Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.832
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 187(19): 5253-5266.e16, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39173632

RESUMEN

Horizontal gene transfer is a key driver of bacterial evolution, but it also presents severe risks to bacteria by introducing invasive mobile genetic elements. To counter these threats, bacteria have developed various defense systems, including prokaryotic Argonautes (pAgos) and the DNA defense module DdmDE system. Through biochemical analysis, structural determination, and in vivo plasmid clearance assays, we elucidate the assembly and activation mechanisms of DdmDE, which eliminates small, multicopy plasmids. We demonstrate that DdmE, a pAgo-like protein, acts as a catalytically inactive, DNA-guided, DNA-targeting defense module. In the presence of guide DNA, DdmE targets plasmids and recruits a dimeric DdmD, which contains nuclease and helicase domains. Upon binding to DNA substrates, DdmD transitions from an autoinhibited dimer to an active monomer, which then translocates along and cleaves the plasmids. Together, our findings reveal the intricate mechanisms underlying DdmDE-mediated plasmid clearance, offering fundamental insights into bacterial defense systems against plasmid invasions.


Asunto(s)
Proteínas Bacterianas , Transferencia de Gen Horizontal , Plásmidos , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , ADN/metabolismo , ADN Helicasas/metabolismo , ADN Bacteriano/metabolismo , ADN Bacteriano/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Modelos Moleculares , Plásmidos/metabolismo , Plásmidos/genética
2.
Cell ; 184(8): 2053-2067.e18, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33794144

RESUMEN

Industrialization has impacted the human gut ecosystem, resulting in altered microbiome composition and diversity. Whether bacterial genomes may also adapt to the industrialization of their host populations remains largely unexplored. Here, we investigate the extent to which the rates and targets of horizontal gene transfer (HGT) vary across thousands of bacterial strains from 15 human populations spanning a range of industrialization. We show that HGTs have accumulated in the microbiome over recent host generations and that HGT occurs at high frequency within individuals. Comparison across human populations reveals that industrialized lifestyles are associated with higher HGT rates and that the functions of HGTs are related to the level of host industrialization. Our results suggest that gut bacteria continuously acquire new functionality based on host lifestyle and that high rates of HGT may be a recent development in human history linked to industrialization.


Asunto(s)
Bacterias/genética , Microbioma Gastrointestinal , Transferencia de Gen Horizontal , Bacterias/clasificación , Bacterias/aislamiento & purificación , ADN Bacteriano/química , ADN Bacteriano/aislamiento & purificación , ADN Bacteriano/metabolismo , Heces/microbiología , Genoma Bacteriano , Humanos , Filogenia , Población Rural , Análisis de Secuencia de ADN , Población Urbana , Secuenciación Completa del Genoma
3.
Cell ; 184(9): 2441-2453.e18, 2021 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-33770501

RESUMEN

Tn7-like transposons have co-opted CRISPR systems, including class 1 type I-F, I-B, and class 2 type V-K. Intriguingly, although these CRISPR-associated transposases (CASTs) undergo robust CRISPR RNA (crRNA)-guided transposition, they are almost never found in sites targeted by the crRNAs encoded by the cognate CRISPR array. To understand this paradox, we investigated CAST V-K and I-B systems and found two distinct modes of transposition: (1) crRNA-guided transposition and (2) CRISPR array-independent homing. We show distinct CAST systems utilize different molecular mechanisms to target their homing site. Type V-K CAST systems use a short, delocalized crRNA for RNA-guided homing, whereas type I-B CAST systems, which contain two distinct target selector proteins, use TniQ for RNA-guided DNA transposition and TnsD for homing to an attachment site. These observations illuminate a key step in the life cycle of CAST systems and highlight the diversity of molecular mechanisms mediating transposon homing.


Asunto(s)
Bacterias/genética , Proteínas Bacterianas/metabolismo , Proteínas Asociadas a CRISPR/metabolismo , Elementos Transponibles de ADN/fisiología , ADN Bacteriano/metabolismo , ARN Guía de Kinetoplastida , Transposasas/metabolismo , Bacterias/metabolismo , Proteínas Bacterianas/genética , Proteínas Asociadas a CRISPR/genética , Sistemas CRISPR-Cas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , ADN Bacteriano/genética , Edición Génica , Recombinación Genética , Transposasas/genética
4.
Cell ; 179(7): 1512-1524.e15, 2019 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-31835030

RESUMEN

During cell division, newly replicated DNA is actively segregated to the daughter cells. In most bacteria, this process involves the DNA-binding protein ParB, which condenses the centromeric regions of sister DNA molecules into kinetochore-like structures that recruit the DNA partition ATPase ParA and the prokaroytic SMC/condensin complex. Here, we report the crystal structure of a ParB-like protein (PadC) that emerges to tightly bind the ribonucleotide CTP. The CTP-binding pocket of PadC is conserved in ParB and composed of signature motifs known to be essential for ParB function. We find that ParB indeed interacts with CTP and requires nucleotide binding for DNA condensation in vivo. We further show that CTP-binding modulates the affinity of ParB for centromeric parS sites, whereas parS recognition stimulates its CTPase activity. ParB proteins thus emerge as a new class of CTP-dependent molecular switches that act in concert with ATPases and GTPases to control fundamental cellular functions.


Asunto(s)
Proteínas Bacterianas/química , Citidina Trifosfato/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Myxococcus xanthus/genética , Myxococcus xanthus/metabolismo , Motivos de Nucleótidos , Unión Proteica
5.
Cell ; 177(6): 1632-1648.e20, 2019 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-31150626

RESUMEN

The scaling of organelles with cell size is thought to be exclusive to eukaryotes. Here, we demonstrate that similar scaling relationships hold for the bacterial nucleoid. Despite the absence of a nuclear membrane, nucleoid size strongly correlates with cell size, independent of changes in DNA amount and across various nutrient conditions. This correlation is observed in diverse bacteria, revealing a near-constant ratio between nucleoid and cell size for a given species. As in eukaryotes, the nucleocytoplasmic ratio in bacteria varies greatly among species. This spectrum of nucleocytoplasmic ratios is independent of genome size, and instead it appears linked to the average population cell size. Bacteria with different nucleocytoplasmic ratios have a cytoplasm with different biophysical properties, impacting ribosome mobility and localization. Together, our findings identify new organizational principles and biophysical features of bacterial cells, implicating the nucleocytoplasmic ratio and cell size as determinants of the intracellular organization of translation.


Asunto(s)
Estructuras Celulares/metabolismo , Estructuras Celulares/fisiología , Biosíntesis de Proteínas/fisiología , Bacterias/genética , Proteínas Bacterianas/metabolismo , Tamaño de la Célula , Citoplasma/fisiología , ADN Bacteriano/metabolismo , Proteínas de Unión al ADN/metabolismo , Orgánulos/metabolismo , Células Procariotas/metabolismo , Células Procariotas/fisiología , Ribosomas/metabolismo
6.
Annu Rev Biochem ; 87: 217-238, 2018 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-29298091

RESUMEN

Accurate transmission of the genetic information requires complete duplication of the chromosomal DNA each cell division cycle. However, the idea that replication forks would form at origins of DNA replication and proceed without impairment to copy the chromosomes has proven naive. It is now clear that replication forks stall frequently as a result of encounters between the replication machinery and template damage, slow-moving or paused transcription complexes, unrelieved positive superhelical tension, covalent protein-DNA complexes, and as a result of cellular stress responses. These stalled forks are a major source of genome instability. The cell has developed many strategies for ensuring that these obstructions to DNA replication do not result in loss of genetic information, including DNA damage tolerance mechanisms such as lesion skipping, whereby the replisome jumps the lesion and continues downstream; template switching both behind template damage and at the stalled fork; and the error-prone pathway of translesion synthesis.


Asunto(s)
Daño del ADN , Reparación del ADN , Replicación del ADN , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Inestabilidad Genómica , Humanos , Modelos Biológicos
7.
Cell ; 173(1): 208-220.e20, 2018 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-29551265

RESUMEN

Conjugative transposition drives the emergence of multidrug resistance in diverse bacterial pathogens, yet the mechanisms are poorly characterized. The Tn1549 conjugative transposon propagates resistance to the antibiotic vancomycin used for severe drug-resistant infections. Here, we present four high-resolution structures of the conserved Y-transposase of Tn1549 complexed with circular transposon DNA intermediates. The structures reveal individual transposition steps and explain how specific DNA distortion and cleavage mechanisms enable DNA strand exchange with an absolute minimum homology requirement. This appears to uniquely allow Tn916-like conjugative transposons to bypass DNA homology and insert into diverse genomic sites, expanding gene transfer. We further uncover a structural regulatory mechanism that prevents premature cleavage of the transposon DNA before a suitable target DNA is found and generate a peptide antagonist that interferes with the transposase-DNA structure to block transposition. Our results reveal mechanistic principles of conjugative transposition that could help control the spread of antibiotic resistance genes.


Asunto(s)
ADN Bacteriano/metabolismo , Transposasas/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Sitios de Unión , Dominio Catalítico , Cristalografía por Rayos X , División del ADN , Elementos Transponibles de ADN/genética , ADN Bacteriano/química , Farmacorresistencia Bacteriana , Enterococcus faecalis/genética , Modelos Moleculares , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Conformación de Ácido Nucleico , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Alineación de Secuencia , Transposasas/antagonistas & inhibidores , Transposasas/química , Transposasas/genética
8.
Mol Cell ; 84(16): 3154-3162.e5, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39111310

RESUMEN

Canonical prokaryotic type I CRISPR-Cas adaptive immune systems contain a multicomponent effector complex called Cascade, which degrades large stretches of DNA via Cas3 helicase-nuclease activity. Recently, a highly precise subtype I-F1 CRISPR-Cas system (HNH-Cascade) was found that lacks Cas3, the absence of which is compensated for by the insertion of an HNH endonuclease domain in the Cas8 Cascade component. Here, we describe the cryo-EM structure of Selenomonas sp. HNH-Cascade (SsCascade) in complex with target DNA and characterize its mechanism of action. The Cascade scaffold is complemented by the HNH domain, creating a ring-like structure in which the unwound target DNA is precisely cleaved. This structure visualizes a unique hybrid of two extensible biological systems-Cascade, an evolutionary platform for programmable DNA effectors, and an HNH nuclease, an adaptive domain with a spectrum of enzymatic activity.


Asunto(s)
Proteínas Asociadas a CRISPR , Sistemas CRISPR-Cas , Microscopía por Crioelectrón , División del ADN , Proteínas Asociadas a CRISPR/metabolismo , Proteínas Asociadas a CRISPR/química , Proteínas Asociadas a CRISPR/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Modelos Moleculares , ADN/metabolismo , ADN/genética , ADN/química , Dominios Proteicos , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Relación Estructura-Actividad , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Unión Proteica
9.
Mol Cell ; 84(14): 2785-2796.e4, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-38936361

RESUMEN

The bacterial world offers diverse strains for understanding medical and environmental processes and for engineering synthetic biological chassis. However, genetically manipulating these strains has faced a long-standing bottleneck: how to efficiently transform DNA. Here, we report imitating methylation patterns rapidly in TXTL (IMPRINT), a generalized, rapid, and scalable approach based on cell-free transcription-translation (TXTL) to overcome DNA restriction, a prominent barrier to transformation. IMPRINT utilizes TXTL to express DNA methyltransferases from a bacterium's restriction-modification systems. The expressed methyltransferases then methylate DNA in vitro to match the bacterium's DNA methylation pattern, circumventing restriction and enhancing transformation. With IMPRINT, we efficiently multiplex methylation by diverse DNA methyltransferases and enhance plasmid transformation in gram-negative and gram-positive bacteria. We also develop a high-throughput pipeline that identifies the most consequential methyltransferases, and we apply IMPRINT to screen a ribosome-binding site library in a hard-to-transform Bifidobacterium. Overall, IMPRINT can enhance DNA transformation, enabling the use of sophisticated genetic manipulation tools across the bacterial world.


Asunto(s)
Sistema Libre de Células , Metilación de ADN , Biosíntesis de Proteínas , Transcripción Genética , Escherichia coli/genética , Escherichia coli/metabolismo , Transformación Bacteriana , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Plásmidos/genética , Plásmidos/metabolismo , Metilasas de Modificación del ADN/metabolismo , Metilasas de Modificación del ADN/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
10.
Annu Rev Biochem ; 85: 319-47, 2016 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-27023849

RESUMEN

Transcript termination is essential for accurate gene expression and the removal of RNA polymerase (RNAP) at the ends of transcription units. In bacteria, two mechanisms are responsible for proper transcript termination: intrinsic termination and Rho-dependent termination. Intrinsic termination is mediated by signals directly encoded within the DNA template and nascent RNA, whereas Rho-dependent termination relies upon the adenosine triphosphate-dependent RNA translocase Rho, which binds nascent RNA and dissociates the elongation complex. Although significant progress has been made in understanding these pathways, fundamental details remain undetermined. Among those that remain unresolved are the existence of an inactivated intermediate in the intrinsic termination pathway, the role of Rho-RNAP interactions in Rho-dependent termination, and the mechanisms by which accessory factors and nucleoid-associated proteins affect termination. We describe current knowledge, discuss key outstanding questions, and highlight the importance of defining the structural rearrangements of RNAP that are involved in the two mechanisms of transcript termination.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/genética , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Factores de Elongación de Péptidos/genética , Factor Rho/genética , Factores de Transcripción/genética , Terminación de la Transcripción Genética , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , ARN Polimerasas Dirigidas por ADN/química , ARN Polimerasas Dirigidas por ADN/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Cinética , Modelos Moleculares , Conformación de Ácido Nucleico , Factores de Elongación de Péptidos/metabolismo , Unión Proteica , Transporte de Proteínas , ARN Bacteriano/química , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , Factor Rho/metabolismo , Factores de Transcripción/metabolismo
11.
Cell ; 162(4): 860-71, 2015 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-26276634

RESUMEN

Transposons are ubiquitous genetic elements that drive genome rearrangements, evolution, and the spread of infectious disease and drug-resistance. Many transposons, such as Mu, Tn7, and IS21, require regulatory AAA+ ATPases for function. We use X-ray crystallography and cryo-electron microscopy to show that the ATPase subunit of IS21, IstB, assembles into a clamshell-shaped decamer that sandwiches DNA between two helical pentamers of ATP-associated AAA+ domains, sharply bending the duplex into a 180° U-turn. Biochemical studies corroborate key features of the structure and further show that the IS21 transposase, IstA, recognizes the IstB•DNA complex and promotes its disassembly by stimulating ATP hydrolysis. Collectively, these studies reveal a distinct manner of higher-order assembly and client engagement by a AAA+ ATPase and suggest a mechanistic model where IstB binding and subsequent DNA bending primes a selected insertion site for efficient transposition.


Asunto(s)
Bacterias/genética , Bacterias/metabolismo , Elementos Transponibles de ADN , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Bacterias/clasificación , Bacterias/enzimología , ADN Bacteriano/metabolismo , Proteínas de Unión al ADN/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Filogenia , Alineación de Secuencia , Transposasas/metabolismo
12.
Nature ; 626(8000): 891-896, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38326611

RESUMEN

Transcription elongation stalls at lesions in the DNA template1. For the DNA lesion to be repaired, the stalled transcription elongation complex (EC) has to be removed from the damaged site2. Here we show that translation, which is coupled to transcription in bacteria, actively dislodges stalled ECs from the damaged DNA template. By contrast, paused, but otherwise elongation-competent, ECs are not dislodged by the ribosome. Instead, they are helped back into processive elongation. We also show that the ribosome slows down when approaching paused, but not stalled, ECs. Our results indicate that coupled ribosomes functionally and kinetically discriminate between paused ECs and stalled ECs, ensuring the selective destruction of only the latter. This functional discrimination is controlled by the RNA polymerase's catalytic domain, the Trigger Loop. We show that the transcription-coupled DNA repair helicase UvrD, proposed to cause backtracking of stalled ECs3, does not interfere with ribosome-mediated dislodging. By contrast, the transcription-coupled DNA repair translocase Mfd4 acts synergistically with translation, and dislodges stalled ECs that were not destroyed by the ribosome. We also show that a coupled ribosome efficiently destroys misincorporated ECs that can cause conflicts with replication5. We propose that coupling to translation is an ancient and one of the main mechanisms of clearing non-functional ECs from the genome.


Asunto(s)
ARN Polimerasas Dirigidas por ADN , Escherichia coli , Biosíntesis de Proteínas , Transcripción Genética , Dominio Catalítico , ADN Helicasas/metabolismo , Reparación del ADN , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , ARN Polimerasas Dirigidas por ADN/química , ARN Polimerasas Dirigidas por ADN/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Cinética , Ribosomas/metabolismo , Moldes Genéticos , Elongación de la Transcripción Genética , Genoma Bacteriano
13.
Mol Cell ; 82(14): 2618-2632.e7, 2022 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-35654042

RESUMEN

Tn7 is a bacterial transposon with relatives containing element-encoded CRISPR-Cas systems mediating RNA-guided transposon insertion. Here, we present the 2.7 Å cryoelectron microscopy structure of prototypic Tn7 transposase TnsB interacting with the transposon end DNA. When TnsB interacts across repeating binding sites, it adopts a beads-on-a-string architecture, where the DNA-binding and catalytic domains are arranged in a tiled and intertwined fashion. The DNA-binding domains form few base-specific contacts leading to a binding preference that requires multiple weakly conserved sites at the appropriate spacing to achieve DNA sequence specificity. TnsB binding imparts differences in the global structure of the protein-bound DNA ends dictated by the spacing or overlap of binding sites explaining functional differences in the left and right ends of the element. We propose a model of the strand-transfer complex in which the terminal TnsB molecule is rearranged so that its catalytic domain is in a position conducive to transposition.


Asunto(s)
Proteínas de Escherichia coli , Proteínas Bacterianas/metabolismo , Microscopía por Crioelectrón , Elementos Transponibles de ADN/genética , ADN Bacteriano/metabolismo , Proteínas de Unión al ADN/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética
14.
Mol Cell ; 82(3): 616-628.e5, 2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-35051352

RESUMEN

Canonical CRISPR-Cas systems utilize RNA-guided nucleases for targeted cleavage of foreign nucleic acids, whereas some nuclease-deficient CRISPR-Cas complexes have been repurposed to direct the insertion of Tn7-like transposons. Here, we established a bioinformatic and experimental pipeline to comprehensively explore the diversity of Type I-F CRISPR-associated transposons. We report DNA integration for 20 systems and identify a highly active subset that exhibits complete orthogonality in transposon DNA mobilization. We reveal the modular nature of CRISPR-associated transposons by exploring the horizontal acquisition of targeting modules and by characterizing a system that encodes both a programmable, RNA-dependent pathway, and a fixed, RNA-independent pathway. Finally, we analyzed transposon-encoded cargo genes and found the striking presence of anti-phage defense systems, suggesting a role in transmitting innate immunity between bacteria. Collectively, this study substantially advances our biological understanding of CRISPR-associated transposon function and expands the suite of RNA-guided transposases for programmable, large-scale genome engineering.


Asunto(s)
Proteínas Bacterianas/genética , Sistemas CRISPR-Cas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Elementos Transponibles de ADN/genética , ADN Bacteriano/genética , Escherichia coli/genética , Evolución Molecular , Transposasas/genética , Proteínas Bacterianas/metabolismo , ADN Bacteriano/metabolismo , Escherichia coli/inmunología , Escherichia coli/metabolismo , Edición Génica , Regulación Bacteriana de la Expresión Génica , Variación Genética , Inmunidad Innata , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , ARN Guía de Kinetoplastida/genética , ARN Guía de Kinetoplastida/metabolismo , Transposasas/metabolismo
15.
Cell ; 156(5): 935-49, 2014 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-24529477

RESUMEN

The CRISPR-associated endonuclease Cas9 can be targeted to specific genomic loci by single guide RNAs (sgRNAs). Here, we report the crystal structure of Streptococcus pyogenes Cas9 in complex with sgRNA and its target DNA at 2.5 Å resolution. The structure revealed a bilobed architecture composed of target recognition and nuclease lobes, accommodating the sgRNA:DNA heteroduplex in a positively charged groove at their interface. Whereas the recognition lobe is essential for binding sgRNA and DNA, the nuclease lobe contains the HNH and RuvC nuclease domains, which are properly positioned for cleavage of the complementary and noncomplementary strands of the target DNA, respectively. The nuclease lobe also contains a carboxyl-terminal domain responsible for the interaction with the protospacer adjacent motif (PAM). This high-resolution structure and accompanying functional analyses have revealed the molecular mechanism of RNA-guided DNA targeting by Cas9, thus paving the way for the rational design of new, versatile genome-editing technologies.


Asunto(s)
Proteínas Asociadas a CRISPR/química , Cristalografía por Rayos X , Endonucleasas/química , ARN Bacteriano/química , Streptococcus pyogenes/química , Secuencia de Aminoácidos , Bacterias/enzimología , Proteínas Asociadas a CRISPR/metabolismo , ADN Bacteriano/química , ADN Bacteriano/metabolismo , Endonucleasas/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , ARN Bacteriano/metabolismo , Alineación de Secuencia , Streptococcus pyogenes/enzimología , Streptococcus pyogenes/metabolismo , ARN Pequeño no Traducido
16.
Nature ; 613(7945): 783-789, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36631609

RESUMEN

Efficient and accurate termination is required for gene transcription in all living organisms1,2. Cellular RNA polymerases in both bacteria and eukaryotes can terminate their transcription through a factor-independent termination pathway3,4-called intrinsic termination transcription in bacteria-in which RNA polymerase recognizes terminator sequences, stops nucleotide addition and releases nascent RNA spontaneously. Here we report a set of single-particle cryo-electron microscopy structures of Escherichia coli transcription intrinsic termination complexes representing key intermediate states of the event. The structures show how RNA polymerase pauses at terminator sequences, how the terminator RNA hairpin folds inside RNA polymerase, and how RNA polymerase rewinds the transcription bubble to release RNA and then DNA. These macromolecular snapshots define a structural mechanism for bacterial intrinsic termination and a pathway for RNA release and DNA collapse that is relevant for factor-independent termination by all RNA polymerases.


Asunto(s)
ADN Bacteriano , ARN Polimerasas Dirigidas por ADN , Escherichia coli , ARN Bacteriano , Terminación de la Transcripción Genética , Microscopía por Crioelectrón , ARN Polimerasas Dirigidas por ADN/química , ARN Polimerasas Dirigidas por ADN/metabolismo , ARN Polimerasas Dirigidas por ADN/ultraestructura , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/metabolismo , Escherichia coli/ultraestructura , ARN Bacteriano/química , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , ARN Bacteriano/ultraestructura , Regiones Terminadoras Genéticas/genética , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , ADN Bacteriano/ultraestructura
17.
Mol Cell ; 81(19): 3992-4007.e10, 2021 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-34562373

RESUMEN

ParB-like CTPases mediate the segregation of bacterial chromosomes and low-copy number plasmids. They act as DNA-sliding clamps that are loaded at parS motifs in the centromere of target DNA molecules and spread laterally to form large nucleoprotein complexes serving as docking points for the DNA segregation machinery. Here, we solve crystal structures of ParB in the pre- and post-hydrolysis state and illuminate the catalytic mechanism of nucleotide hydrolysis. Moreover, we identify conformational changes that underlie the CTP- and parS-dependent closure of ParB clamps. The study of CTPase-deficient ParB variants reveals that CTP hydrolysis serves to limit the sliding time of ParB clamps and thus drives the establishment of a well-defined ParB diffusion gradient across the centromere whose dynamics are critical for DNA segregation. These findings clarify the role of the ParB CTPase cycle in partition complex assembly and function and thus advance our understanding of this prototypic CTP-dependent molecular switch.


Asunto(s)
Proteínas Bacterianas/metabolismo , Segregación Cromosómica , Cromosomas Bacterianos , Citidina Trifosfato/metabolismo , ADN Bacteriano/metabolismo , Myxococcus xanthus/enzimología , Proteínas Bacterianas/genética , Sitios de Unión , Dominio Catalítico , Cristalografía por Rayos X , ADN Bacteriano/genética , Regulación Bacteriana de la Expresión Génica , Hidrólisis , Mutación , Myxococcus xanthus/genética , Conformación Proteica , Relación Estructura-Actividad , Especificidad por Sustrato , Factores de Tiempo
18.
Mol Cell ; 81(7): 1499-1514.e6, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33621478

RESUMEN

Despite their diverse biochemical characteristics and functions, all DNA-binding proteins share the ability to accurately locate their target sites among the vast excess of non-target DNA. Toward identifying universal mechanisms of the target search, we used single-molecule tracking of 11 diverse DNA-binding proteins in living Escherichia coli. The mobility of these proteins during the target search was dictated by DNA interactions rather than by their molecular weights. By generating cells devoid of all chromosomal DNA, we discovered that the nucleoid is not a physical barrier for protein diffusion but significantly slows the motion of DNA-binding proteins through frequent short-lived DNA interactions. The representative DNA-binding proteins (irrespective of their size, concentration, or function) spend the majority (58%-99%) of their search time bound to DNA and occupy as much as ∼30% of the chromosomal DNA at any time. Chromosome crowding likely has important implications for the function of all DNA-binding proteins.


Asunto(s)
ADN Bacteriano/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , ADN Bacteriano/genética , Proteínas de Unión al ADN/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética
19.
Mol Cell ; 81(2): 281-292.e8, 2021 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-33296676

RESUMEN

Rho is a general transcription termination factor playing essential roles in RNA polymerase (RNAP) recycling, gene regulation, and genomic stability in most bacteria. Traditional models of transcription termination postulate that hexameric Rho loads onto RNA prior to contacting RNAP and then translocates along the transcript in pursuit of the moving RNAP to pull RNA from it. Here, we report the cryoelectron microscopy (cryo-EM) structures of two termination process intermediates. Prior to interacting with RNA, Rho forms a specific "pre-termination complex" (PTC) with RNAP and elongation factors NusA and NusG, which stabilize the PTC. RNA exiting RNAP interacts with NusA before entering the central channel of Rho from the distal C-terminal side of the ring. We map the principal interactions in the PTC and demonstrate their critical role in termination. Our results support a mechanism in which the formation of a persistent PTC is a prerequisite for termination.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/química , Proteínas de Escherichia coli/química , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Factores de Elongación de Péptidos/química , Factores de Transcripción/química , Terminación de la Transcripción Genética , Factores de Elongación Transcripcional/química , Secuencia de Aminoácidos , Sitios de Unión , Clonación Molecular , Microscopía por Crioelectrón , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Modelos Moleculares , Factores de Elongación de Péptidos/genética , Factores de Elongación de Péptidos/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , ARN Bacteriano/química , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factores de Elongación Transcripcional/genética , Factores de Elongación Transcripcional/metabolismo
20.
Cell ; 154(3): 623-36, 2013 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-23911325

RESUMEN

The decision to initiate DNA replication is a critical step in the cell cycle of all organisms. Cells often delay replication in the face of stressful conditions, but the underlying mechanisms remain incompletely defined. Here, we demonstrate in Caulobacter crescentus that proteotoxic stress induces a cell-cycle arrest by triggering the degradation of DnaA, the conserved replication initiator. A depletion of available Hsp70 chaperone, DnaK, either through genetic manipulation or heat shock, induces synthesis of the Lon protease, which can directly degrade DnaA. Unexpectedly, we find that unfolded proteins, which accumulate following a loss of DnaK, also allosterically activate Lon to degrade DnaA, thereby ensuring a cell-cycle arrest. Our work reveals a mechanism for regulating DNA replication under adverse growth conditions. Additionally, our data indicate that unfolded proteins can actively and directly alter substrate recognition by cellular proteases.


Asunto(s)
Proteínas Bacterianas/metabolismo , Caulobacter crescentus/citología , Caulobacter crescentus/fisiología , Replicación del ADN , Proteínas de Unión al ADN/metabolismo , Proteasa La/metabolismo , Proteínas Bacterianas/genética , Caulobacter crescentus/genética , ADN Bacteriano/metabolismo , Proteínas de Unión al ADN/genética , Escherichia coli/metabolismo , Proteínas de Choque Térmico/metabolismo , Respuesta al Choque Térmico , Chaperonas Moleculares/metabolismo , Pliegue de Proteína , Factor sigma/metabolismo , Estrés Fisiológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA