Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 151
Filtrar
Más filtros

Intervalo de año de publicación
1.
Chemistry ; 30(49): e202401233, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-38825747

RESUMEN

The reaction of Re(CO)5Br with deprotonated 1H-(5-(2,2':6',2''-terpyridine)pyrid-2-yl)tetrazole yields a triangular assembly formed by tricarbonyl Re(I) vertices. Photophysical measurements reveal blue-green emission with a maximum at 520 nm, 32 % quantum yield, and 2430 ns long-lived excited state decay lifetime in deaerated dichloromethane solution. Coordination of lanthanoid ions to the terpyridine units red-shifts the emission to 570 nm and also reveals efficient (90 %) and fast sensitisation of both Eu(III) and Yb(III) at room temperature, with a similar rate constant kET on the order of 107 s-1. Efficient sensitisation of Eu(III) from Re(I) is unprecedented, especially when considering the close proximity in energy between the donor and acceptor excited states. On the other hand, comparative measurements at 77 K reveal that energy transfer to Yb(III) is two orders of magnitude slower than that to Eu(III). A two-step mechanism of sensitisation is therefore proposed, whereby the rate-determining step is a thermally activated energy transfer step between the Re(I) centre and the terpyridine functionality, followed by rapid energy transfer to the respective Ln(III) excited states. At 77 K, the direct Re(I) to Eu(III) energy transfer seems to proceed via a ligand-mediated superexchange Dexter-type mechanism.

2.
J Fluoresc ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38954085

RESUMEN

In the present study, the synthesis of BaSrSiO4 co-doped Yb3+ and Nd3+ nanophosphors (NPs) was successfully achieved through the conventional sol-gel method, as confirmed by X-ray diffraction and SEM analysis, verifying the formation of pure NPs. The FTIR and Raman spectra analysis confirm the formation of silicates, as different modes and vibrations of Si-O and Si-O-Si were seen at 800-1000 cm-1. The energy transfer (ET) mechanism between Nd3+ and Yb3+ ions was seen as the emission spectra showed a rise in intensity of one over another. PLE emission spectra showed transitions at 2F7/2-2F5/2 for Yb3+ and from 4F3/2 to (4I9/2, 4I11/2, and 4I13/2) for Nd3+ when excited at 785 nm. All the samples record low activation energy, which shows that the rate of reaction will be higher in all the samples, and it will be highest for 1 mol% Nd3+ and 1 mol% Yb3+. An increasing value of τ was seen with increasing Yb3+ concentration, which confirms the increase in the population of trap centers. The positron annihilation lifetime (PAL) curve showed that 1 mol% Yb3+ and 2 mol Nd3+ have single vacancies or shallower positron traps, whereas 3 mol% Yb3+ and 2 mol% Nd3+ have larger defects like surface oxygen vacancy clusters. The other two samples have balance vacancies, which makes them best for thermometry applications. The fluorescence intensity ratio (FIR) was calculated to get sensitivity for thermometry application. 2.13% K-1 sensitivity achieved at 303-333 K temperature.

3.
Angew Chem Int Ed Engl ; 63(25): e202405229, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38613386

RESUMEN

Inverse sandwich complexes of Yb and Sm stabilized by a bulky ß-diketiminate (BDI) ligand have been prepared: (BDI)Ln(η6,η6-C6H6)Ln(BDI); Ln=lanthanide. Coordinated benzene ligands can be neutral, di-anionic or, often controversially discussed, even tetra-anionic. The formal charge on benzene is correlated to assignment of the metal oxidation state which generally poses a problem. Herein, we take advantage of the structural similarities found when comparing CaII with YbII, and SrII with SmII complexes. In this work, we found an excellent overlap of the Ca/Yb inverse sandwich structures but a striking difference for the Sr/Sm pair. The much shorter Sm-N and Sm-C6H6 distances are strong evidence for a SmIII-benzene-4-SmIII assignment. This was further supported by NMR spectroscopy, magnetic susceptibility, reactivity and comprehensive computational investigation.

4.
Small ; 19(45): e2303017, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37480182

RESUMEN

With better light utilization, larger tolerance factor, and higher power conversion efficiency (PCE), the HC(NH2 )2 + (FA)-based perovskite is proven superior to the popular CH3 NH3 + (MA)- and Cs-based halide perovskites in solar cell applications. Unfortunately, limited by intrinsic defects within the FA-based perovskite films, the perovskite films can be easily transformed into a yellow δ-phase at room temperature in the fabrication process, a troublesome challenge for its further development. Here, ytterbium fluoride (YbF3 ) is introduced into the perovskite precursor for three objectives. First of all, the partial substitution of Yb3+ for Pb2+ in the perovskite lattice increases the tolerance factor of the perovskite lattice and facilitates the formation of the α phase. Second, YbF3 and DMSO in the solvent form a Lewis acid complex YbF3 ·DMSO, which can passivate the perovskite film, reduce defects, and improve device stability. Consequently, the YbF3 modified Perovskite solar cell exhibits a champion conversion efficiency of 24.53% and still maintains 90% of its initial efficiency after 60 days of air exposure under 30% relative humidity.

5.
Chemistry ; 29(23): e202203824, 2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-36688627

RESUMEN

Me3 TACN (1,4,7-trimethyl-1,4,7-triazacyclononane)-stabilized trimethylytterbium was obtained via a salt-metathesis protocol employing [(Me3 TACN)YbCl3 ] and methyllithium. Complex [(Me3 TACN)YbMe3 ] seems not to engage in redox chemistry with potassium graphite and is thermally quite stable in the solid state. Treatment of trivalent [(Me3 TACN)YbMe3 ] with 3 equiv. of AlMe3 afforded divalent tetramethylaluminate complex [(Me3 TACN)Yb(AlMe4 )2 ]. The reaction of [(Me3 TACN)YbMe3 ] with GaMe3 in THF gave trivalent ion pair [(Me3 TACN)YbMe2 (thf)][GaMe4 ], which is susceptible to reduction with KC8 . The thermally very labile divalent [(Me3 TACN)YbMe(µ-Me)]2 is the first discrete donor adduct of a divalent dimethyl rare-earth-metal complex.

6.
Chemistry ; 29(36): e202300956, 2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37072374

RESUMEN

Divalent lanthanoid pseudo-Grignard reagents PhLnBr (Ln=Sm, Eu and Yb) can be easily prepared by the oxidative addition of bromobenzene (PhBr) to lanthanoid metals in tetrahydrofuran (THF). PhLnBr reacts with bulky N,N'-bis(2,6-di-isopropylphenyl)formamidine (DippFormH) to generate LnII complexes, namely [Ln(DippForm)Br(thf)3 ]2 ⋅6thf (1; Sm, 2; Eu), and [Yb(DippForm)Br(thf)2 ]2 ⋅2thf (3; Yb). Samarium and europium (in 1 and 2) are seven coordinate, whereas ytterbium (in 3) is six coordinate, and all are bromine-bridged dimers. When PhLnBr reacts with 3,5-diphenylpyrazole (Ph2 pzH), both divalent (5; [Eu(Ph2 pz)2 (thf)4 ]) and trivalent (4 a; [Sm(Ph2 pz)3 (thf)3 ]⋅3thf, 4 b; [Sm(Ph2 pz)3 (dme)2 ]⋅dme) complexes are obtained. In the monomeric compounds 4(a,b), samarium is nine coordinate but europium is eight coordinate in 5. The use of PhLnBr in this work transforms the outcomes from earlier reactions of PhLnI.

7.
Sensors (Basel) ; 24(1)2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38203109

RESUMEN

Optical sensors constitute attractive alternatives to resistive probes for the sensing and monitoring of temperature (T). In this work, we investigated, in the range from 2 to 300 K, the thermal behavior of Yb2+ ion photoluminescence (PL) in glass hosts for cryogenic thermometry. To that end, two kinds of Yb2+-doped preforms, with aluminosilicate and aluminophosphosilicate core glasses, were made using the modified chemical vapor deposition (MCVD) technique. The obtained preforms were then elongated, at about 2000 °C, to canes with an Yb2+-doped core of about 500 µm. Under UV excitation and independently of the core composition, all samples of preforms and their corresponding canes presented a wide visible emission band attributed to Yb2+ ions. Furthermore, PL kinetics measurements, recorded at two emission wavelengths (502 and 582 nm) under 355 nm pulsed excitation, showed an increase, at very low T, followed by a decrease in lifetime until room temperature (RT). A modified two-level model was proposed to interpret such a decay time dependence versus T. Based on the fit of lifetime data with this model, the absolute (Sa) and relative (Sr) sensitivities were determined for each sample. For both the preform and its corresponding cane, the aluminophosphosilicate glass composition featured the highest performances in the cryogenic domain, with values exceeding 28.3 µsK-1 and 94.4% K-1 at 30 K for Sa and Sr, respectively. The aluminophosphosilicate preform also exhibited the wider T operating range of 10-300 K. Our results show that Yb2+-doped silicate glasses are promising sensing materials for optical thermometry applications in the cryogenic domain.

8.
Molecules ; 28(5)2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36903496

RESUMEN

In this contribution, we present the spectroscopic study of two NIR emitting hydrophobic heteroleptic (R,R)-YbL1(tta) and (R,R)-NdL1(tta) complexes (with tta = 2-thenoyltrifluoroacetonate and L1 = N,N'-bis(2-(8-hydroxyquinolinate)methylidene)-1,2-(R,R or S,S)-cyclohexanediamine), both in methanol solution and embedded in water dispersible and biocompatible poly lactic-co-glycolic acid (PLGA) nanoparticles. Thanks to their absorption properties in a wide range of wavelengths extending from the UV up to the blue and green visible regions, the emission of these complexes can be effectively sensitized using visible radiation, which is much less harmful to tissues and skin than the UV one. The encapsulation of the two Ln(III)-based complexes in PLGA allows us to preserve their nature, making them stable in water and to test their cytotoxicity on two different cell lines, with the aim of using them in the future as potential bioimaging optical probes.

9.
Molecules ; 28(4)2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36838619

RESUMEN

The luminescent performances of near-infrared (NIR) lanthanide (Ln) complexes were restricted greatly by vibration quenching of X-H (X = C, N, O) oscillators, which are usually contained in ligands and solvents. Encapsulating Ln3+ into a cavity of coordination atoms is a feasible method of alleviating this quenching effect. In this work, a novel ytterbium complex [Yb(DPPDA)2](DIPEA) coordinated with 4,7-diphenyl-1,10-phenanthroline-2,9-dicarboxylic acid (DPPDA) was synthesized and characterized by FT-IR, ESI-MS and elemental analysis. Under the excitation of 335 nm light, [Yb(DPPDA)2](DIPEA) showed two emission peaks at 975 and 1011 nm, respectively, which were assigned to the characteristic 2F5/2 → 2F7/2 transition of Yb3+. Meanwhile, this ytterbium complex exhibited a plausible absolute quantum yield of 0.46% and a luminescent lifetime of 105 µs in CD3OD solution. In particular, its intrinsic quantum yield was calculated to be 12.5%, and this considerably high value was attributed to the near-zero solvent molecules bound to Yb3+ and the absence of X-H oscillators in the first coordination sphere. Based on experimental results, we further proposed that the sensitized luminescence of [Yb(DPPDA)2](DIPEA) occurred via an internal redox mechanism instead of an energy transfer process.


Asunto(s)
Elementos de la Serie de los Lantanoides , Iterbio , Espectroscopía Infrarroja por Transformada de Fourier , Luminiscencia , Solventes
10.
Angew Chem Int Ed Engl ; 62(5): e202215558, 2023 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-36449410

RESUMEN

The combination of physical properties sensitive to molecular chirality in a single system allows the observation of fascinating phenomena such as magneto-chiral dichroism (MChD) and circularly polarized luminescence (CPL) having potential applications for optical data readout and display technology. Homochiral monodimensional coordination polymers of YbIII were designed from a 2,15-bis-ethynyl-hexahelicenic scaffold decorated with two terminal 4-pyridyl units. Thanks to the coordination of the chiral organic chromophore to Yb(hfac)3 units (hfac- =1,1,1,5,5,5-hexafluoroacetylaconate), efficient NIR-CPL activity is observed. Moreover, the specific crystal field around the YbIII induces a strong magnetic anisotropy which leads to a single-molecule magnet (SMM) behaviour and a remarkable room temperature MChD. The MChD-structural correlation is supported by computational investigations.

11.
J Lumin ; 2452022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35422532

RESUMEN

EuIII and YbIII complexes with the carbazole-dipicolinato ligand dpaCbz2-, namely K3[Eu(dpaCbz)3] and K3[Yb(dpaCbz)3], were isolated. The EuIII complex displayed metal-centred emission upon one-photon excitation with a sensitized emission efficiency Φ L Ln of 1.8±0.3 %, corresponding to an intrinsic emission efficiency Φ Ln Ln of 46% and a sensitization efficiency of ηsens 3.9%, with an emission lifetime of the emissive state τ of 1.087±0.005 ms. The YbIII complex displayed Φ L Ln of 0.010±0.001 %, and a τ of 2.32±0.06 µs. The EuIII-centred emission was sensitized as well upon two-photon excitation and a two-photon absorption cross-section σ2PA of 63 GM at 750 nm was determined for the complex. The one- or two-photon sensitized emission intensity of the EuIII complex changes by more than two-fold when the solvent viscosity is varied in the range 0.5 - 200 cP and the emission is independent of dissolved oxygen. The YbIII complex displays a change in emission intensity as well. However, in this case, a dependence of the emission intensity on dissolved oxygen content was observed.

12.
Clin Oral Investig ; 26(3): 2983-2991, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34791551

RESUMEN

OBJECTIVES: This study aims to evaluate the effect of non-thermal plasma (NTP) surface treatment in two composite inorganic fillers and evaluate their impact on the chemical-mechanical properties and bond strength ability of experimental resin cements. MATERIALS AND METHODS: Ytterbium fluoride (YF) and barium silicate glass (BS) were characterized and submitted to different surface treatments: non-thermal plasma (NTP); non-thermal plasma and 3-(trimethoxysilyl) propyl methacrylate silanization; and 3-(trimethoxysilyl) propyl methacrylate silanization. Untreated fillers were used as a control. The fillers were incorporated at 65wt% concentration into light-cured experimental resin cements (50wt% BisGMA; 25wt% UDMA; 25wt% TEGDMA; 1mol% CQ). The degree of conversion, the flexural strength, and the microshear bond strength (µSBS) were evaluated to characterize developed composites. RESULTS: YF and BS were successfully cleaned with NTP treatment. Nor NTP neither the silanization affected the degree of conversion of resin cements. The NTP predicted an increase in YF-containing resin cements flexural strength, reducing the storage impact in these materials. NTP treatment did not affect the µSBS when applied to YF, while silanization was effective for BS-containing materials. CONCLUSION: NTP treatment of inorganic particles was possible and was shown to reduce the amount of organic contamination of the particle surface. YF surface treatment with NTP can be an alternative to improve the organic/inorganic interaction in resin composites to obtain materials with better mechanical properties. CLINICAL RELEVANCE: Surface cleaning with NTP may be an alternative for particle surface cleaning to enhance organic-inorganic interaction in dental composites resulting in improved mechanical strength of experimental resin cements.


Asunto(s)
Recubrimiento Dental Adhesivo , Gases em Plasma , Bisfenol A Glicidil Metacrilato/química , Resinas Compuestas/química , Ensayo de Materiales , Cementos de Resina/química , Silanos/química , Propiedades de Superficie
13.
Molecules ; 27(21)2022 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-36364375

RESUMEN

Europium bis(tetraphenylborate) [Eu(thf)7][BPh4]2⋅thf containing a fully solvated [Eu(thf)7]2+ cation, was synthesized by protolysis of "EuPh2" (from Eu and HgPh2) with Et3NHBPh4, and the structure was determined by single-crystal X-ray diffraction. Efforts to characterize the putative "Ph2Ln" (Ln = Eu, Yb) reagents led to the synthesis of a mixed-valence complex, [(thf)3YbII(µ-Ph)3YbIII(Ph)2(thf)]⋅2thf, resulting from the reaction of Yb metal with HgPh2 at a low temperature. This mixed-valence YbII/YbIII compound was studied by 171Yb-NMR spectroscopy and single-crystal X-ray diffraction, and the oxidation states of the Yb atoms were assigned.

14.
Molecules ; 27(22)2022 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-36431801

RESUMEN

Reaction of [YbCp2(dme)] (Cp = cyclopentadienyl, dme = 1,2 dimethoxyethane) with bis(diphenylphosphano)methane dioxide (H2dppmO2) leads to deprotonation of the ligand H2dppmO2 and oxidation of ytterbium, forming an extremely air-sensitive product, [YbIII(HdppmO2)3] (1), a six-coordinate complex with three chelating (OPCHPO) HdppmO2 ligands. Complex 1 was also obtained by a redox transmetallation/protolysis synthesis from metallic ytterbium, Hg(C6F5)2, and H2dppmO2. In a further preparation, the reaction of [Yb(C6F5)2] with H2dppmO2, not only yielded compound 1, but also gave a remarkable tetranuclear cage, [Yb4(µ-HdppmO2)6(µ-F)6] (2) containing two [Yb(µ-F)]2 rhombic units linked by two fluoride ligands and the tetranuclear unit is encapsulated by six bridging HdppmO2 donors. The fluoride ligands of the cage result from C-F activation of pentafluorobenzene and concomitant formation of p-H2C6F4 and m-H2C6F4, the last being an unexpected product.

15.
Angew Chem Int Ed Engl ; 61(25): e202200540, 2022 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-35478479

RESUMEN

The trivalent rare-earth metal hydrido and imido complexes are of versatile reactivity, and many such complexes have been synthesized. However, no example of a rare-earth metal complex bearing both hydrido- and imido-ligands has been reported. Herein, we report the first rare-earth metal complex bearing both hydrido- and imido-ligands, namely a hydrido- and imido-bridged dinuclear ytterbium(III) complex. The complex was synthesized via an unprecedented redox reaction of divalent rare-earth metal hydrido complex with azido compound. DFT calculation indicated that the N2 release from azido compound in the presence of ytterbium(II) is a kinetically facile process because of the cooperative effects of the two metal centers. The reactivity of the hydrido- and imido-bridged dinuclear ytterbium(III) complex was also explored, which showed the redox, addition and σ-bond metathesis reactivities.

16.
Chemistry ; 27(7): 2361-2370, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-32926489

RESUMEN

We report the formation of a tetranuclear lanthanide cluster, [Yb4 (bpzch)2 (fod)10 ] (1), which occurs from a serendipitous ring opening of the functionalised tetrazine bridging ligand, bpztz (3,6-dipyrazin-2-yl-1,2,4,5-tetrazine) upon reacting with Yb(fod)3 (fod- =6,6,7,7,8,8,8-heptafluoro-2,2-dimethyl-3,5-octandionate). Compound 1 was structurally elucidated via single-crystal X-ray crystallography and subsequently magnetically and spectroscopically characterised to analyse its magnetisation dynamics and its luminescence behaviour. Computational studies validate the observed MJ energy levels attained by spectroscopy and provides a clearer picture of the slow relaxation of the magnetisation dynamics and relaxation pathways. These studies demonstrate that 1 acts as a single-molecule magnet (SMM) under an applied magnetic field in which the relaxation occurs via a combination of Raman, direct, and quantum tunnelling processes, a behaviour further rationalised analysing the luminescent properties. This marks the first lanthanide-containing molecule that forms by means of an asymmetric tetrazine decomposition.

17.
Chemistry ; 27(10): 3449-3456, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33084133

RESUMEN

The importance of equatorial crystal fields on magnetic anisotropy of ytterbium single molecule magnets (SMMs) is observed for the first time. Herein, we report three similar dinuclear ytterbium complexes with the formula [Yb2 (3-OMe-L)2 (DMF)2 (NO3 )2 ]⋅DMF (1), [Yb2 (3-H-L)2 (DMF)2 (NO3 )2 ]⋅DMF⋅H2 O (2), and [Yb2 (3-NO3 -L)2 (DMF)2 (NO3 )2 ] (3), [where 3-X-H2 L=N'-(2-hydroxy-3-X-benzylidene)picolinohydrazide, X=OMe (1), H (2) NO2 (3)]. Detailed magnetic measurements reveal the presence of weak antiferromagnetic interactions between the Yb centers and a field-induced slow relaxation of magnetization in all complexes. A higher energy barrier for spin reversal was observed for complex 1 (Ueff =50 K) and it decreases in the order of 2 (47 K) to 3 (40 K). Notably, complex 1 shows a remarkable energy barrier within the frequency range of 1-850 Hz reported for Yb-based SMMs. Further, ab initio calculations show a higher axial anisotropy and lower quantum tunneling of magnetization (QTM) in the ground state for 1 compared to 2 and 3. It was also observed that the presence of a strong crystal field in the equatorial plane (when the ∡ O1-Yb-O3 bond angle is close to 90°) enhances the axial anisotropy and improves the SMM behavior in the studied complexes. Both the experimental and theoretical analysis of relaxation dynamics discloses that Raman and QTM play major role on slow relaxation process for all complexes. To provide more insight into the exchange interactions, broken-symmetry DFT calculations were performed.

18.
Chemistry ; 27(26): 7362-7366, 2021 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-33780055

RESUMEN

A field-induced chiral YbIII Single-Molecule Magnet (SMM) displayed an unprecedented near-infrared circularly polarized luminescence (NIR-CPL) in the solid-state. The bridging bis(1,10-phenantro[5,6b])tetrathiafulvalene triad (L) allowed an efficient sensitization of the NIR 2 F5/2 →2 F7/2 emission while the NIR-CPL is associated to the f-f transitions of the YbIII ion bearing chiral ß-diketonate derived-camphorate ancillary ligands.

19.
Chemistry ; 27(52): 13144-13148, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34258796

RESUMEN

A dimeric ß-diketiminato ytterbium(II) hydride affects both the two-electron aromatization of 1,3,5,7-cyclooctatetraene (COT) and the more challenging two-electron reduction of polyaromatic hydrocarbons, including naphthalene (E0 =-2.60 V). Confirmed by Density Functional Theory calculations, these reactions proceed via consecutive polarized Yb-H/C=C insertion and deprotonation steps to provide the respective ytterbium (II) inverse sandwich complexes and hydrogen gas. These observations highlight the ability of a simple ytterbium(II) hydride to act as a powerful two-electron reductant at room temperature without the necessity of an external electron to initiate the reaction and avoiding radicaloid intermediates.

20.
Ecotoxicol Environ Saf ; 214: 112113, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33690006

RESUMEN

The main purpose of this work is to thoroughly describe the implementation protocol of laser-induced breakdown spectroscopy (LIBS) method in the plant analysis. Numerous feasibility studies and recent progress in instrumentation and trends in chemical analysis make LIBS an established method in plant bioimaging. In this work, we present an easy and straightforward phytotoxicity case study with a focus on LIBS method. We intend to demonstrate in detail how to manipulate with plants after exposures and how to prepare them for analyses. Moreover, we aim to achieve 2D maps of spatial element distribution with a good resolution without any loss of sensitivity. The benefits of rapid, low-cost bioimaging are highlighted. In this study, cabbage (Brassica oleracea L.) was treated with an aqueous dispersion of photon-upconversion nanoparticles (NaYF4 doped with Yb3+ and Tm3+ coated with carboxylated silica shell) in a hydroponic short-term toxicity test. After a 72-hour plant exposure, several macroscopic toxicity end-points were monitored. The translocation of Y, Yb, and Tm across the whole plant was set by employing LIBS with a lateral resolution 100 µm. The LIBS maps of rare-earth elements in B.oleracea plant grown with 50 µg/mL nanoparticle-treated and ion-treated exposures showed the root as the main storage, while the transfer via stem into leaves was minimal. On the contrary, the LIBS maps of plants exposed to the 500 µg/mL nanoparticle-treated and ion-treated uncover slightly different trends, nanoparticles as well as ions were transferred through the stem into leaves. However, the main storage organ was a root as well.


Asunto(s)
Brassica/metabolismo , Fluoruros/administración & dosificación , Nanopartículas/administración & dosificación , Dióxido de Silicio/administración & dosificación , Tulio/toxicidad , Iterbio/administración & dosificación , Itrio/administración & dosificación , Rayos Láser , Hojas de la Planta/metabolismo , Raíces de Plantas/metabolismo , Tallos de la Planta/metabolismo , Análisis Espectral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA