Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Int J Phytoremediation ; 24(12): 1321-1329, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35019788

RESUMEN

A major concern in membrane-based water purification system is generation of huge concentrate stream and wastage of water. A typical Reverse osmosis (RO) or Nanofiltration (NF) system generates 20-25% reject containing high amount of dissolved salts and other contaminants. Contrary to popular belief, this reject water cannot be used without removing the contaminants or cannot be discharged anywhere. Main goal of this project is to find a cheapest and green way for treatment of RO/NF reject. Algal evaporation technique was explored in laboratory scale, to find its suitability for treatment of chloride-rich membrane reject in actual scenario and based on the results obtained, a pilot plant of 48KL was established on Hooghly Met Coke division (HMC), Tata Steel. Particular species of microalgae was selected, to take up minerals from reject water. There are several types of bacteria and symbiotic algae associated with selected micro algae survive in high TDS. A unique slope roof system, connected with algae growth tank, helps in efficient evaporation of water ensuring a Zero discharge. A markedly improved performance was achieved when algal evaporation followed solar evaporation. A total evaporation of 11 L/m2/day was observed, which was almost five times faster than Solar evaporation.


Algae based evaporation technology was explored to find its suitability for treatment of high chloride-based membrane reject. Specific Species of microalgae, which can take up minerals from reject water was selected.Based on algal evaporation, a pilot plant of 48 KL was established on Hooghly Met Coke division (HMC), Tata Steel India site.Rate of evaporation 11 L/m2/day was observed, which was almost five times faster than solar evaporation.


Asunto(s)
Microalgas , Purificación del Agua , Biodegradación Ambiental , Ósmosis , Ríos , Agua , Purificación del Agua/métodos
2.
J Environ Manage ; 280: 111639, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33203578

RESUMEN

This study investigated an innovative decentralized water system which combined rainwater harvesting with wastewater reclamation to generate 39% of the water resources needed for a higher education institution with student and staff accommodation in India. We collected performance data to critically appraise the current water system, design alternatives and water management optimization opportunities. The campus was recently built in a hot, semi-arid region of India with a summer, monsoon and winter season. It represented in a microcosm the vision of leading Indian engineers for a more sustainable urban systems future. We collated the water infrastructure costs, blue and recycled water demands, chemical demands, electricity demands and operational costs over a calendar year. The annual institutional water demand was 379,768 m3, of which 32% was sourced from reclaimed wastewater, and 7% from roof-collected rainwater. Electricity consumption was 0.40 kWh/m3 for drinking water treatment, and 0.62 kWh/m3 for wastewater treatment, in line with median values reported for centralized systems. Rainwater harvesting and wastewater reclamation accounted for 42% of the water infrastructure costs, with a predicted payback period of >250 years through reduced operational costs. Scenario analysis recommended a water system design alternative with wastewater reclamation for ground maintenance only, which was predicted to yield similar environmental benefits, with an infrastructure cost payback period of only 15 years. Scenario analysis also revealed how better water management to address leakage, and more drought-tolerant landscaping, could improve environmental metrics of the current system by up to 52% and reduce operational costs by up to 23%. Reducing high domestic water usage was found to be essential to secure gains achieved with water infrastructure innovations. Rainwater harvesting had high infrastructure costs, and water policy in low- and middle-income countries should instead support wastewater reclamation and best practice in water management.


Asunto(s)
Aguas Residuales , Purificación del Agua , Conservación de los Recursos Naturales , Humanos , India , Lluvia , Agua , Abastecimiento de Agua
3.
J Environ Manage ; 292: 112740, 2021 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-33991829

RESUMEN

It is expected that low-energy and scientific zero discharge of chemical-mechanical pulping wastewater will be achieved by applying the mechanical vapor recompression (MVR) technology. In this paper, the equal-standard pollution load model was introduced into pulp and paper field to parse the pollution sources for the first time. The results from the source apportionment indicated that the screw press and concentrating were the major pollution unit operations, and their cumulative load ratio reached 92.92%. The further survey demonstrated that the dominating pollution factors in the traditional chemical-mechanical pulping process were Chemical Oxygen Demand (COD), Biochemical Oxygen Demand (BOD5), and Suspended Solids (SS), whose cumulative load ratio was 92.69%. The environmental analysis demonstrated the implementation of MVR technology significantly decreased the pollution load and reduce the pressure of subsequent wastewater treatment. In addition, a further economic performance indicated that the utilization of MVR technology possessed a smaller operating cost of 2.899 $/m3. The result of the given model provides a scientific gist and instruction for the future treatment of water pollutants in the chemical-mechanical pulping process. The MVR technology is conducive for wastewater treatment to minimize environmental effects and costs.


Asunto(s)
Contaminantes Químicos del Agua , Contaminantes del Agua , Purificación del Agua , Análisis de la Demanda Biológica de Oxígeno , Eliminación de Residuos Líquidos , Aguas Residuales/análisis , Contaminantes Químicos del Agua/análisis
4.
J Environ Manage ; 247: 140-151, 2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-31247361

RESUMEN

With increasing urbanization and industrialization, the scarcity of freshwater is becoming rampant. To counteract this, authorities all over the world are forced to consider the treatment and reuse of the wastewater produced by either industries or domestic units. After an extensive literature survey, vermifiltration coupled with/without macrophyte has been identified as one of the best sustainable, natural and eco-friendly technology for the treatment and reuse of wastewater. Till date, it has been successfully applied for treating domestic wastewater. However, the results from very limited industrial applications are also encouraging and proving its worth for industrial wastewater remediation. The present review on vermifiltration deals with the mechanisms involved and its current status for the remediation and reutilisation of the effluents generated from domestic and industrial premises. The review successfully identifies and explicitly discusses the mechanisms involved in the vermifiltration. The review exhaustively discusses the performance of vermifiltration and identifies the factors contributing to the performance of vermifiltration, which could be of help in designing of the field scale vermifilter based treatment plant. The review identifies the limitations associated with the vermifiltration and suggests possible alternatives, aimed to improve its performance and applicability. The aim of this review is to bring the attention of prospective researchers to study each and every aspect related to the vermifiltration so that it may be adopted as a reliable and dependable technology for the remediation of several industrial effluents meeting the concept of "Zero discharge".


Asunto(s)
Eliminación de Residuos Líquidos , Aguas Residuales , Industrias , Estudios Prospectivos , Tecnología
5.
J Environ Manage ; 231: 345-351, 2019 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-30366313

RESUMEN

Livestock effluents are a nutrient supply that is beneficial for crops, so their use is essential to guarantee the sustainability of the global management of farms. Zero discharge cattle effluent management to irrigate fodder crops is a mitigation option, so it is considered a key factor for adaptation to climate change. This paper presents the result of an "on site" pilot scale (three-stage, vertical flow filtration system using lapilli). This is a low-cost solution in terms of finance and energy, which does not require the addition of chemicals, to treat a cattle effluent. The effluent's quality obtained allowed it to be injected in a drip system with low risks of obstruction. And the pilot system allowed to obtain elimination values for the main parameters of effluent's quality (TSS and COD, 98% and 80% respectively) similar or greater than the ones obtained in other treatments of low cost and energy, and gives values contemplated in reclaimed water reuse guidelines of many countries. Furthermore, elimination rate for the BOD5 obtained 35 mgL-1 in treated effluent. High removal rates were obtained for N, P, K, Cu, Fe and Mn, medium for Ca, Mg and Zn and low for B and Na. These shows that the pilot system and fodder crop combination provide an optimal solution to small farms, controlling sanitary risks. The tested flow allows the use of this system by conventional small farms, which represented 94% of total cow farms in Canary Islands.


Asunto(s)
Alimentación Animal , Eliminación de Residuos Líquidos , Animales , Biodegradación Ambiental , Bovinos , Femenino , Proyectos Piloto , España
6.
J Environ Manage ; 133: 153-61, 2014 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-24374244

RESUMEN

Short rotation coppiced willow trees can be used to treat on-site wastewater effluent with the advantage that, if planted in a sealed basin and sized correctly, they produce no effluent discharge. This paper has investigated the evapotranspiration rate of four different willow varieties while also monitoring the effects of three different effluent types on each variety. The willow varieties used are all cultivars of Salix viminalis. The effluents applied were primary (septic tank) effluent, secondary treated effluent and rain water (control). The results obtained showed that the addition of effluent had a positive effect on the evapotranspiration. The willows were also found to uptake a high proportion of the nitrogen and phosphorus from the primary and secondary treated effluents added during the first year. The effect of the different effluents on the evapotranspiration rate has been used to design ten full scale on-site treatment systems which are now being monitored.


Asunto(s)
Biodegradación Ambiental , Clima , Salix , Aguas Residuales , Biomasa , Irlanda , Especificidad de la Especie
7.
J Hazard Mater ; 465: 133059, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38000287

RESUMEN

Recovery of water, salts, and hazardous dye from complex saline textile wastewater faces obstacles in separating dissolved ionic substances and recovering organic components during desalination. This study realized the simultaneous fractionation, desalination, and dye removal/recovery treatment of textile wastewater by using trehalose (Tre) as an aqueous monomer to prepare polyester loose nanofiltration (LNF) membrane with fine control microstructure via interfacial polymerization. Outperforming the NF270 commercial membrane, the Tre-1.05/TMC optimized membrane achieves zero-discharge textile wastewater treatment, cutting energy consumption by 295% and reducing water consumption by 42.8%. This efficiency surge results from remarkable water permeability (130.83 L m-2 h-1 bar-1) and impressive dye desalination (NaCl/ Direct Red 23 separation factor of 275) of the Tre-1.05/TMC membrane. For a deeper comprehension of filtration performance, the sieving mechanism of polyester LNF membranes was systematically elucidated. This strategic approach offers significant prospects for energy conservation, carbon emission mitigation, and enhanced feasibility of membrane-based wastewater treatment systems.

8.
Sci Total Environ ; 913: 169522, 2024 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-38141992

RESUMEN

In this study, an organic wastewater treatment process based on aerobic composting technology was developed in order to explore the transition of wastewater treatment from pollutants removal to resource recovery. The novelty of the process focuses towards the microbial metabolic heat that is often ignored during the composting, and taking advantage of this heat for wastewater evaporation to achieve zero-discharge treatment. Meanwhile, this process can retain the wastewater's nutrients in the composting substrate to realize the recovery of resources. This study determined the optimum condition for the process (initial water content of 50 %, C/N ratio of 25:1, ventilation rate of 3 m3/h), and 69.9 % of the total heat generated by composting was used for wastewater treatment under the condition. The HA/FA ratio of composting substrate increased from 0.07 to 0.53 after wastewater treatment, and the retention ratio of TOC and TN was 52.3 % and 61.7 %, respectively, which proved the high recycling value of the composting products. Thermoduric and thermophilic bacteria accounted for 44.3 % of the community structure at the maturation stage, which played a pivotal role in both pollutant removal and resource recovery.


Asunto(s)
Compostaje , Contaminantes Ambientales , Purificación del Agua , Aguas Residuales , Suelo
9.
Environ Technol ; : 1-12, 2023 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-37129294

RESUMEN

The evapotranspiration tank (TEvap) is a 'zero-discharge' ecotechnology for toilet water disposal. This work refers to a preliminary study to evaluate the influence of forages and the addition of a vertical soil strip on evapotranspiration (ET), electrical conductivity (EC) and pH in TEvap receiving fresh water. The factors studied were the forages and the soil strip, resulting in four treatments with three replications. Two plant growing seasons, cycle 1 and cycle 2, were monitored, during which the variables were measured every three and seven days, respectively. Weather variables were used to estimate the reference evapotranspiration and determine the TEvap coefficient (KTEvap). The accumulated ET for TEvap with Capiaçu was 27.93% and 45.89% greater than for TEvap cultivated with Tifton-85 during the first and second cycles, respectively. There were no significant differences in ET for TEvap with and without the soil strip. BRS Capiaçu also showed lower values for EC and pH. High values were obtained for KTEvap: 2.37 and 1.76 for TEvap cultivated with BRS Capiaçu and Tifton-85 grass, respectively. Considering the period of this study, the minimum area for 'zero-discharge' would be 5.70 m2 inhab-1 and 7.77 m2 inhab-1 by TEvap planted with BRS Capiaçu and Tifton-85 grass, respectively. Due to its greater capacity for evapotranspiration, it can be concluded that the BRS Capiaçu forage is suitable for a 'zero-discharge' constructed wetland systems. It is suggested that further, more-thorough studies be carried out to design a 'zero-discharge' TEvap, considering different weather conditions, crops and inlet toilet water.HIGHLIGHTS Evapotranspiration tank (TEvap) is a 'zero discharge' ecotechnology for disposing toilet water;A preliminary study was conducted to simulate the evapotranspiration in TEvap receiving fresh water;Two forages - Cynodon spp. (Tifton-85 grass) and Pennisetum spp. (BRS Capiaçu) - were cultivated in the tanks;5.70 m2 inhab-1 were estimated for evapotranspiration with BRS Capiaçu and 7.77 m2 inhab-1 with Tifton-85 grass.

10.
Chemosphere ; 338: 139433, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37419149

RESUMEN

This study focuses on the evaluation of dye recovery and reuse potential from denim and polyester effluents using forward osmosis (FO). A cationic surfactant, tetraethylammonium bromide (TEAB), was used as the draw solution (DS). After optimizing the DS and feed solution (FS) concentrations and temperatures in batch experiments, a DS concentration of 0.75 M was selected at a 60 °C temperature for the semi-continuous mode. It generated a high flux of 18 L/m2/h and a low reverse solute flux (RSF) of 0.4 g/m2/h with 100% dye rejection. Dye reconcentration of 82-98% was achieved in the dyebath effluents. The unique property of surfactants to combine hundreds of monomers into micelle resulted in negligible RSF. Reversible fouling was observed on the membrane active layer, and NaOH and citric acid cleaning achieved about 95% of flux recovery. The functional groups on the membrane's active layer remained undisturbed due to foulant interactions showing its chemical stability against reactive dyes. Recovered dye characterization using 1D proton nuclear magnetic resonance (1HNMR) analysis depicted a 100% structural resemblance to the original dye. Hence, it can be reused for dyeing the next batch. Diluted TEAB solution can be used as fabric detergent and softener within the same textile industry in the finishing process. A minimum liquid and persistent pollutant (dyes) discharge is achieved by adopting the methodology proposed in this work with a strong potential of translating it to an industrial scale.


Asunto(s)
Colorantes , Purificación del Agua , Membranas Artificiales , Purificación del Agua/métodos , Ósmosis , Soluciones
11.
Plants (Basel) ; 11(17)2022 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-36079635

RESUMEN

With the development of the economy and society, more attention is being paid to energy costs and the potential environmental pollution caused by vegetable cultivation. The aim of this study was to investigate the impacts of zero discharge of nutrient solutions on cucumber growth, leaf photosynthesis, and the yield and quality of cucumber under greenhouse conditions. The results show that zero discharge treatment did not change plant height, stem diameter, internode length, leaf area, net photosynthetic rate (Pn), stomatal conductance (Gs), intercellular CO2 concentration (Ci), transpiration rate (Tr), and leaf relative chlorophyll content on the most measurement days. Only Pn and relative chlorophyll content were significantly reduced after 16 days of treatment but soon recovered over time. Cucumber plants can adapt to treatment circumstances over the course of days. Leaf mineral element contents showed significant differences on some treatment days compared to the control, and trace elements of Fe, Mn, Cu, and Mo can be appropriately supplied during the treatment days. The cucumber yield and fruit quality in the zero discharge treatment did not change during the whole experimental period. This study confirmed that the irrigation method of a nutrient solution with zero discharge can be applied in cucumber cultivation practices. The strict management of irrigation strategy, plant growth, and greenhouse climate are very important for zero discharge cultivation. The cultivation method with zero discharge of nutrient solution can reduce the energy costs of disinfection, save water and fertilizers, and reduce the environmental pollution in cucumber cultivation.

12.
Membranes (Basel) ; 12(6)2022 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-35736253

RESUMEN

Although dye removal from wastewater streams has been investigated via several approaches using adsorbents, resins, or membranes, it is still hard to avoid the fact that dyes are persistently left in the adsorption materials or washing solutions used to regenerate the used adsorbents. In particular, given that cleaning agents are composed of acid/base, organic solvents, or electrolytes, dye adsorption and adsorbent regeneration processes leave behind more hard-to-manage wastewater containing dyes. In this study, we demonstrated that cold plasma (CP) treatment, which is one of the advanced oxidation processes (AOPs), can be used for zero discharge of dyes and regeneration of a washing solution in a membrane-based dye removal process. Specifically, CP treatment was found to successfully remove dyes released from a washing process to regenerate a used membrane, thereby effectively recycling a cleaning solution. As a result, the regenerated washing solution was more favorable for the adsorbed dyes' elution, leading to the successful regeneration of a used membrane without a significant loss of dye removal efficiency. This fact was evidenced by a comparative study on the effect of CP treatment on the reusability of membranes and washing solutions and the kinetic analysis of the AOP of the desorbed dyes. We hope that this study contributes to opening a new door for environmentally friendly and sustainable dye removal.

13.
Adv Sci (Weinh) ; 8(23): e2102857, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34693662

RESUMEN

Water pollution is one of the leading causes of death and disease worldwide, yet mitigating it remains a challenge. This paper presents an efficient new strategy for the processing of wastewater utilizing an accessible redox reaction with MoSe2 nanoflowers, which shows a strong oxidizing ability and permits the decomposition of dye molecules in dark environments without the need for an external power source. This reaction can treat wastewater at a decomposition rate above 0.077 min-1 , even when interacting with organic pollutants at concentrations up to 1500 ppm. Theoretical calculations by Dmol3 simulation elucidates that the reactions proceed spontaneously, and the kinetic constant (kobs ) for this redox reaction with 10 ppm RhB dye is 0.53 min-1 , which is 65 times faster than the titanium dioxide photocatalytic wastewater treatment. More importantly, the residual waste solution can be further utilized as a precursor to reconstruct the MoSe2 nanoflowers. To demonstrate the effectiveness and reusability, the treated effluent is directly used as the sole source of irrigated water for plants with no adverse effect. This method offers an eco-friendly and more accessible way to treat industrial wastewater with zero-discharge.

14.
Nefrologia (Engl Ed) ; 41(6): 620-624, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-36165151

RESUMEN

Scarcity of water and energy, and legal requirements for discharge of waste and wastewater are forcing hemodialysis facilities to change their approach to a more integrated concept of connecting the residual output (in terms of waste, wastewater and energy loss) to the input (in terms of water and energy). Zero liquid discharge is an expanding water treatment philosophy in which hemodialysis wastewater is purified and recycled, leaving little to no effluent remaining when the process is complete, thereby saving money and being beneficial to the environment. This article explores the possible ways to treat hemodialysis wastewater, thus achieving ZLD conditions.


Asunto(s)
Aguas Residuales , Purificación del Agua , Humanos , Diálisis Renal
15.
Nefrologia (Engl Ed) ; 2021 Mar 16.
Artículo en Inglés, Español | MEDLINE | ID: mdl-33741174

RESUMEN

Scarcity of water and energy, and legal requirements for discharge of waste and wastewater are forcing hemodialysis facilities to change their approach to a more integrated concept of connecting the residual output (in terms of waste, wastewater and energy loss) to the input (in terms of water and energy). Zero liquid discharge is an expanding water treatment philosophy in which hemodialysis wastewater is purified and recycled, leaving little to no effluent remaining when the process is complete, thereby saving money and being beneficial to the environment. This article explores the possible ways to treat hemodialysis wastewater, thus achieving ZLD conditions.

16.
J Hazard Mater ; 260: 660-7, 2013 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-23832058

RESUMEN

Alkaline glyphosate neutralization liquors containing a high salinity pose a severe environmental pollution problem by the pesticide industry. However, there is a high potential for glyphosate recovery due to the high concentration of glyphosate in the neutralization liquors. In the study, a three-compartment bipolar membrane electrodialysis (BMED) process was applied on pilot scale for the recovery of glyphosate and the production of base/acid with high concentration in view of zero discharge of wastewater. The experimental results demonstrate that BMED can remove 99.0% of NaCl from the feed solution and transform this fraction into HCl and NaOH with high concentration and purity. This is recycled for the hydrolysis reaction of the intermediate product generated by the means of the Mannich reaction of paraformaldehyde, glycine and dimethylphosphite catalyzed by triethylamine in the presence of HCl and reclamation of the triethylamine catalyst during the production process of glyphosate. The recovery of glyphosate in the feed solution was over 96%, which is acceptable for industrial production. The current efficiency for producing NaOH with a concentration of 2.0 mol L(-1) is above 67% and the corresponding energy consumption is 2.97 kWh kg(-1) at a current density of 60 mA cm(-2). The current efficiency increases and energy consumption decreases as the current density decreases, to 87.13% and 2.37 kWh kg(-1), respectively, at a current density of 30 mA cm(-2). Thus, BMED has a high potential for desalination of glyphosate neutralization liquor and glyphosate recovery, aiming at zero discharge and resource recycling in industrial application.


Asunto(s)
Glicina/análogos & derivados , Plaguicidas/aislamiento & purificación , Contaminantes Químicos del Agua/aislamiento & purificación , Purificación del Agua/métodos , Catálisis , Industria Química , Electroquímica , Contaminantes Ambientales , Restauración y Remediación Ambiental , Glicina/química , Glicina/aislamiento & purificación , Ácido Clorhídrico/química , Concentración de Iones de Hidrógeno , Hidrólisis , Membranas Artificiales , Plaguicidas/química , Cloruro de Sodio/química , Hidróxido de Sodio/química , Factores de Tiempo , Contaminantes Químicos del Agua/química , Glifosato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA