RESUMEN
Alginic acid (AA) is a kind of polysaccharide extracted from brown seaweeds and has been widely used in food industry. Certain positive effects of AA, such as anti-inflammation and anti-allergy, have been reported. Nevertheless, as a potential chemical contaminant of the environment, its impact on female reproductive system remains to be investigated. The purpose of this study is to explore the impact of AA on ovary and to investigate the further cellular mechanism. Primarily, in vitro cultured mouse ovary granulosa cells (GCs) were treated with AA at a concentration of 10µM for 24 h. The cells and supernatant were collected and subjected to further measures. The results demonstrated that after being treated with 10µM AA for 24 h the levels of estradiol and progesterone in supernatant were down-regulated. And excessive reactive oxygen species (ROS) and declined antioxidant capacity were also determined. Additionally, a large number of apoptotic bodies and autophagic vesicles were found in the experimental cells, and the mitochondria-mediated apoptotic pathway was demonstrated to play a main role in GCs apoptosis. To further investigate the effect of AA on ovary, the female ICR mice were administered with AA (10 mg/ kg bodyweight) intraperitoneally for successive 35 days, and the estrus phase was recorded simultaneously. After exposure, the ovaries and blood samples were collected for further analysis. The results revealed that the estrus period of the mice was shortened and the interestrus period was extended after being treated with AA for 35 days. At the organismal level, the numbers of antral follicles and atresia follicles increased and the levels of pro-apoptosis and autophagy-related proteins were detected upregulated after AA treatment. Taken together, both in vivo and in vitro data suggested that AA has toxicity on female reproduction by disrupting estrogen production and inducing oxidative stress, mitochondria-mediated apoptosis and autophagy. Our results provide new scientific basis and the concern for controlling the increasing use of AA.
Asunto(s)
Ácido Algínico/toxicidad , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Disruptores Endocrinos/toxicidad , Hormonas Esteroides Gonadales/metabolismo , Células de la Granulosa/efectos de los fármacos , Ovario/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Animales , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Células Cultivadas , Estradiol/sangre , Ciclo Estral/sangre , Ciclo Estral/efectos de los fármacos , Femenino , Hormonas Esteroides Gonadales/sangre , Células de la Granulosa/metabolismo , Células de la Granulosa/ultraestructura , Ratones Endogámicos ICR , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Ovario/metabolismo , Ovario/ultraestructura , Progesterona/sangre , Vías Secretoras , Factores de TiempoRESUMEN
The work is focused on the development of microspheres based on the combination of two polysaccharides; chitosan and alginic acid with the aim to allocate, hold, release and protect environmentally sensible molecules. The microspheres were prepared using a solvent-free, low cost and scalable approach and two enzymes; trypsin and protease from Aspergillus Oryzae have been used as a model to evaluate the microspheres peculiarities. The proteins were encapsulated during the microspheres preparation. The relationship between the polysaccharides weight ratio and the morphology, stability and ability of the carrier to allocate the enzymes has been evaluated. The enzymatic activity and the release kinetics were assessed in different conditions to assess the impact of the external environment. Obtained results demonstrate the efficacy of the prepared microspheres to preserve the activity of relevant bioactive compounds which are highly relevant in food, cosmetic and pharmaceutic, but the application is limited due to their high sensibility.