Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 429
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Nat Rev Mol Cell Biol ; 19(2): 77-92, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28792006

RESUMEN

Mitochondrial diseases affect one in 2,000 individuals; they can present at any age and they can manifest in any organ. How defects in mitochondria can cause such a diverse range of human diseases remains poorly understood. Insight into this diversity is emerging from recent research that investigated defects in mitochondrial protein synthesis and mitochondrial DNA maintenance, which showed that many cell-specific stress responses are induced in response to mitochondrial dysfunction. Studying the molecular regulation of these stress responses might increase our understanding of the pathogenesis and variability of human mitochondrial diseases.


Asunto(s)
Mitocondrias/fisiología , Enfermedades Mitocondriales/metabolismo , Enfermedades Mitocondriales/fisiopatología , Animales , ADN Mitocondrial/genética , ADN Mitocondrial/fisiología , Humanos , Orgánulos/patología , Orgánulos/fisiología , Estrés Oxidativo
2.
FASEB J ; 36(2): e22146, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35073429

RESUMEN

Mitochondria are maternally inherited organelles that play critical tissue-specific roles, including hormone synthesis and energy production, that influence human development, health, and aging. However, whether mitochondria from women and men exhibit consistent biological differences remains unclear, representing a major gap in knowledge. This meta-analysis systematically examined four domains and six subdomains of mitochondrial biology (total 39 measures), including mitochondrial content, respiratory capacity, reactive oxygen species (ROS) production, morphometry, and mitochondrial DNA copy number. Standardized effect sizes (Hedge's g) of sex differences were computed for each measure using data in 2258 participants (51.5% women) from 50 studies. Only two measures demonstrated aggregate binary sex differences: higher mitochondrial content in women's WAT and isolated leukocyte subpopulations (g = 0.20, χ2 p = .01), and higher ROS production in men's skeletal muscle (g = 0.49, χ2 p < .0001). Sex differences showed weak to no correlation with age or BMI. Studies with small sample sizes tended to overestimate effect sizes (r = -.17, p < .001), and sex differences varied by tissue examined. Our findings point to a wide variability of findings in the literature concerning possible binary sex differences in mitochondrial biology. Studies specifically designed to capture sex- and gender-related differences in mitochondrial biology are needed, including detailed considerations of physical activity and sex hormones.


Asunto(s)
Mitocondrias/fisiología , Anciano , Anciano de 80 o más Años , Envejecimiento/metabolismo , Envejecimiento/fisiología , Biología/métodos , ADN Mitocondrial/metabolismo , ADN Mitocondrial/fisiología , Femenino , Humanos , Leucocitos/metabolismo , Leucocitos/fisiología , Masculino , Persona de Mediana Edad , Mitocondrias/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiología , Especies Reactivas de Oxígeno/metabolismo , Caracteres Sexuales
3.
Nucleic Acids Res ; 48(15): 8290-8301, 2020 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-32716035

RESUMEN

Mitochondrial DNA (mtDNA) encodes cellular machinery vital for cell and organism survival. Mutations, genetic manipulation, and gene therapies may produce cells where different types of mtDNA coexist in admixed populations. In these admixtures, one mtDNA type is often observed to proliferate over another, with different types dominating in different tissues. This 'segregation bias' is a long-standing biological mystery that may pose challenges to modern mtDNA disease therapies, leading to substantial recent attention in biological and medical circles. Here, we show how an mtDNA sequence's balance between replication and transcription, corresponding to molecular 'selfishness', in conjunction with cellular selection, can potentially modulate segregation bias. We combine a new replication-transcription-selection (RTS) model with a meta-analysis of existing data to show that this simple theory predicts complex tissue-specific patterns of segregation in mouse experiments, and reversion in human stem cells. We propose the stability of G-quadruplexes in the mtDNA control region, influencing the balance between transcription and replication primer formation, as a potential molecular mechanism governing this balance. Linking mtDNA sequence features, through this molecular mechanism, to cellular population dynamics, we use sequence data to obtain and verify the sequence-specific predictions from this hypothesis on segregation behaviour in mouse and human mtDNA.


Asunto(s)
ADN Mitocondrial/fisiología , Animales , Bovinos , Replicación del ADN , Heterogeneidad Genética , Genoma , Humanos , Ratones , Ratones Endogámicos C57BL , Modelos Genéticos , Secuencias Repetitivas de Ácidos Nucleicos/fisiología , Células Madre , Transcripción Genética
4.
J Cell Mol Med ; 25(17): 8244-8260, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34410682

RESUMEN

INTRODUCTION: Septic cardiomyopathy is a common complication of sepsis with high morbidity and mortality, but lacks specific therapy. This study aimed to reveal the role of circTLK1 and its potential mechanisms in septic cardiomyopathy. MATERIALS AND METHODS: The in vitro and in vivo models of septic cardiomyopathy were established. Cell viability and apoptosis were detected by CCK8, TUNEL and flow cytometry, respectively. LDH, CK, SOD, MDA, ATP, 8-OHdG, NAD+/NADH ratio, ROS level, mitochondrial membrane potential and cytochrome C distribution were evaluated using commercial kits. qRT-PCR and western blotting were performed to detect RNA and protein levels. Mitochondrial DNA (mtDNA) copy number and transcription were assessed by quantitative PCR. Dual-luciferase assay, RNA immunoprecipitation and co-immunoprecipitation were performed to verify the interaction between circTLK1/PARP1 and miR-17-5p. RESULTS: CircTLK1, PARP1 and HMGB1 were up-regulated in the in vitro and in vivo models of septic cardiomyopathy. CircTLK1 inhibition restrained LPS-induced up-regulation of PARP1 and HMGB1. Moreover, circTLK1 knockdown repressed sepsis-induced mtDNA oxidative damage, mitochondrial dysfunction and consequent cardiomyocyte apoptosis by inhibiting PARP1/HMGB1 axis in vitro and in vivo. In addition, circTLK1 enhanced PARP1 expression via sponging miR-17-5p. Inhibition of miR-17-5p abolished the protective effects of circTLK1 silencing on oxidative mtDNA damage and cardiomyocyte apoptosis. CONCLUSION: CircTLK1 sponged miR-17-5p to aggravate mtDNA oxidative damage, mitochondrial dysfunction and cardiomyocyte apoptosis via activating PARP1/HMGB1 axis during sepsis, indicating that circTLK1 may be a putative therapeutic target for septic cardiomyopathy.


Asunto(s)
Cardiomiopatías/metabolismo , ADN Circular/fisiología , ADN Mitocondrial/fisiología , Proteínas Serina-Treonina Quinasas , Sepsis/metabolismo , Animales , Línea Celular , Proteína HMGB1/metabolismo , Humanos , Masculino , MicroARNs/metabolismo , Miocitos Cardíacos , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/fisiología , Ratas , Ratas Sprague-Dawley
5.
Hum Mol Genet ; 28(7): 1090-1099, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30496414

RESUMEN

TWINKLE is the helicase involved in replication and maintenance of mitochondrial DNA (mtDNA) in mammalian cells. Structurally, TWINKLE is closely related to the bacteriophage T7 gp4 protein and comprises a helicase and primase domain joined by a flexible linker region. Mutations in and around this linker region are responsible for autosomal dominant progressive external ophthalmoplegia (adPEO), a neuromuscular disorder associated with deletions in mtDNA. The underlying molecular basis of adPEO-causing mutations remains unclear, but defects in TWINKLE oligomerization are thought to play a major role. In this study, we have characterized these disease variants by single-particle electron microscopy and can link the diminished activities of the TWINKLE variants to altered oligomeric properties. Our results suggest that the mutations can be divided into those that (i) destroy the flexibility of the linker region, (ii) inhibit ring closure and (iii) change the number of subunits within a helicase ring. Furthermore, we demonstrate that wild-type TWINKLE undergoes large-scale conformational changes upon nucleoside triphosphate binding and that this ability is lost in the disease-causing variants. This represents a substantial advancement in the understanding of the molecular basis of adPEO and related pathologies and may aid in the development of future therapeutic strategies.


Asunto(s)
ADN Helicasas/genética , ADN Helicasas/ultraestructura , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/ultraestructura , Oftalmoplejía Externa Progresiva Crónica/genética , Secuencia de Aminoácidos , ADN Primasa , ADN Mitocondrial/genética , ADN Mitocondrial/fisiología , Humanos , Microscopía Electrónica/métodos , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Mutación/genética , Dominios Proteicos/genética
6.
J Cell Mol Med ; 24(18): 10866-10875, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32757458

RESUMEN

Cardiomyocyte dysfunction is attributed to excess oxidative damage, but the molecular pathways involved in this process have not been completely elucidated. Evidence indicates that isosteviol sodium (STVNa) has cardioprotective effects. We therefore aimed to identify the effect of STVNa on cardiomyocytes, as well as the potential mechanisms involved in this process. We established two myocardial hypertrophy models by treating H9c2 cells with high glucose (HG) and isoprenaline (ISO). Our results showed that STVNa reduced H9c2 mitochondrial damage by attenuating oxidative damage and altering the morphology of mitochondria. The results also indicated that STVNa had a positive effect on HG- and ISO-induced damages via mitochondrial biogenesis. The protective effects of STVNa on cardiomyocytes were associated with the regulation of the SIRT1/PGC-1α signalling pathway. Importantly, the effects of STVNa involved different methods of regulation in the two models, which was confirmed by experiments using an inhibitor and activator of SIRT1. Together, the results provide the basis for using STVNa as a therapy for the prevention of cardiomyocyte dysfunctions.


Asunto(s)
Cardiotónicos/farmacología , Diterpenos de Tipo Kaurano/farmacología , Miocitos Cardíacos/efectos de los fármacos , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/fisiología , Transducción de Señal/efectos de los fármacos , Sirtuina 1/fisiología , Animales , Carbazoles/farmacología , Línea Celular , ADN Mitocondrial/metabolismo , ADN Mitocondrial/fisiología , ADN Mitocondrial/ultraestructura , Glucosa/toxicidad , Hipertrofia , Isoproterenol/toxicidad , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias Cardíacas/efectos de los fármacos , Mitocondrias Cardíacas/metabolismo , Miocitos Cardíacos/metabolismo , Biogénesis de Organelos , Ratas , Especies Reactivas de Oxígeno/metabolismo , Resveratrol/farmacología , Sirtuina 1/efectos de los fármacos
7.
PLoS Pathog ; 14(5): e1007065, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29851986

RESUMEN

Chagasic cardiomyopathy is caused by Trypanosoma cruzi infection. Poly(ADP-ribose) polymerase 1 (PARP1) is known for its function in nuclear DNA repair. In this study, we have employed genetic deletion and chemical inhibition approaches to determine the role of PARP1 in maintaining mtDNA dependent mitochondrial function in Chagas disease. Our data show that expression of PARP1 and protein PARylation were increased by >2-fold and >16-fold, respectively, in the cytosolic, nuclear, and mitochondrial fractions of the human cardiac myocytes and the myocardium of wildtype (WT) mice chronically infected with T. cruzi. The nuclear and cytosolic PARP1/PAR did not interfere with the transcription and translation of the components of the mtDNA replisome machinery in infected cardiomyocytes and chagasic murine myocardium. However, PARP1 binding to Polymerase γ and mtDNA in mitochondria were increased, and associated with a loss in mtDNA content, mtDNA-encoded gene expression, and oxidative phosphorylation (OXPHOS) capacity, and an increase in mitochondrial ROS production in cells and heart of WT mice infected with T. cruzi. Subsequently, an increase in oxidative stress, and cardiac collagen deposition, and a decline in LV function was noted in chagasic mice. Genetic deletion of PARP1 or treatment with selective inhibitor of PARP1 (PJ34) improved the mtDNA content, mitochondrial function, and oxidant/antioxidant balance in human cardiomyocytes and chronically infected mice. Further, PARP1 inhibition was beneficial in preserving the cardiac structure and left ventricular function in chagasic mice. We conclude that PARP1 overexpression is associated with a decline in Pol γ-dependent maintenance of mtDNA content, mtDNA-encoded gene expression, and mitochondrial respiratory function, and subsequently contributes to an increase in mtROS and oxidative stress in chagasic myocardium. Inhibition of mitochondrial PARP1/PAR offers a novel therapy in preserving the mitochondrial and LV function in chronic Chagas disease.


Asunto(s)
Cardiomiopatía Chagásica/fisiopatología , ADN Polimerasa gamma/genética , ADN Mitocondrial/fisiología , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Animales , Antioxidantes/metabolismo , Células Cultivadas , Cardiomiopatía Chagásica/genética , Inmunoprecipitación de Cromatina , ADN Protozoario/fisiología , Células HeLa , Corazón/fisiología , Humanos , Inmunoprecipitación , Ratones , Ratones Endogámicos C57BL , Mitocondrias/fisiología , Células Musculares/metabolismo , Miocitos Cardíacos/citología , Estrés Oxidativo , Fenantrenos/farmacología , Poli(ADP-Ribosa) Polimerasa-1/antagonistas & inhibidores , Poli(ADP-Ribosa) Polimerasa-1/genética , Especies Reactivas de Oxígeno/metabolismo , Trypanosoma cruzi/genética , Función Ventricular Izquierda/fisiología
8.
Toxicol Appl Pharmacol ; 403: 115163, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32730777

RESUMEN

During its clinical development fialuridine caused liver toxicity and the death of five patients. This case remains relevant due to the continued development of mechanistically-related compounds against a back-drop of simple in vitro models which remain limited for the preclinical detection of such delayed toxicity. Here, proteomic investigation of a differentiated, HepaRG, and proliferating, HepG2 cell model was utilised to confirm the presence of the hENT1 transporter, thymidine kinase-1 and -2 (TK1, TK2) and thymidylate kinase, all essential in order to reproduce the cellular activation and disposition of fialuridine in the clinic. Acute metabolic modification assays could only identify mitochondrial toxicity in HepaRG cells following extended dosing, 2 weeks. Toxic effects were observed around 10 µM, which is within a range of 10-15 X approximate Cmax. HepaRG cell death was accompanied by a significant decrease in mitochondrial DNA content, indicative of inhibition of mitochondrial replication, and a subsequent reduction in mitochondrial respiration and the activity of mitochondrial respiratory complexes, not replicated in HepG2 cells. The structural epimer of fialuridine, included as a pharmacological negative control, was shown to have no cytotoxic effects in HepaRG cells up to 4 weeks. Overall, these comparative studies demonstrate the HepaRG model has translational relevance for fialuridine toxicity and therefore may have potential in investigating the inhibition of mitochondrial replication over prolonged exposure for other toxicants.


Asunto(s)
Antivirales/farmacología , Arabinofuranosil Uracilo/análogos & derivados , Hepatocitos/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Arabinofuranosil Uracilo/farmacología , Línea Celular Tumoral , Replicación del ADN/efectos de los fármacos , ADN Mitocondrial/fisiología , Relación Dosis-Respuesta a Droga , Humanos , Mitocondrias/fisiología
9.
Genome ; 63(8): 365-374, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32396758

RESUMEN

We review the insertion of mitochondrial DNA (mtDNA) fragments into nuclear DNA (NUMTS) as a general and ongoing process that has occurred many times during genome evolution. Fragments of mtDNA are generated during the lifetime of organisms in both somatic and germinal cells, by the production of reactive oxygen species in the mitochondria. The fragments are inserted into the nucleus during the double-strand breaks repair via the non-homologous end-joining machinery, followed by genomic instability, giving rise to the high variability observed in NUMT patterns among species, populations, or genotypes. Some de novo produced mtDNA insertions show harmful effects, being involved in human diseases, carcinogenesis, and ageing. NUMT generation is a non-stop process overpassing the Mendelian transmission. This parasitic property ensures their survival even against their harmful effects. The accumulation of mtDNA fragments mainly at pericentromeric and subtelomeric regions is important to understand the transmission and integration of NUMTs into the genomes. The possible effect of female meiotic drive for mtDNA insertions at centromeres remains to be studied. In spite of the harmful feature of NUMTs, they are important in cell evolution, representing a major source of genomic variation.


Asunto(s)
Núcleo Celular/genética , ADN Mitocondrial/fisiología , Evolución Molecular , Mutagénesis Insercional , Envejecimiento/genética , Animales , Centrómero , ADN Mitocondrial/genética , Enfermedad/genética , Humanos , Telómero
10.
Exp Parasitol ; 212: 107870, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32142733

RESUMEN

Piroplasmosis is a serious debilitating and sometimes fatal disease. Phylogenetic relationships within piroplasmida are complex and remain unclear. In the study, we assessed the relative resolution capabilities of the DNA sequences of the nuclear genes 40S ribosomal protein S5 (RPS5) and mitochondrial DNA Cytochrome c oxidase subunit III (cox3) gene in the phylogeny of Babesia and Theileria species isolates. We demonstrated that by using the cox3 gene can recover a better supported species tree for some Theileria species than when using the nuclear RPS5 gene alone, it tends to intra-specific diversity and considerable inter-specific difference. Additionally, the combined DNA sequences of the nuclear RPS5 and cox3 gene improved the inference of evolutionary relationships among Babesia and Theileria species. The mitochondrial cox3 gene outperforms nuclear RPS5 gene and yields better resolution on the intra-specific diversity of Babesia and Theileria species. However, the combined RPS5 nuclear DNA and cox3 DNA tree had more advantage in the phylogeny of Babesia and Theileria species than that of single gene alone.


Asunto(s)
Babesia/clasificación , Complejo IV de Transporte de Electrones/genética , Filogenia , Proteínas Ribosómicas/genética , Theileria/clasificación , Animales , Babesia/genética , Secuencia de Bases , Biodiversidad , Bovinos , ADN Mitocondrial/fisiología , ADN Protozoario/fisiología , Marcadores Genéticos , Alineación de Secuencia , Ovinos , Organismos Libres de Patógenos Específicos , Theileria/genética
11.
Exp Parasitol ; 219: 108016, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33035543

RESUMEN

Different genotoxic agents can lead to DNA single- and double-strand breaks, base modification and oxidation. As most living organisms, Trypanosoma cruzi is subjected to oxidative stress during its life cycle; thus, DNA repair is essential for parasite survival and establishment of infection. The mitochondrion plays important roles beyond the production of ATP. For example, it is a source of signaling molecules, such as the superoxide anion and H2O2. Since T. cruzi has only one mitochondrion, the integrity of this organelle is pivotal for parasite viability. H2O2 and methyl methanesulfonate cause DNA lesions in T. cruzi that are repaired by different DNA repair pathways. Herein, we evaluate mitochondrial involvement during the repair of nuclear and mitochondrial DNA in T. cruzi epimastigotes incubated with these two genotoxic agents under conditions that induce repairable DNA damage. Overall, in both treatments, an increase in oxygen consumption rates and in mitochondrial H2O2 release was observed, as well as maintenance of ATP levels compared to control. Interestingly, these changes coincided with DNA repair kinetics, suggesting the importance of the mitochondrion for this energy-consuming process.


Asunto(s)
Reparación del ADN/fisiología , ADN Mitocondrial/fisiología , Mitocondrias/fisiología , Trypanosoma cruzi/fisiología , Adenosina Trifosfato/metabolismo , Núcleo Celular/genética , Núcleo Celular/fisiología , Daño del ADN , Reparación de la Incompatibilidad de ADN/fisiología , Peróxido de Hidrógeno/metabolismo , Cinética , Metilmetanosulfonato/farmacología , Mutágenos/farmacología , Fosforilación Oxidativa , Estrés Oxidativo , Consumo de Oxígeno/fisiología , Especies Reactivas de Oxígeno/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Trypanosoma cruzi/efectos de los fármacos , Trypanosoma cruzi/genética
12.
Eur J Nutr ; 58(8): 3335-3347, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30535793

RESUMEN

PURPOSE: Intrauterine growth retardation (IUGR) is detrimental to the intestinal development of neonates, yet satisfactory treatment strategies remain limited. This study was, therefore, conducted using neonatal piglets as a model to investigate the potential of N-acetylcysteine (NAC) to alleviate intestinal damage caused by IUGR. METHODS: Seven normal birth weight (NBW) and fourteen IUGR neonatal male piglets were selected and then fed a basal milk diet (NBW-CON and IUGR-CON groups) or a basal milk diet supplemented with 1.2 g NAC per kg of diet (IUGR-NAC group) from 7 to 21 days of age (n = 7). Parameters associated with the severity of intestinal injury, villus morphology and ultrastructural structure, redox status, and mitochondrial function were analyzed. RESULTS: Compared with the NBW-CON piglets, the IUGR-CON piglets exhibited decreased villus height and greater numbers of apoptotic cells in jejunum, along with the increases in malondialdehyde and protein carbonyl concentrations and a decreased adenosine triphosphate (ATP) content. Treatment with NAC significantly increased jejunal superoxide dismutase activity, reduced glutathione: oxidized glutathione ratio, and the mRNA abundance of nuclear respiratory factor 2, heme oxygenase 1, and superoxide dismutase 2 in the IUGR-NAC piglets compared with the IUGR-CON piglets. In addition, NAC improved the efficiency of mitochondrial oxidative metabolism and ATP generation, ameliorated mitochondrial swelling, and inhibited the overproduction of mitochondrial superoxide anion in the jejunal mucosa. CONCLUSIONS: Dietary supplementation of NAC shows promise for attenuating the early intestinal injury of young piglets with IUGR, probably through its antioxidant action to restore redox status and mitochondrial function.


Asunto(s)
Acetilcisteína/farmacología , ADN Mitocondrial/efectos de los fármacos , Retardo del Crecimiento Fetal/fisiopatología , Enfermedades Intestinales/prevención & control , Animales , Animales Recién Nacidos , ADN Mitocondrial/fisiología , Modelos Animales de Enfermedad , Enfermedades Intestinales/fisiopatología , Intestinos/fisiopatología , Oxidación-Reducción , Porcinos
13.
Biochem J ; 475(5): 839-852, 2018 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-29511093

RESUMEN

Mitochondria play a central role in multiple cellular functions, including energy production, calcium homeostasis, and cell death. Currently, growing evidence indicates the vital roles of mitochondria in triggering and maintaining inflammation. Chronic inflammation without microbial infection - termed sterile inflammation - is strongly involved in the development of heart failure. Sterile inflammation is triggered by the activation of pattern recognition receptors (PRRs) that sense endogenous ligands called damage-associated molecular patterns (DAMPs). Mitochondria release multiple DAMPs including mitochondrial DNA, peptides, and lipids, which induce inflammation via the stimulation of multiple PRRs. Among the mitochondrial DAMPs, mitochondrial DNA (mtDNA) is currently highlighted as the DAMP that mediates the activation of multiple PRRs, including Toll-like receptor 9, Nod-like receptors, and cyclic GMP-AMP synthetase/stimulator of interferon gene pathways. These PRR signalling pathways, in turn, lead to the activation of nuclear factor-κB and interferon regulatory factor, which enhances the transcriptional activity of inflammatory cytokines and interferons, and induces the recruitment of inflammatory cells. As the heart is an organ comprising abundant mitochondria for its ATP consumption (needed to maintain constant cyclic contraction and relaxation), the generation of massive amounts of mitochondrial radical oxygen species and mitochondrial DAMPs are predicted to occur and promote cardiac inflammation. Here, we will focus on the role of mtDNA in cardiac inflammation and review the mechanism and pathological significance of mtDNA-induced inflammatory responses in cardiac diseases.


Asunto(s)
Enfermedades Cardiovasculares/genética , ADN Mitocondrial/fisiología , Mediadores de Inflamación/metabolismo , Inflamación/genética , Animales , Enfermedades Cardiovasculares/complicaciones , Enfermedades Cardiovasculares/metabolismo , Humanos , Inflamación/complicaciones
14.
Hum Mol Genet ; 25(4): 706-14, 2016 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-26681804

RESUMEN

Mitochondria are dynamic organelles that divide and fuse by remodeling an outer and inner membrane in response to developmental, physiological and stress stimuli. These events are coordinated by conserved dynamin-related GTPases. The dynamics of mitochondrial morphology require coordination with mitochondrial DNA (mtDNA) to ensure faithful genome transmission, however, this process remains poorly understood. Mitochondrial division is linked to the segregation of mtDNA but how it affects cases of mtDNA heteroplasmy, where two or more mtDNA variants/mutations co-exist in a cell, is unknown. Segregation of heteroplasmic human pathogenic mtDNA mutations is a critical factor in the onset and severity of human mitochondrial diseases. Here, we investigated the coupling of mitochondrial morphology to the transmission and segregation of mtDNA in mammals by taking advantage of two genetically modified mouse models: one with a dominant-negative mutation in the dynamin-related protein 1 (Drp1 or Dnm1l) that impairs mitochondrial fission and the other, heteroplasmic mice segregating two neutral mtDNA haplotypes (BALB and NZB). We show a tissue-specific response to mtDNA segregation from a defect in mitochondrial fission. Only mtDNA segregation in the hematopoietic compartment is modulated from impaired Dnm1l function. In contrast, no effect was observed in other tissues arising from the three germ layers during development and in mtDNA transmission through the female germline. Our data suggest a robust organization of a heteroplasmic mtDNA segregating unit across mammalian cell types that can overcome impaired mitochondrial division to ensure faithful transmission of the mitochondrial genome.


Asunto(s)
ADN Mitocondrial/fisiología , Mitocondrias/fisiología , Dinámicas Mitocondriales/fisiología , Animales , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Femenino , Haplotipos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Endogámicos NZB , Mitocondrias/genética , Mitocondrias/metabolismo , Dinámicas Mitocondriales/genética , Modelos Animales
15.
Am J Hum Genet ; 97(1): 186-93, 2015 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-26094573

RESUMEN

Chronic progressive external ophthalmoplegia (CPEO) is common in mitochondrial disorders and is frequently associated with multiple mtDNA deletions. The onset is typically in adulthood, and affected subjects can also present with general muscle weakness. The underlying genetic defects comprise autosomal-dominant or recessive mutations in several nuclear genes, most of which play a role in mtDNA replication. Next-generation sequencing led to the identification of compound-heterozygous RNASEH1 mutations in two singleton subjects and a homozygous mutation in four siblings. RNASEH1, encoding ribonuclease H1 (RNase H1), is an endonuclease that is present in both the nucleus and mitochondria and digests the RNA component of RNA-DNA hybrids. Unlike mitochondria, the nucleus harbors a second ribonuclease (RNase H2). All affected individuals first presented with CPEO and exercise intolerance in their twenties, and these were followed by muscle weakness, dysphagia, and spino-cerebellar signs with impaired gait coordination, dysmetria, and dysarthria. Ragged-red and cytochrome c oxidase (COX)-negative fibers, together with impaired activity of various mitochondrial respiratory chain complexes, were observed in muscle biopsies of affected subjects. Western blot analysis showed the virtual absence of RNase H1 in total lysate from mutant fibroblasts. By an in vitro assay, we demonstrated that altered RNase H1 has a reduced capability to remove the RNA from RNA-DNA hybrids, confirming their pathogenic role. Given that an increasing amount of evidence indicates the presence of RNA primers during mtDNA replication, this result might also explain the accumulation of mtDNA deletions and underscores the importance of RNase H1 for mtDNA maintenance.


Asunto(s)
Replicación del ADN/genética , ADN Mitocondrial/fisiología , Encefalomiopatías Mitocondriales/genética , Oftalmoplejía Externa Progresiva Crónica/genética , ARN/metabolismo , Ribonucleasa H/genética , Adulto , Secuencia de Aminoácidos , Secuencia de Bases , Southern Blotting , Western Blotting , ADN Mitocondrial/genética , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Persona de Mediana Edad , Encefalomiopatías Mitocondriales/patología , Datos de Secuencia Molecular , Mutación/genética , Oftalmoplejía Externa Progresiva Crónica/patología , Linaje
16.
FASEB J ; 31(6): 2520-2532, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28258190

RESUMEN

Alveolar epithelial cell (AEC) mitochondrial dysfunction and apoptosis are important in idiopathic pulmonary fibrosis and asbestosis. Sirtuin 3 (SIRT3) detoxifies mitochondrial reactive oxygen species, in part, by deacetylating manganese superoxide dismutase (MnSOD) and mitochondrial 8-oxoguanine DNA glycosylase. We reasoned that SIRT3 deficiency occurs in fibrotic lungs and thereby augments AEC mtDNA damage and apoptosis. Human lungs were assessed by using immunohistochemistry for SIRT3 activity via acetylated MnSODK68 Murine AEC SIRT3 and cleaved caspase-9 (CC-9) expression were assayed by immunoblotting with or without SIRT3 enforced expression or silencing. mtDNA damage was measured by using quantitative PCR and apoptosis via ELISA. Pulmonary fibrosis after asbestos or bleomycin exposure was evaluated in 129SJ/wild-type and SIRT3-knockout mice (Sirt3-/- ) by using fibrosis scoring and lung collagen levels. Idiopathic pulmonary fibrosis lung alveolar type II cells have increased MnSODK68 acetylation compared with controls. Asbestos and H2O2 diminished AEC SIRT3 protein expression and increased mitochondrial protein acetylation, including MnSODK68 SIRT3 enforced expression reduced oxidant-induced AEC OGG1K338/341 acetylation, mtDNA damage, and apoptosis, whereas SIRT3 silencing promoted these effects. Asbestos- or bleomycin-induced lung fibrosis, AEC mtDNA damage, and apoptosis in wild-type mice were amplified in Sirt3-/- animals. These data suggest a novel role for SIRT3 deficiency in mediating AEC mtDNA damage, apoptosis, and lung fibrosis.-Jablonski, R. P., Kim, S.-J., Cheresh, P., Williams, D. B., Morales-Nebreda, L., Cheng, Y., Yeldandi, A., Bhorade, S., Pardo, A., Selman, M., Ridge, K., Gius, D., Budinger, G. R. S., Kamp, D. W. SIRT3 deficiency promotes lung fibrosis by augmenting alveolar epithelial cell mitochondrial DNA damage and apoptosis.


Asunto(s)
Células Epiteliales Alveolares/patología , Apoptosis/fisiología , ADN Mitocondrial/fisiología , Fibrosis Pulmonar/etiología , Sirtuina 3/metabolismo , Células A549 , Animales , Antibióticos Antineoplásicos/toxicidad , Amianto/toxicidad , Bleomicina/toxicidad , Daño del ADN , Humanos , Ratones , Ratones Noqueados , Oxidantes/toxicidad , Fibrosis Pulmonar/metabolismo , Sirtuina 3/genética
17.
Biogerontology ; 19(3-4): 189-208, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29488130

RESUMEN

In the last decades, studies about ageing have become more essential as our population grows older. The incidence of age-related diseases increases, which pose challenges both for societies and individuals in terms of life quality and economic impact. Understanding ageing and ageing-related processes will help us to slow down or even prevent these diseases and provide opportunities for healthy ageing; additionally, we all want to live longer. Ageing is a consequence of the interaction between processes that occur over time and genetics interacting with various disease states and an individual's lifestyle. There are several hallmarks of ageing that are generally accepted, but neither of the theories appears to be fully satisfactory. The focus of this article is on two theories of ageing: telomere shortening and mitochondrial DNA (mtDNA) alterations and dysfunction. We discuss characteristic molecular features such as mitochondrial haplogroups, telomere length, mtDNA copy number and heteroplasmy, and how all these traits come together in the ageing population. The recent evidence shows the existence of a strong linkage between these two theories suggesting common molecular mechanisms and a complicated telomere-mitochondria interplay during the humans' ageing. However, this relationship is still not completely understood, which is why it needs more attention.


Asunto(s)
Envejecimiento/fisiología , Daño del ADN , Mitocondrias/genética , Acortamiento del Telómero , ADN Mitocondrial/fisiología , Humanos
18.
Eur J Epidemiol ; 33(5): 485-495, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29619669

RESUMEN

Adiposity may cause adverse health outcomes by increasing oxidative stress and systemic inflammation, which can be reflected by altered telomere length (TL) and mitochondrial DNA copy number (mtCN) in peripheral blood leukocytes. However, little is known about the influence of lifetime adiposity on TL and mtCN in later life. This study was performed to investigate the associations of lifetime adiposity with leukocyte TL and mtCN in 9613 participants from the Nurses' Health Study. A group-based trajectory modelling approach was used to create trajectories of body shape from age 5 through 60 years, and a genetic risk score (GRS) was created based on 97 known adiposity susceptibility variants. Associations of body shape trajectories and GRS with dichotomized TL and mtCN were assessed by logistic regression models. After adjustment for lifestyle and dietary factors, compared with the lean-stable group, the lean-marked increase group had higher odds of having below-median TL (OR = 1.18, 95% CI 1.04, 1.35; P = 0.01), and the medium-marked increase group had higher odds of having below-median mtCN (OR = 1.28, 95% CI 1.00, 1.64; P = 0.047). There was a suggestive trend toward lower mtCN across the GRS quartiles (P for trend = 0.07). In conclusion, telomere attrition may be accelerated by marked weight gain in middle life, whereas mtCN is likely to be reduced persistently by adiposity over the life course. The findings indicate the importance of lifetime weight management to preserve functional telomeres and mitochondria.


Asunto(s)
Adiposidad/fisiología , Índice de Masa Corporal , Variaciones en el Número de Copia de ADN/fisiología , ADN Mitocondrial/fisiología , Leucocitos/fisiología , Telómero/fisiología , Adolescente , Adulto , Envejecimiento/fisiología , Niño , Preescolar , Estudios de Cohortes , Femenino , Humanos , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Factores de Riesgo , Estados Unidos , Adulto Joven
19.
Nucleic Acids Res ; 44(9): 4200-10, 2016 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-26887820

RESUMEN

A crucial component of the human mitochondrial DNA replisome is the ring-shaped helicase TWINKLE-a phage T7-gene 4-like protein expressed in the nucleus and localized in the human mitochondria. Our previous studies showed that despite being a helicase, TWINKLE has unique DNA annealing activity. At the time, the implications of DNA annealing by TWINKLE were unclear. Herein, we report that TWINKLE uses DNA annealing function to actively catalyze strand-exchange reaction between the unwinding substrate and a homologous single-stranded DNA. Using various biochemical experiments, we demonstrate that the mechanism of strand-exchange involves active coupling of unwinding and annealing reactions by the TWINKLE. Unlike strand-annealing, the strand-exchange reaction requires nucleotide hydrolysis and greatly stimulated by short region of homology between the recombining DNA strands that promote joint molecule formation to initiate strand-exchange. Furthermore, we show that TWINKLE catalyzes branch migration by resolving homologous four-way junction DNA. These four DNA modifying activities of TWINKLE: strand-separation, strand-annealing, strand-exchange and branch migration suggest a dual role of TWINKLE in mitochondrial DNA maintenance. In addition to playing a major role in fork progression during leading strand DNA synthesis, we propose that TWINKLE is involved in recombinational repair of the human mitochondrial DNA.


Asunto(s)
ADN Helicasas/química , Proteínas Mitocondriales/química , Emparejamiento Base , Biocatálisis , ADN Helicasas/fisiología , Replicación del ADN , ADN Mitocondrial/química , ADN Mitocondrial/fisiología , ADN de Cadena Simple/química , Escherichia coli , Humanos , Cinética , Proteínas Mitocondriales/fisiología , Unión Proteica
20.
Proc Natl Acad Sci U S A ; 112(33): 10133-8, 2015 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-25848019

RESUMEN

Comparative studies of the mitochondrial proteome have identified a conserved core of proteins descended from the α-proteobacterial endosymbiont that gave rise to the mitochondrion and was the source of the mitochondrial genome in contemporary eukaryotes. A surprising result of phylogenetic analyses is the relatively small proportion (10-20%) of the mitochondrial proteome displaying a clear α-proteobacterial ancestry. A large fraction of mitochondrial proteins typically has detectable homologs only in other eukaryotes and is presumed to represent proteins that emerged specifically within eukaryotes. A further significant fraction of the mitochondrial proteome consists of proteins with homologs in prokaryotes, but without a robust phylogenetic signal affiliating them with specific prokaryotic lineages. The presumptive evolutionary source of these proteins is quite different in contending models of mitochondrial origin.


Asunto(s)
Alphaproteobacteria/fisiología , Mitocondrias/fisiología , Proteínas Mitocondriales/fisiología , Proteoma , Animales , Evolución Biológica , ADN Mitocondrial/fisiología , Evolución Molecular , Técnicas de Transferencia de Gen , Genoma Mitocondrial , Humanos , Ratones , Filogenia , Simbiosis , Levaduras
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA