RESUMEN
Mitochondria contain a specific translation machinery for the synthesis of mitochondria-encoded respiratory chain components. Mitochondrial tRNAs (mt-tRNAs) are also generated from the mitochondrial DNA and, similar to their cytoplasmic counterparts, are post-transcriptionally modified. Here, we find that the RNA methyltransferase METTL8 is a mitochondrial protein that facilitates 3-methyl-cytidine (m3C) methylation at position C32 of the mt-tRNASer(UCN) and mt-tRNAThr. METTL8 knockout cells show a reduction in respiratory chain activity, whereas overexpression increases activity. In pancreatic cancer, METTL8 levels are high, which correlates with lower patient survival and an enhanced respiratory chain activity. Mitochondrial ribosome profiling uncovered mitoribosome stalling on mt-tRNASer(UCN)- and mt-tRNAThr-dependent codons. Further analysis of the respiratory chain complexes using mass spectrometry revealed reduced incorporation of the mitochondrially encoded proteins ND6 and ND1 into complex I. The well-balanced translation of mt-tRNASer(UCN)- and mt-tRNAThr-dependent codons through METTL8-mediated m3C32 methylation might, therefore, facilitate the optimal composition and function of the mitochondrial respiratory chain.
Asunto(s)
Metiltransferasas/metabolismo , ARN Mitocondrial/química , ARN de Transferencia/química , Animales , Anticodón , Proliferación Celular , Codón , Citoplasma , ADN Mitocondrial/metabolismo , Transporte de Electrón , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Humanos , Ratones , Mitocondrias/metabolismo , Membranas Mitocondriales , Proteínas Mitocondriales/química , Consumo de Oxígeno , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/mortalidad , Ribosomas/metabolismo , Regulación hacia ArribaRESUMEN
Mitochondrial RNA polymerase (mtRNAP) is crucial in cellular energy production, yet understanding of mitochondrial DNA transcription initiation lags that of bacterial and nuclear DNA transcription. We report structures of two transcription initiation intermediate states of yeast mtRNAP that explain promoter melting, template alignment, DNA scrunching, abortive synthesis, and transition into elongation. In the partially melted initiation complex (PmIC), transcription factor MTF1 makes base-specific interactions with flipped non-template (NT) nucleotides "AAGT" at -4 to -1 positions of the DNA promoter. In the initiation complex (IC), the template in the expanded 7-mer bubble positions the RNA and NTP analog UTPαS, while NT scrunches into an NT loop. The scrunched NT loop is stabilized by the centrally positioned MTF1 C-tail. The IC and PmIC states coexist in solution, revealing a dynamic equilibrium between two functional states. Frequent scrunching/unscruching transitions and the imminent steric clashes of the inflating NT loop and growing RNA:DNA with the C-tail explain abortive synthesis and transition into elongation.
Asunto(s)
ADN Mitocondrial/genética , ARN Polimerasas Dirigidas por ADN/genética , Mitocondrias/genética , Proteínas Mitocondriales/genética , ARN Mitocondrial/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Factores de Transcripción/genética , Sitios de Unión , Microscopía por Crioelectrón , ADN Mitocondrial/química , ADN Mitocondrial/metabolismo , ARN Polimerasas Dirigidas por ADN/química , ARN Polimerasas Dirigidas por ADN/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/química , Proteínas Mitocondriales/metabolismo , Modelos Moleculares , Motivos de Nucleótidos , Regiones Promotoras Genéticas , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , ARN Mitocondrial/química , ARN Mitocondrial/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Termodinámica , Elongación de la Transcripción Genética , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Iniciación de la Transcripción GenéticaRESUMEN
Mitochondria are eukaryotic organelles of bacterial origin where respiration takes place to produce cellular chemical energy. These reactions are catalyzed by the respiratory chain complexes located in the inner mitochondrial membrane. Notably, key components of the respiratory chain complexes are encoded on the mitochondrial chromosome and their expression relies on a dedicated mitochondrial translation machinery. Defects in the mitochondrial gene expression machinery lead to a variety of diseases in humans mostly affecting tissues with high energy demand such as the nervous system, the heart, or the muscles. The mitochondrial translation system has substantially diverged from its bacterial ancestor, including alterations in the mitoribosomal architecture, multiple changes to the set of translation factors and striking reductions in otherwise conserved tRNA elements. Although a number of structures of mitochondrial ribosomes from different species have been determined, our mechanistic understanding of the mitochondrial translation cycle remains largely unexplored. Here, we present two cryo-EM reconstructions of human mitochondrial elongation factor G1 bound to the mammalian mitochondrial ribosome at two different steps of the tRNA translocation reaction during translation elongation. Our structures explain the mechanism of tRNA and mRNA translocation on the mitoribosome, the regulation of mtEFG1 activity by the ribosomal GTPase-associated center, and the basis of decreased susceptibility of mtEFG1 to the commonly used antibiotic fusidic acid.
Asunto(s)
Proteínas Mitocondriales/química , Ribosomas Mitocondriales/química , Ribosomas Mitocondriales/ultraestructura , Factor G de Elongación Peptídica/química , Biosíntesis de Proteínas , ARN Mitocondrial/química , ARN de Transferencia/química , Animales , Microscopía por Crioelectrón , Humanos , Membranas Mitocondriales/química , Membranas Mitocondriales/metabolismo , Membranas Mitocondriales/ultraestructura , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Ribosomas Mitocondriales/metabolismo , Factor G de Elongación Peptídica/genética , Factor G de Elongación Peptídica/metabolismo , ARN Mitocondrial/genética , ARN Mitocondrial/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , PorcinosRESUMEN
Mitochondria maintain their own specialized protein synthesis machinery, which in mammals is used exclusively for the synthesis of the membrane proteins responsible for oxidative phosphorylation1,2. The initiation of protein synthesis in mitochondria differs substantially from bacterial or cytosolic translation systems. Mitochondrial translation initiation lacks initiation factor 1, which is essential in all other translation systems from bacteria to mammals3,4. Furthermore, only one type of methionyl transfer RNA (tRNAMet) is used for both initiation and elongation4,5, necessitating that the initiation factor specifically recognizes the formylated version of tRNAMet (fMet-tRNAMet). Lastly, most mitochondrial mRNAs do not possess 5' leader sequences to promote mRNA binding to the ribosome2. There is currently little mechanistic insight into mammalian mitochondrial translation initiation, and it is not clear how mRNA engagement, initiator-tRNA recruitment and start-codon selection occur. Here we determine the cryo-EM structure of the complete translation initiation complex from mammalian mitochondria at 3.2 Å. We describe the function of an additional domain insertion that is present in the mammalian mitochondrial initiation factor 2 (mtIF2). By closing the decoding centre, this insertion stabilizes the binding of leaderless mRNAs and induces conformational changes in the rRNA nucleotides involved in decoding. We identify unique features of mtIF2 that are required for specific recognition of fMet-tRNAMet and regulation of its GTPase activity. Finally, we observe that the ribosomal tunnel in the initiating ribosome is blocked by insertion of the N-terminal portion of mitochondrial protein mL45, which becomes exposed as the ribosome switches to elongation mode and may have an additional role in targeting of mitochondrial ribosomes to the protein-conducting pore in the inner mitochondrial membrane.
Asunto(s)
Microscopía por Crioelectrón , Mamíferos , Mitocondrias/ultraestructura , Iniciación de la Cadena Peptídica Traduccional , Animales , Codón Iniciador/genética , Factores Eucarióticos de Iniciación/química , Factores Eucarióticos de Iniciación/genética , Factores Eucarióticos de Iniciación/metabolismo , Factores Eucarióticos de Iniciación/ultraestructura , Mitocondrias/química , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/química , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/ultraestructura , Modelos Moleculares , ARN Mitocondrial/química , ARN Mitocondrial/genética , ARN Mitocondrial/metabolismo , ARN Mitocondrial/ultraestructura , ARN de Transferencia de Metionina/genética , ARN de Transferencia de Metionina/metabolismo , ARN de Transferencia de Metionina/ultraestructuraRESUMEN
Mitochondrial diseases linked to mutations in mitochondrial (mt) tRNA sequences are common. However, the contributions of these tRNA mutations to the development of diseases is mostly unknown. Mutations may affect interactions with (mt)tRNA maturation enzymes or protein synthesis machinery leading to mitochondrial dysfunction. In human mitochondria, in most cases the first step of tRNA processing is the removal of the 5' leader of precursor tRNAs (pre-tRNA) catalyzed by the three-component enzyme, mtRNase P. Additionally, one component of mtRNase P, mitochondrial RNase P protein 1 (MRPP1), catalyzes methylation of the R9 base in pre-tRNAs. Despite the central role of 5' end processing in mitochondrial tRNA maturation, the link between mtRNase P and diseases is mostly unexplored. Here, we investigate how 11 different human disease-linked mutations in (mt)pre-tRNAIle, (mt)pre-tRNALeu(UUR), and (mt)pre-tRNAMet affect the activities of mtRNase P. We find that several mutations weaken the pre-tRNA binding affinity (KD s are approximately two- to sixfold higher than that of wild-type), while the majority of mutations decrease 5' end processing and methylation activity catalyzed by mtRNase P (up to â¼55% and 90% reduction, respectively). Furthermore, all of the investigated mutations in (mt)pre-tRNALeu(UUR) alter the tRNA fold which contributes to the partial loss of function of mtRNase P. Overall, these results reveal an etiological link between early steps of (mt)tRNA-substrate processing and mitochondrial disease.
Asunto(s)
Metiltransferasas/química , Enfermedades Mitocondriales/genética , Precursores del ARN/química , Procesamiento Postranscripcional del ARN , ARN Mitocondrial/química , ARN de Transferencia/química , Emparejamiento Base , Secuencia de Bases , Humanos , Metilación , Metiltransferasas/genética , Metiltransferasas/metabolismo , Mitocondrias/metabolismo , Mitocondrias/patología , Enfermedades Mitocondriales/metabolismo , Enfermedades Mitocondriales/patología , Mutación , Pliegue del ARN , Precursores del ARN/genética , Precursores del ARN/metabolismo , ARN Mitocondrial/genética , ARN Mitocondrial/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/metabolismoRESUMEN
Uridine insertion/deletion editing of mitochondrial mRNAs is a characteristic feature of kinetoplastids, including Trypanosoma brucei. Editing is directed by trans-acting gRNAs and catalyzed by related RNA Editing Core Complexes (RECCs). The non-catalytic RNA Editing Substrate Binding Complex (RESC) coordinates interactions between RECC, gRNA and mRNA. RESC is a dynamic complex comprising GRBC (Guide RNA Binding Complex) and heterogeneous REMCs (RNA Editing Mediator Complexes). Here, we show that RESC10 is an essential, low abundance, RNA binding protein that exhibits RNase-sensitive and RNase-insensitive interactions with RESC proteins, albeit its minimal in vivo interaction with RESC13. RESC10 RNAi causes extensive RESC disorganization, including disruption of intra-GRBC protein-protein interactions, as well as mRNA depletion from GRBC and accumulation on REMCs. Analysis of mitochondrial RNAs at single nucleotide resolution reveals transcript-specific effects: RESC10 dramatically impacts editing progression in pan-edited RPS12 mRNA, but is critical for editing initiation in mRNAs with internally initiating gRNAs, pointing to distinct initiation mechanisms for these RNA classes. Correlations between sites at which editing pauses in RESC10 depleted cells and those in knockdowns of previously studied RESC proteins suggest that RESC10 acts upstream of these factors and that RESC is particularly important in promoting transitions between uridine insertion and deletion RECCs.
Asunto(s)
Proteínas Protozoarias/fisiología , Edición de ARN , ARN Mensajero/metabolismo , ARN Mitocondrial/metabolismo , Proteínas de Unión al ARN/fisiología , Trypanosoma brucei brucei/genética , ARN Guía de Kinetoplastida/metabolismo , ARN Mensajero/química , ARN Mitocondrial/química , Proteínas de Unión al ARN/metabolismo , Trypanosoma brucei brucei/crecimiento & desarrollo , Uridina/metabolismoRESUMEN
Mitochondrial RNA editing in trypanosomes represents an attractive target for developing safer and more efficient drugs for treating infections with trypanosomes because this RNA editing pathway is not found in humans. Other workers have targeted several enzymes in this editing system, but not the RNA. Here, we target a universal domain of the RNA editing substrate, which is the U-helix formed between the oligo-U tail of the guide RNA and the target mRNA. We selected a part of the U-helix that is rich in G-U wobble base pairs as the target site for the virtual screening of 262,000 compounds. After chemoinformatic filtering of the top 5000 leads, we subjected 50 representative complexes to 50 nanoseconds of molecular dynamics simulations. We identified 15 compounds that retained stable interactions in the deep groove of the U-helix. The microscale thermophoresis binding experiments on these five compounds show low-micromolar to nanomolar binding affinities. The UV melting studies show an increase in the melting temperatures of the U-helix upon binding by each compound. These five compounds can serve as leads for drug development and as research tools to probe the role of the RNA structure in trypanosomal RNA editing.
Asunto(s)
Edición de ARN , Bibliotecas de Moléculas Pequeñas , Tripanocidas , Trypanosoma , Trypanosoma/efectos de los fármacos , Edición de ARN/efectos de los fármacos , ARN Protozoario/química , ARN Mitocondrial/química , Tripanocidas/química , Tripanocidas/farmacología , Conformación de Ácido Nucleico/efectos de los fármacos , Simulación de Dinámica Molecular , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacologíaRESUMEN
Most mitochondrial mRNAs are transcribed as polycistronic precursors that are cleaved by endonucleases to produce mature mRNA transcripts. However, recent studies have shown that mitochondrial transcripts in the kinetoplastid protozoan, Trypanosoma brucei, are transcribed individually. Also unlike most mitochondrial mRNAs, the 5' end of these transcripts harbor a triphosphate that is hydrolyzed. This modification is carried out by a putative Nudix hydrolase called MERS1. The Nudix motif in MERS1 is degenerate, lacking a conserved glutamic acid, thus it is unclear how it may bind its substrates and whether it contains a Nudix fold. To obtain insight into this unusual hydrolase, we determined structures of apo, GTP-bound and RNA-bound T. brucei MERS1 to 2.30 Å, 2.45 Å, and 2.60 Å, respectively. The MERS1 structure has a unique fold that indeed contains a Nudix motif. The nucleotide bound structures combined with binding studies reveal that MERS1 shows preference for RNA sequences with a central guanine repeat which it binds in a single-stranded conformation. The apo MERS1 structure indicates that a significant portion of its nucleotide binding site folds upon substrate binding. Finally, a potential interaction region for a binding partner, MERS2, that activates MERS1 was identified. The MERS2-like peptide inserts a glutamate near the missing Nudix acidic residue in the RNA binding pocket, suggesting how the enzyme may be activated. Thus, the combined studies reveal insight into the structure and enzyme properties of MERS1 and its substrate-binding activities.
Asunto(s)
ARN Mensajero/química , ARN Mitocondrial/química , Trypanosoma brucei brucei/enzimología , Modelos Moleculares , Conformación de Ácido Nucleico , ARN/metabolismo , ARN Mensajero/genética , ARN Mitocondrial/genética , ARN Protozoario/química , ARN Protozoario/genética , Alineación de Secuencia , Trypanosoma brucei brucei/genéticaRESUMEN
Mammalian mitochondrial ribosomes contain a set of modified nucleotides, which is distinct from that of the cytosolic ribosomes. Nucleotide m4C840 of the murine mitochondrial 12S rRNA is equivalent to the dimethylated m4Cm1402 residue of Escherichia coli 16S rRNA. Here we demonstrate that mouse METTL15 protein is responsible for the formation of m4C residue of the 12S rRNA. Inactivation of Mettl15 gene in murine cell line perturbs the composition of mitochondrial protein biosynthesis machinery. Identification of METTL15 interaction partners revealed that the likely substrate for this RNA methyltransferase is an assembly intermediate of the mitochondrial small ribosomal subunit containing an assembly factor RBFA.
Asunto(s)
Metiltransferasas/metabolismo , Mitocondrias/enzimología , ARN Ribosómico/metabolismo , Subunidades Ribosómicas Pequeñas de Eucariotas/enzimología , Animales , Células Cultivadas , Metilación , Ratones , Mitocondrias/metabolismo , ARN Mitocondrial/química , ARN Mitocondrial/metabolismo , ARN Ribosómico/química , ARN Ribosómico 28S/metabolismo , Subunidades Ribosómicas Pequeñas de Eucariotas/química , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismoRESUMEN
The RNA helicase SUV3 and the polynucleotide phosphorylase PNPase are involved in the degradation of mitochondrial mRNAs but their roles in vivo are not fully understood. Additionally, upstream processes, such as transcript maturation, have been linked to some of these factors, suggesting either dual roles or tightly interconnected mechanisms of mitochondrial RNA metabolism. To get a better understanding of the turn-over of mitochondrial RNAs in vivo, we manipulated the mitochondrial mRNA degrading complex in Drosophila melanogaster models and studied the molecular consequences. Additionally, we investigated if and how these factors interact with the mitochondrial poly(A) polymerase, MTPAP, as well as with the mitochondrial mRNA stabilising factor, LRPPRC. Our results demonstrate a tight interdependency of mitochondrial mRNA stability, polyadenylation and the removal of antisense RNA. Furthermore, disruption of degradation, as well as polyadenylation, leads to the accumulation of double-stranded RNAs, and their escape out into the cytoplasm is associated with an altered immune-response in flies. Together our results suggest a highly organised and inter-dependable regulation of mitochondrial RNA metabolism with far reaching consequences on cellular physiology.
Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , ARN Mitocondrial/química , ARN Mitocondrial/metabolismo , Animales , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Femenino , Masculino , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Poliadenilación , Polirribonucleótido Nucleotidiltransferasa/genética , Polirribonucleótido Nucleotidiltransferasa/metabolismo , Estabilidad del ARN , ARN sin Sentido/química , ARN sin Sentido/metabolismo , ARN Bicatenario/química , ARN Bicatenario/metabolismoRESUMEN
Guanine quadruplexes (G4s) are highly polymorphic four-stranded structures formed within guanine-rich DNA and RNA sequences that play a crucial role in biological processes. The recent discovery of the first G4 structures within mitochondrial DNA has led to a small revolution in the field. In particular, the G-rich conserved sequence block II (CSB II) can form different types of G4s that are thought to play a crucial role in replication. In this study, we decipher the most relevant G4 structures that can be formed within CSB II: RNA G4 at the RNA transcript, DNA G4 within the non-transcribed strand and DNA:RNA hybrid between the RNA transcript and the non-transcribed strand. We show that the more abundant, but unexplored, G6AG7 (37%) and G6AG8 (35%) sequences in CSB II yield more stable G4s than the less profuse G5AG7 sequence. Moreover, the existence of a guanine located 1 bp upstream promotes G4 formation. In all cases, parallel G4s are formed, but their topology changes from a less ordered to a highly ordered G4 when adding small amounts of potassium or sodium cations. Circular dichroism was used due to discriminate different conformations and topologies of nucleic acids and was complemented with gel electrophoresis and fluorescence spectroscopy studies.
Asunto(s)
ADN Mitocondrial/química , Mitocondrias/genética , ARN Mitocondrial/química , Dicroismo Circular , G-Cuádruplex , Espectrometría de FluorescenciaRESUMEN
Newly synthesized mitochondrial RNA is concentrated in structures juxtaposed to nucleoids, called RNA granules, that have been implicated in mitochondrial RNA processing and ribosome biogenesis. Here we show that two classical mtDNA replication factors, the mtDNA helicase Twinkle and single-stranded DNA-binding protein mtSSB, contribute to RNA metabolism in mitochondria and to RNA granule biology. Twinkle colocalizes with both mitochondrial RNA granules and nucleoids, and it can serve as bait to greatly enrich established RNA granule proteins, such as G-rich sequence factor 1, GRSF1. Likewise, mtSSB also is not restricted to the nucleoids, and repression of either mtSSB or Twinkle alters mtRNA metabolism. Short-term Twinkle depletion greatly diminishes RNA granules but does not inhibit RNA synthesis or processing. Either mtSSB or GRSF1 depletion results in RNA processing defects, accumulation of mtRNA breakdown products as well as increased levels of dsRNA and RNA:DNA hybrids. In particular, the processing and degradation defects become more pronounced with both proteins depleted. These findings suggest that Twinkle is essential for RNA organization in granules, and that mtSSB is involved in the recently proposed GRSF1-mtRNA degradosome pathway, a route suggested to be particularly aimed at degradation of G-quadruplex prone long non-coding mtRNAs.
Asunto(s)
ADN Helicasas/genética , ADN Mitocondrial/genética , Proteínas de Unión al ADN/genética , Proteínas Mitocondriales/genética , Proteínas de Unión a Poli(A)/genética , Replicación del ADN/genética , Humanos , Mitocondrias/genética , Mitocondrias/metabolismo , Procesamiento Postranscripcional del ARN/genética , ARN Mitocondrial/química , ARN Mitocondrial/genéticaRESUMEN
RNA species play host to a plethora of post-transcriptional modifications which together make up the epitranscriptome. 5-methyluridine (m5U) is one of the most common modifications made to cellular RNA, where it is found almost ubiquitously in bacterial and eukaryotic cytosolic tRNAs at position 54. Here, we demonstrate that m5U54 in human mitochondrial tRNAs is catalysed by the nuclear-encoded enzyme TRMT2B, and that its repertoire of substrates is expanded to ribosomal RNAs, catalysing m5U429 in 12S rRNA. We show that TRMT2B is not essential for viability in human cells and that knocking-out the gene shows no obvious phenotype with regards to RNA stability, mitochondrial translation, or cellular growth.
Asunto(s)
Mitocondrias/enzimología , ARN Ribosómico/metabolismo , ARN de Transferencia/metabolismo , ARNt Metiltransferasas/metabolismo , Proliferación Celular , Supervivencia Celular , Técnicas de Silenciamiento del Gen , Células HeLa , Humanos , Metilación , Mitocondrias/genética , Mitocondrias/metabolismo , Conformación Molecular , ARN Mitocondrial/química , ARN Mitocondrial/metabolismo , ARN Ribosómico/química , ARN de Transferencia/química , Especificidad por Sustrato , Timina/metabolismo , ARNt Metiltransferasas/genéticaRESUMEN
RNA molecules of all species contain modified nucleotides and particularly m5U residues. The vertebrate mitochondrial small subunit rRNA contains m5U nucleotide in a unique site. In this work we found an enzyme, TRMT2B, responsible for the formation of this nucleotide and m5U residues in a number of mitochondrial tRNA species. Inactivation of the Trmt2B gene leads to a reduction of the activity of respiratory chain complexes I, III and IV, containing the subunits synthesized by the mitochondrial protein synthesis apparatus. Comparative sequence analysis of m5U-specific RNA methyltransferases revealed an unusual evolutionary pathway of TRMT2B formation which includes consecutive substrate specificity switches from the large subunit rRNA to tRNA and then to the small subunit rRNA.
Asunto(s)
Mitocondrias/enzimología , ARN Ribosómico/metabolismo , ARN de Transferencia/metabolismo , ARNt Metiltransferasas/metabolismo , Animales , Secuencia de Bases , Línea Celular , Complejo I de Transporte de Electrón/metabolismo , Complejo III de Transporte de Electrones/metabolismo , Metilación , Ratones , Mitocondrias/genética , Mitocondrias/metabolismo , Conformación de Ácido Nucleico , ARN Mitocondrial/química , ARN Mitocondrial/metabolismo , ARN Ribosómico/química , ARN de Transferencia/química , Especificidad por Sustrato , Timina/metabolismo , ARNt Metiltransferasas/genéticaRESUMEN
Six pathogenic mutations have been reported in human mitochondrial tRNAThr (hmtRNAThr); however, the pathogenic molecular mechanism remains unclear. Previously, we established an activity assay system for human mitochondrial threonyl-tRNA synthetase (hmThrRS). In the present study, we surveyed the structural and enzymatic effects of pathogenic mutations in hmtRNAThr and then focused on m.15915 G > A (G30A) and m.15923A > G (A38G). The harmful evolutionary gain of non-Watson-Crick base pair A29/C41 caused hmtRNAThr to be highly susceptible to mutations disrupting the G30-C40 base pair in various ways; for example, structural integrity maintenance, modification and aminoacylation of tRNAThr, and editing mischarged tRNAThr. A similar phenomenon was observed for hmtRNATrp with an A29/C41 non-Watson-Crick base pair, but not in bovine mtRNAThr with a natural G29-C41 base pair. The A38G mutation caused a severe reduction in Thr-acceptance and editing of hmThrRS. Importantly, A38 is a nucleotide determinant for the t6A modification at A37, which is essential for the coding properties of hmtRNAThr. In summary, our results revealed the crucial role of the G30-C40 base pair in maintaining the proper structure and function of hmtRNAThr because of A29/C41 non-Watson-Crick base pair and explained the molecular outcome of pathogenic G30A and A38G mutations.
Asunto(s)
Mutación , ARN Mitocondrial/química , ARN de Transferencia de Treonina/química , Anticodón , Emparejamiento Base , Humanos , Mitocondrias/enzimología , Edición de ARN , ARN Mitocondrial/genética , ARN Mitocondrial/metabolismo , ARN de Transferencia de Treonina/genética , ARN de Transferencia de Treonina/metabolismo , Treonina-ARNt Ligasa/metabolismo , Aminoacilación de ARN de TransferenciaRESUMEN
Mammalian mitochondrial ribosomes evolved from bacterial ribosomes by reduction of ribosomal RNAs, increase of ribosomal protein content, and loss of guanine nucleotides. Guanine is the base most sensitive to oxidative damage. By systematically comparing high-quality, small ribosomal subunit RNA sequence alignments and solved 3D ribosome structures from mammalian mitochondria and bacteria, we deduce rules for folding a complex RNA with the remaining guanines shielded from solvent. Almost all conserved guanines in both bacterial and mammalian mitochondrial ribosomal RNA form guanine-specific, local or long-range, RNA-RNA or RNA-protein interactions. Many solvent-exposed guanines conserved in bacteria are replaced in mammalian mitochondria by bases less sensitive to oxidation. New guanines, conserved only in the mitochondrial alignment, are strategically positioned at solvent inaccessible sites to stabilize the ribosomal RNA structure. New mitochondrial proteins substitute for truncated RNA helices, maintain mutual spatial orientations of helices, compensate for lost RNA-RNA interactions, reduce solvent accessibility of bases, and replace guanines conserved in bacteria by forming specific amino acid-RNA interactions.
Asunto(s)
Guanina/química , Pliegue del ARN , ARN Mitocondrial/química , ARN Ribosómico/química , Animales , Secuencia de Bases , Escherichia coli , Mitocondrias/metabolismo , Modelos Moleculares , Conformación de Ácido Nucleico , Unión Proteica , ARN Bacteriano/química , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , ARN Mitocondrial/genética , ARN Mitocondrial/metabolismo , ARN Ribosómico/genética , ARN Ribosómico/metabolismo , Proteínas Ribosómicas/metabolismo , Ribosomas/química , Ribosomas/metabolismo , Sus scrofaRESUMEN
Mammalian mitochondria operate multiple mechanisms of DNA replication. In many cells and tissues a strand-asynchronous mechanism predominates over coupled leading and lagging-strand DNA synthesis. However, little is known of the factors that control or influence the different mechanisms of replication, and the idea that strand-asynchronous replication entails transient incorporation of transcripts (aka bootlaces) is controversial. A firm prediction of the bootlace model is that it depends on mitochondrial transcripts. Here, we show that elevated expression of Twinkle DNA helicase in human mitochondria induces bidirectional, coupled leading and lagging-strand DNA synthesis, at the expense of strand-asynchronous replication; and this switch is accompanied by decreases in the steady-state level of some mitochondrial transcripts. However, in the so-called minor arc of mitochondrial DNA where transcript levels remain high, the strand-asynchronous replication mechanism is instated. Hence, replication switches to a strand-coupled mechanism only where transcripts are scarce, thereby establishing a direct correlation between transcript availability and the mechanism of replication. Thus, these findings support a critical role of mitochondrial transcripts in the strand-asynchronous mechanism of mitochondrial DNA replication; and, as a corollary, mitochondrial RNA availability and RNA/DNA hybrid formation offer means of regulating the mechanisms of DNA replication in the organelle.
Asunto(s)
Emparejamiento Base/fisiología , Replicación del ADN/genética , ADN Mitocondrial/metabolismo , ADN de Cadena Simple/metabolismo , ARN Mitocondrial/fisiología , Animales , ADN Helicasas/genética , ADN Helicasas/metabolismo , ADN Mitocondrial/química , ADN de Cadena Simple/química , Regulación de la Expresión Génica/fisiología , Inestabilidad Genómica/genética , Células HEK293 , Humanos , Mamíferos , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Mutagénesis Sitio-Dirigida , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Conformación de Ácido Nucleico , ARN Mitocondrial/química , ARN Mitocondrial/metabolismoRESUMEN
Mitochondrial tRNAs are transcribed as long polycistronic transcripts of precursor tRNAs and undergo posttranscriptional modifications such as endonucleolytic processing and methylation required for their correct structure and function. Among them, 5'-end processing and purine 9 N1-methylation of mitochondrial tRNA are catalyzed by two proteinaceous complexes with overlapping subunit composition. The Mg2+-dependent RNase P complex for 5'-end cleavage comprises the methyltransferase domain-containing protein tRNA methyltransferase 10C, mitochondrial RNase P subunit (TRMT10C/MRPP1), short-chain oxidoreductase hydroxysteroid 17ß-dehydrogenase 10 (HSD17B10/MRPP2), and metallonuclease KIAA0391/MRPP3. An MRPP1-MRPP2 subcomplex also catalyzes the formation of 1-methyladenosine/1-methylguanosine at position 9 using S-adenosyl-l-methionine as methyl donor. However, a lack of structural information has precluded insights into how these complexes methylate and process mitochondrial tRNA. Here, we used a combination of X-ray crystallography, interaction and activity assays, and small angle X-ray scattering (SAXS) to gain structural insight into the two tRNA modification complexes and their components. The MRPP1 N terminus is involved in tRNA binding and monomer-monomer self-interaction, whereas the C-terminal SPOUT fold contains key residues for S-adenosyl-l-methionine binding and N1-methylation. The entirety of MRPP1 interacts with MRPP2 to form the N1-methylation complex, whereas the MRPP1-MRPP2-MRPP3 RNase P complex only assembles in the presence of precursor tRNA. This study proposes low-resolution models of the MRPP1-MRPP2 and MRPP1-MRPP2-MRPP3 complexes that suggest the overall architecture, stoichiometry, and orientation of subunits and tRNA substrates.
Asunto(s)
3-Hidroxiacil-CoA Deshidrogenasas/química , Metiltransferasas/química , Modelos Moleculares , Complejos Multienzimáticos/química , ARN Mitocondrial/química , ARN de Transferencia/química , Ribonucleasa P/química , 3-Hidroxiacil-CoA Deshidrogenasas/metabolismo , Cristalografía por Rayos X , Humanos , Metiltransferasas/metabolismo , Complejos Multienzimáticos/metabolismo , ARN Mitocondrial/metabolismo , ARN de Transferencia/metabolismo , Ribonucleasa P/metabolismo , Dispersión del Ángulo PequeñoRESUMEN
In this study, we used a small RNA sequencing (sRNA-seq) based method to annotate the mitochondrial genome of the insect Erthesina fullo Thunberg at 1 bp resolution. The high-resolution annotations cover both entire strands of the mitochondrial genome without any gaps or overlaps. Most of the new annotations were consistent with the previous annotations which had been obtained using PacBio full-length transcripts. Two important findings were that animals transcribe both entire strands of mitochondrial genomes and the tandem repeats in the control region of the E. fullo mitochondrial genome contains the repeated Transcription Initiation Sites (TISs) of the heavy strand. In addition, we found that the copy numbers of tandem repeats showed a great diversity within an individual, suggesting that mitochondrial DNA recombination occurs in an individual. In conclusion, the sRNA-seq based method uses 5' and 3' end small RNAs to annotate nuclear non-coding and mitochondrial genes at 1 bp resolution, and can be used to identify new steady RNAs, particularly long non-coding RNAs (lncRNAs). The high-resolution annotations of mitochondrial genomes can also be used to study the molecular phylogenetics and evolution of animals or to investigate mitochondrial gene transcription, RNA processing, RNA maturation and several other related topics. The complete mitochondrial genome sequence of E. fullo with the new annotations using the sRNA-seq based method is available at the NCBI GenBank database under the accession number MK374364. We publish our theories, methods, the high quality sRNA-seq and RNA-seq data (SRA: SRP174926) for extensive use.
Asunto(s)
ADN Mitocondrial/química , Genoma Mitocondrial , Heterópteros/genética , Anotación de Secuencia Molecular , Secuencias Repetidas en Tándem , Animales , Genes de Insecto , ARN Mitocondrial/química , ARN Pequeño no Traducido/química , Análisis de Secuencia de ARN , Sitio de Iniciación de la TranscripciónRESUMEN
Post-transcriptional non-template additions of nucleotides to 3'-ends of RNAs play important roles in the stability and function of RNA molecules. Although tRNA nucleotidyltransferase (CCA-adding enzyme) is known to add CCA trinucleotides to 3'-ends of tRNAs, whether other RNA species can be endogenous substrates of CCA-adding enzyme has not been widely explored yet. Herein, we used YAMAT-seq to identify non-tRNA substrates of CCA-adding enzyme. YAMAT-seq captures RNA species that form secondary structures with 4-nt protruding 3'-ends of the sequence 5'-NCCA-3', which is the hallmark structure of RNAs that are generated by CCA-adding enzyme. By executing YAMAT-seq for human breast cancer cells and mining the sequence data, we identified novel candidate substrates of CCA-adding enzyme. These included fourteen 'CCA-RNAs' that only contain CCA as non-genomic sequences, and eleven 'NCCA-RNAs' that contain CCA and other nucleotides as non-genomic sequences. All newly-identified (N)CCA-RNAs were derived from the mitochondrial genome and were localized in mitochondria. Knockdown of CCA-adding enzyme severely reduced the expression levels of (N)CCA-RNAs, suggesting that the CCA-adding enzyme-catalyzed CCA additions stabilize the expression of (N)CCA-RNAs. Furthermore, expression levels of (N)CCA-RNAs were severely reduced by various cellular treatments, including UV irradiation, amino acid starvation, inhibition of mitochondrial respiratory complexes, and inhibition of the cell cycle. These results revealed a novel CCA-mediated regulatory pathway for the expression of mitochondrial non-coding RNAs.