Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Am J Transplant ; 22(1): 46-57, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34331749

RESUMEN

Porcine cells devoid of three major carbohydrate xenoantigens, αGal, Neu5GC, and SDa (TKO) exhibit markedly reduced binding of human natural antibodies. Therefore, it is anticipated that TKO pigs will be better donors for human xenotransplantation. However, previous studies on TKO pigs using old world monkeys (OWMs) have been disappointing because of higher anti-TKO pig antibodies in OWMs than humans. Here, we show that long-term survival of renal xenografts from TKO pigs that express additional human transgenes (hTGs) can be achieved in cynomolgus monkeys. Kidney xenografts from TKO-hTG pigs were transplanted into eight cynomolgus recipients without pre-screening for low anti-pig antibody titers. Two recipients of TKO-hTG xenografts with low expression of human complement regulatory proteins (CRPs) (TKO-A) survived for 2 and 61 days, whereas six recipients of TKO-hTG xenografts with high CRP expression (TKO-B) survived for 15, 20, 71, 135, 265, and 316 days. Prolonged CD4+ T cell depletion and low anti-pig antibody titers, which were previously reported important for long-term survival of αGal knock-out (GTKO) xenografts, were not always required for long-term survival of TKO-hTG renal xenografts. This study indicates that OWMs such as cynomolgus monkeys can be used as a relevant model for clinical application of xenotransplantation using TKO pigs.


Asunto(s)
Trasplante de Riñón , Animales , Animales Modificados Genéticamente , Rechazo de Injerto/genética , Humanos , Macaca fascicularis , Porcinos , Trasplante Heterólogo
2.
Am J Transplant ; 22(1): 28-45, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34424601

RESUMEN

Galactosyl transferase knock-out pig lungs fail rapidly in baboons. Based on previously identified lung xenograft injury mechanisms, additional expression of human complement and coagulation pathway regulatory proteins, anti-inflammatory enzymes and self-recognition receptors, and knock-down of the ß4Gal xenoantigen were tested in various combinations. Transient life-supporting GalTKO.hCD46 lung function was consistently observed in association with either hEPCR (n = 15), hTBM (n = 4), or hEPCR.hTFPI (n = 11), but the loss of vascular barrier function in the xenograft and systemic inflammation in the recipient typically occurred within 24 h. Co-expression of hEPCR and hTBM (n = 11) and additionally blocking multiple pro-inflammatory innate and adaptive immune mechanisms was more consistently associated with survival >1 day, with one recipient surviving for 31 days. Combining targeted genetic modifications to the lung xenograft with selective innate and adaptive immune suppression enables prolonged initial life-supporting lung function and extends lung xenograft recipient survival, and illustrates residual barriers and candidate treatment strategies that may enable the clinical application of other organ xenografts.


Asunto(s)
Supervivencia de Injerto , Pulmón , Animales , Animales Modificados Genéticamente , Rechazo de Injerto/tratamiento farmacológico , Humanos , Papio , Porcinos , Trasplante Heterólogo
3.
Am J Transplant ; 21(4): 1427-1439, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-32865877

RESUMEN

Refractory B cell responses to T cell-independent (TI) carbohydrate antigens (Ags) are critical drivers of rejection reactions to ABO-incompatible allogeneic grafts and xenogeneic grafts from other species. To explore the biological significance of crosstalk between Toll-like receptors (TLRs) and B cell receptors (BCRs) in the TI B cell immunity, we here used MyD88-, TRIF-, and α-galactosyltransferase-deficient mice to study B cell phenotypes and functional properties during TI transplant-related glycan Ag exposure. BCR stimulation alone induced differentiation into CD5high (B-1a) cells, which were highly sensitive to a calcineurin inhibitor (CNI), while co-stimulation of TLRs and BCRs induced differentiation into CD5dim (B-1b) cells in MyD88-dependent and CNI-resistant manner. MyD88-dependent TLR stimulation in B-1b cells enhanced downstream factors in the BCR-calcineurin pathway, including a nuclear factor of activated T cells, cytoplasmic 1 (NFATc1). TLR inhibitor together with CNI abrogated refractory B-1b cell immune responses against the ABO-blood group Ags, while blocking both BCRs and TLR-MyD88 by using Bruton's tyrosine kinase inhibitor and histone deacetylase inhibitor abrogated refractory B-1b cell immune responses against Gal-glycan Ags. Thus, this study provides a rationale for a novel therapeutic approach to overcome refractory transplant-related anti-glycan Ab production by blocking both BCR and TLR-MyD88 signals.


Asunto(s)
Factor 88 de Diferenciación Mieloide , Transducción de Señal , Animales , Inmunidad Celular , Ratones , Factor 88 de Diferenciación Mieloide/metabolismo , Polisacáridos , Receptores de Antígenos de Linfocitos B
4.
Xenotransplantation ; 28(4): e12691, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33904221

RESUMEN

BACKGROUND: A major obstacle to the success of organ transplantation from pigs to humans, necessitated by the shortage of human organs, is robust humoral immune rejection by pig-reactive human antibodies. Mixed xenogeneic hematopoietic chimerism induces xenoreactive B cell tolerance in rodents, but whether mixed pig/human chimerism could induce tolerance of human B cells to pig xenoantigens is unknown. METHODS: We investigated this question using a humanized mouse model in which durable mixed (pig-human) xenogeneic chimerism can be established. RESULTS: Human natural anti-pig cytotoxic antibodies, predominantly IgM, are detectable in non-chimeric humanized mouse serum, and pig-reactive antibodies were reduced in mixed chimeric versus non-chimeric humanized mice. This difference required persistent mixed chimerism and was not due to the adsorption of antibodies on pig cells in vivo. Furthermore, human B cells from spleens of mixed chimeric mice produced lower levels of anti-pig antibodies when stimulated in vitro compared with those from non-chimeric mice. CONCLUSIONS: Our findings demonstrate that mixed chimerism reduces human natural antibodies to pig xenoantigens, providing the first in vivo evidence of human B cell tolerance induction by mixed xenogeneic chimerism and supporting further evaluation of this approach for inducing human B cell tolerance to xenografts.


Asunto(s)
Quimerismo , Tolerancia Inmunológica , Animales , Antígenos Heterófilos , Linfocitos B , Trasplante de Médula Ósea , Humanos , Ratones , Porcinos , Trasplante Heterólogo
5.
Am J Transplant ; 19(8): 2174-2185, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30821922

RESUMEN

The shortage of available organs remains the greatest barrier to expanding access to transplant. Despite advances in genetic editing and immunosuppression, survival in experimental models of kidney xenotransplant has generally been limited to <100 days. We found that pretransplant selection of recipients with low titers of anti-pig antibodies significantly improved survival in a pig-to-rhesus macaque kidney transplant model (6 days vs median survival time 235 days). Immunosuppression included transient pan-T cell depletion and an anti-CD154-based maintenance regimen. Selective depletion of CD4+ T cells but not CD8+ T cells resulted in long-term survival (median survival time >400 days vs 6 days). These studies suggested that CD4+ T cells may have a more prominent role in xenograft rejection compared with CD8+ T cells. Although animals that received selective depletion of CD8+ T cells showed signs of early cellular rejection (marked CD4+ infiltrates), animals receiving selective CD4+ depletion exhibited normal biopsy results until late, when signs of chronic antibody rejection were present. In vitro study results suggested that rhesus CD4+ T cells required the presence of SLA class II to mount an effective proliferative response. The combination of low pretransplant anti-pig antibody and CD4 depletion resulted in consistent, long-term xenograft survival.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Rechazo de Injerto/etiología , Supervivencia de Injerto/inmunología , Tolerancia Inmunológica/inmunología , Trasplante de Riñón/efectos adversos , Depleción Linfocítica/efectos adversos , Animales , Rechazo de Injerto/patología , Xenoinjertos , Macaca mulatta , Porcinos
6.
Am J Transplant ; 18(11): 2763-2771, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29603642

RESUMEN

Autoantibodies to the angiotensin II type 1 receptor (AT1R) are thought to be important in antibody-mediated rejection (AMR), especially in the absence of anti-HLA antibodies. We used a variety of methods to examine the specificity of a commercially available kit designed to quantitate anti-AT1R antibodies. We found that fibrin formation in serum samples from patients awaiting cardiac transplantation with ventricular assist devices (VADs) can produce falsely elevated anti-AT1R values. In addition, absorption studies with a variety of cell lines with or without expression of human AT1R, and those that express xenoantigens, suggest that many of the antibodies detected in the AT1R test system are heterophilic and have reactivity to xenoantigens. Furthermore, we provide data that show that reactivity to the sialic acid Neu5Gc is a common finding among samples that are highest in anti-AT1R levels. We conclude that a common laboratory method for quantitation of anti-AT1R antibodies is nonspecific and overestimates the frequency of true positives. A reevaluation of the role that anti-AT1R antibodies play in allograft function and patient outcomes is warranted.


Asunto(s)
Anticuerpos Heterófilos/sangre , Anticuerpos Heterófilos/inmunología , Fibrina/metabolismo , Trasplante de Corazón , Corazón Auxiliar , Ácidos Neuramínicos/inmunología , Receptor de Angiotensina Tipo 1/metabolismo , Animales , Células CHO , Bovinos , Pollos , Cricetulus , Femenino , Fibrina/inmunología , Humanos , Masculino , Receptor de Angiotensina Tipo 1/inmunología , Receptores de Trasplantes
8.
Am J Transplant ; 22(4): 1007-1008, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35073605
10.
Am J Transplant ; 17(10): 2531-2536, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28397351

RESUMEN

There has been an upsurge of interest in xenotransplantation in recent years. This resurgence can attributed to a combination of factors. First, there has been a dramatic improvement in efficacy in several preclinical models, with maximum xenograft survival times increasing to 950 days for islets, 945 days for hearts, and 310 days for kidneys. Second, the rapid development of genome editing technology (particularly the advent of clustered regularly interspaced short palindromic repeats/Cas9) has revolutionized the capacity to generate new donor pigs with multiple protective genetic modifications; what once took many years to achieve can now be performed in months, with much greater precision and scope. Third, the specter of porcine endogenous retrovirus (PERV) has receded significantly. There has been no evidence of PERV transmission in clinical trials and preclinical models, and improved screening methods and new options for the treatment or even elimination of PERV are now available. Balancing these positive developments are several remaining challenges, notably the heavy and often clinically inapplicable immunosuppression required to prevent xenograft rejection. Nonetheless, the potential for xenotransplantation as a solution to the shortage of human organs and tissues for transplantation continues to grow.


Asunto(s)
Trasplante Heterólogo/estadística & datos numéricos , Animales , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Supervivencia de Injerto , Humanos , Porcinos , Trasplante Heterólogo/efectos adversos
11.
Am J Transplant ; 15(8): 2062-74, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25943147

RESUMEN

Blockade of extracellular high mobility group box 1 (HMGB1) can significantly prolong murine cardiac allograft survival. Here, we determined the role of HMGB1 in xenotransplantation. Sprague-Dawley rat hearts were transplanted heterotopically into BALB/c mice. Xenografts without any treatment developed predominant acute vascular rejection within 6 days. Both passively released HMGB1 from xenografts and actively secreted HMGB1 from infiltrated immune cells were significantly increased after xenotransplantation. HMGB1-neutralizing antibody treatment significantly prolonged xenograft survival and attenuated pathologic damage, immune cell infiltration, and HMGB1 expression and release in the xenografts. Compared to control IgG treatment evaluated at study endpoint, treatment with HMGB1-neutralizing antibody markedly suppressed xenoreactive B cell responses, as evidenced by the significant inhibition of anti-rat antibody production and deposition in xenografts at Day 6 posttransplant. Furthermore, treatment with anti-HMGB1 antibody suppressed B cell activation and reduced IFN-γ and IL-17A production after xenotransplantation. These results demonstrate for the first time that HMGB1 plays an important role in mediating acute xenograft rejection. Thus, we have shown that neutralization of extracellular HMGB1 can significantly inhibit xenoreactive B cell responses and delay xenograft rejection in a rat-to-mouse model of xenotransplantation, uncovering new insights in the role of HMGB1 in transplantation.


Asunto(s)
Linfocitos B/inmunología , Rechazo de Injerto , Proteína HMGB1/antagonistas & inhibidores , Animales , Masculino , Ratones , Ratones Endogámicos BALB C , Ratas , Ratas Sprague-Dawley
12.
Am J Transplant ; 15(2): 358-70, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25612490

RESUMEN

Galactosyl-transferase KO (GalT-KO) pigs represent a potential solution to xenograft rejection, particularly in the context of additional genetic modifications. We have performed life supporting kidney xenotransplantation into baboons utilizing GalT-KO pigs transgenic for human CD55/CD59/CD39/HT. Baboons received tacrolimus, mycophenolate mofetil, corticosteroids and recombinant human C1 inhibitor combined with cyclophosphamide or bortezomib with or without 2-3 plasma exchanges. One baboon received a control GalT-KO xenograft with the latter immunosuppression. All immunosuppressed baboons rejected the xenografts between days 9 and 15 with signs of acute humoral rejection, in contrast to untreated controls (n = 2) that lost their grafts on days 3 and 4. Immunofluorescence analyses showed deposition of IgM, C3, C5b-9 in rejected grafts, without C4d staining, indicating classical complement pathway blockade but alternate pathway activation. Moreover, rejected organs exhibited predominantly monocyte/macrophage infiltration with minimal lymphocyte representation. None of the recipients showed any signs of porcine endogenous retrovirus transmission but some showed evidence of porcine cytomegalovirus (PCMV) replication within the xenografts. Our work indicates that the addition of bortezomib and plasma exchange to the immunosuppressive regimen did not significantly prolong the survival of multi-transgenic GalT-KO renal xenografts. Non-Gal antibodies, the alternative complement pathway, innate mechanisms with monocyte activation and PCMV replication may have contributed to rejection.


Asunto(s)
Ácidos Borónicos/uso terapéutico , Proteína Inhibidora del Complemento C1/uso terapéutico , Galactosiltransferasas/genética , Supervivencia de Injerto/fisiología , Xenoinjertos , Trasplante de Riñón , Intercambio Plasmático , Pirazinas/uso terapéutico , Animales , Animales Modificados Genéticamente , Enfermedades Autoinmunes , Bortezomib , Citomegalovirus/fisiología , Galactosiltransferasas/deficiencia , Técnicas de Inactivación de Genes , Inmunidad Innata/fisiología , Inmunosupresores/uso terapéutico , Riñón/cirugía , Riñón/virología , Modelos Animales , Papio anubis , Sus scrofa , Replicación Viral/fisiología
13.
Am J Transplant ; 15(3): 628-41, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25676390

RESUMEN

The porcine cornea may be a good solution for the shortage of human donor corneas because its size and refractive properties are comparable to those of the human cornea. However, antigenic differences need to be overcome to apply xenocorneal transplantation in actual clinical practice. We aimed to investigate the feasibility of full-thickness porcine corneas as human corneal substitutes using a CD40-CD154 costimulatory pathway blocking strategy in a clinically applicable pig-to-nonhuman primate corneal transplantation model. As a result, the mean survival time of the xenocorneal grafts in recipients who received anti-CD154 antibody-based immunosuppressants (POD318 (n = 4); >933, >243, 318 and >192) was significantly longer than that in controls (POD28 (n = 3); 21, 28 and 29; p = 0.010, log-rank test). Administration of anti-CD154 antibodies markedly reduced inflammatory cellular infiltrations (predominantly CD8 T cells and macrophages) into the xenocorneal grafts and almost completely blocked xenoantigen-triggered increases in Th1-associated cytokines, chemokines and C3a in the aqueous humor. Moreover, systemic expansion of memory T cells was effectively controlled and responses of anti-Gal/donor pig-specific antibodies were considerably diminished by programmed injection of anti-CD154 antibodies. Consequently, porcine corneas might be promising human corneal substitutes when the transplantation is accompanied by potent immunosuppression such as a CD40-CD154 costimulatory pathway blockade.


Asunto(s)
Antígenos CD40/antagonistas & inhibidores , Ligando de CD40/antagonistas & inhibidores , Trasplante de Córnea , Xenoinjertos , Animales , Antígenos CD40/inmunología , Ligando de CD40/inmunología , Femenino , Masculino , Primates , Porcinos
14.
Xenotransplantation ; 21(4): 341-52, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24806998

RESUMEN

BACKGROUND: Xenotransplantation of porcine organs holds promise of solving the human organ donor shortage. The use of α-1,3-galactosyltransferase knockout (GTKO) pig donors mitigates hyperacute rejection, while delayed rejection is currently precipitated by potent immune and hemostatic complications. Previous analysis by our laboratory suggests that clotting factor VIII (FVIII) inhibitors might be elicited by the structurally restricted xenoantibody response which occurs after transplantation of either pig GTKO/hCD55/hCD59/hHT transgenic neonatal islet cell clusters or GTKO endothelial cells. METHODS: A recombinant xenoantibody was generated using sequences from baboons demonstrating an active xenoantibody response at day 28 after GTKO/hCD55/hCD59/hHT transgenic pig neonatal islet cell cluster transplantation. Rhesus monkeys were immunized with GTKO pig endothelial cells to stimulate an anti-non-Gal xenoantibody response. Serum was collected at days 0 and 7 after immunization. A two-stage chromogenic assay was used to measure FVIII cofactor activity and identify antibodies which inhibit FVIII function. Molecular modeling and molecular dynamics simulations were used to predict antibody structure and the residues which contribute to antibody-FVIII interactions. Competition ELISA was used to verify predictions at the domain structural level. RESULTS: Antibodies that inhibit recombinant human FVIII function are elicited after non-human primates are transplanted with either GTKO pig neonatal islet cell clusters or endothelial cells. There is an apparent increase in inhibitor titer by 15 Bethesda units (Bu) after transplant, where an increase greater than 5 Bu can indicate pathology in humans. Furthermore, competition ELISA verifies the computer modeled prediction that the recombinant xenoantibody, H66K12, binds the C1 domain of FVIII. CONCLUSIONS: The development of FVIII inhibitors is a novel illustration of the potential impact the humoral immune response can have on coagulative dysfunction in xenotransplantation. However, the contribution of these antibodies to rejection pathology requires further evaluation because "normal" coagulation parameters after successful xenotransplantation are not fully understood.


Asunto(s)
Factor VIII/antagonistas & inhibidores , Trasplante de Islotes Pancreáticos/efectos adversos , Macaca mulatta/inmunología , Papio/inmunología , Trasplante Heterólogo/efectos adversos , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Anticuerpos Heterófilos/biosíntesis , Anticuerpos Heterófilos/química , Anticuerpos Heterófilos/genética , Simulación por Computador , Células Endoteliales/inmunología , Células Endoteliales/trasplante , Factor VIII/química , Galactosiltransferasas/genética , Galactosiltransferasas/inmunología , Técnicas de Inactivación de Genes , Humanos , Trasplante de Islotes Pancreáticos/inmunología , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Homología de Secuencia de Aminoácido , Sus scrofa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA