protein content.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA