Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.550
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nat Rev Mol Cell Biol ; 25(5): 359-378, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38182846

RESUMEN

A growing class of small RNAs, known as tRNA-derived RNAs (tdRs), tRNA-derived small RNAs or tRNA-derived fragments, have long been considered mere intermediates of tRNA degradation. These small RNAs have recently been implicated in an evolutionarily conserved repertoire of biological processes. In this Review, we discuss the biogenesis and molecular functions of tdRs in mammals, including tdR-mediated gene regulation in cell metabolism, immune responses, transgenerational inheritance, development and cancer. We also discuss the accumulation of tRNA-derived stress-induced RNAs as a distinct adaptive cellular response to pathophysiological conditions. Furthermore, we highlight new conceptual advances linking RNA modifications with tdR activities and discuss challenges in studying tdR biology in health and disease.


Asunto(s)
ARN de Transferencia , Animales , ARN de Transferencia/metabolismo , ARN de Transferencia/genética , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Regulación de la Expresión Génica , ARN Pequeño no Traducido/genética , ARN Pequeño no Traducido/metabolismo
2.
Annu Rev Biochem ; 89: 159-187, 2020 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-32176523

RESUMEN

This review focuses on imaging DNA and single RNA molecules in living cells to define eukaryotic functional organization and dynamic processes. The latest advances in technologies to visualize individual DNA loci and RNAs in real time are discussed. Single-molecule fluorescence microscopy provides the spatial and temporal resolution to reveal mechanisms regulating fundamental cell functions. Novel insights into the regulation of nuclear architecture, transcription, posttranscriptional RNA processing, and RNA localization provided by multicolor fluorescence microscopy are reviewed. A perspective on the future use of live imaging technologies and overcoming their current limitations is provided.


Asunto(s)
Núcleo Celular/ultraestructura , Cromatina/ultraestructura , ADN/ultraestructura , Regulación de la Expresión Génica , ARN Mensajero/ultraestructura , ARN Pequeño no Traducido/ultraestructura , Animales , Núcleo Celular/genética , Núcleo Celular/metabolismo , Cromatina/metabolismo , ADN/genética , ADN/metabolismo , Replicación del ADN , Células Eucariotas/metabolismo , Células Eucariotas/ultraestructura , Humanos , Microscopía Fluorescente , Biosíntesis de Proteínas , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Pequeño no Traducido/genética , ARN Pequeño no Traducido/metabolismo , Imagen Individual de Molécula/instrumentación , Imagen Individual de Molécula/métodos , Coloración y Etiquetado/métodos , Telómero/metabolismo , Telómero/ultraestructura , Transcripción Genética
3.
Cell ; 177(7): 1814-1826.e15, 2019 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-31178120

RESUMEN

It is unknown whether the activity of the nervous system can be inherited. In Caenorhabditis elegans nematodes, parental responses can transmit heritable small RNAs that regulate gene expression transgenerationally. In this study, we show that a neuronal process can impact the next generations. Neurons-specific synthesis of RDE-4-dependent small RNAs regulates germline amplified endogenous small interfering RNAs (siRNAs) and germline gene expression for multiple generations. Further, the production of small RNAs in neurons controls the chemotaxis behavior of the progeny for at least three generations via the germline Argonaute HRDE-1. Among the targets of these small RNAs, we identified the conserved gene saeg-2, which is transgenerationally downregulated in the germline. Silencing of saeg-2 following neuronal small RNA biogenesis is required for chemotaxis under stress. Thus, we propose a small-RNA-based mechanism for communication of neuronal processes transgenerationally.


Asunto(s)
Conducta Animal , Caenorhabditis elegans , Neuronas/metabolismo , ARN de Helminto , ARN Pequeño no Traducido , Animales , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Caenorhabditis elegans/citología , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Neuronas/citología , ARN de Helminto/biosíntesis , ARN de Helminto/genética , ARN Pequeño no Traducido/biosíntesis , ARN Pequeño no Traducido/genética
4.
Cell ; 170(1): 61-71.e11, 2017 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-28666125

RESUMEN

Transposon reactivation is an inherent danger in cells that lose epigenetic silencing during developmental reprogramming. In the mouse, long terminal repeat (LTR)-retrotransposons, or endogenous retroviruses (ERV), account for most novel insertions and are expressed in the absence of histone H3 lysine 9 trimethylation in preimplantation stem cells. We found abundant 18 nt tRNA-derived small RNA (tRF) in these cells and ubiquitously expressed 22 nt tRFs that include the 3' terminal CCA of mature tRNAs and target the tRNA primer binding site (PBS) essential for ERV reverse transcription. We show that the two most active ERV families, IAP and MusD/ETn, are major targets and are strongly inhibited by tRFs in retrotransposition assays. 22 nt tRFs post-transcriptionally silence coding-competent ERVs, while 18 nt tRFs specifically interfere with reverse transcription and retrotransposon mobility. The PBS offers a unique target to specifically inhibit LTR-retrotransposons, and tRF-targeting is a potentially highly conserved mechanism of small RNA-mediated transposon control.


Asunto(s)
Silenciador del Gen , ARN Pequeño no Traducido/metabolismo , ARN de Transferencia/metabolismo , Retroviridae/genética , Células Madre/virología , Animales , Células HeLa , Humanos , Ratones , Secuencias Repetidas Terminales
5.
Cell ; 170(1): 48-60.e11, 2017 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-28666122

RESUMEN

Type I CRISPR systems feature a sequential dsDNA target searching and degradation process, by crRNA-displaying Cascade and nuclease-helicase fusion enzyme Cas3, respectively. Here we present two cryo-EM snapshots of the Thermobifida fusca type I-E Cascade: (1) unwinding 11 bp of dsDNA at the seed-sequence region to scout for sequence complementarity, and (2) further unwinding of the entire protospacer to form a full R-loop. These structures provide the much-needed temporal and spatial resolution to resolve key mechanistic steps leading to Cas3 recruitment. In the early steps, PAM recognition causes severe DNA bending, leading to spontaneous DNA unwinding to form a seed-bubble. The full R-loop formation triggers conformational changes in Cascade, licensing Cas3 to bind. The same process also generates a bulge in the non-target DNA strand, enabling its handover to Cas3 for cleavage. The combination of both negative and positive checkpoints ensures stringent yet efficient target degradation in type I CRISPR-Cas systems.


Asunto(s)
Actinobacteria/genética , Actinobacteria/ultraestructura , Sistemas CRISPR-Cas , Hibridación de Ácido Nucleico , Actinobacteria/química , Actinobacteria/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/ultraestructura , Secuencia de Bases , Proteínas Asociadas a CRISPR/química , Proteínas Asociadas a CRISPR/metabolismo , Proteínas Asociadas a CRISPR/ultraestructura , Microscopía por Crioelectrón , Modelos Moleculares , ARN Bacteriano/química , ARN Bacteriano/metabolismo , ARN Pequeño no Traducido/química , ARN Pequeño no Traducido/metabolismo
6.
Cell ; 165(1): 88-99, 2016 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-27015309

RESUMEN

In C. elegans, small RNAs enable transmission of epigenetic responses across multiple generations. While RNAi inheritance mechanisms that enable "memorization" of ancestral responses are being elucidated, the mechanisms that determine the duration of inherited silencing and the ability to forget the inherited epigenetic effects are not known. We now show that exposure to dsRNA activates a feedback loop whereby gene-specific RNAi responses dictate the transgenerational duration of RNAi responses mounted against unrelated genes, elicited separately in previous generations. RNA-sequencing analysis reveals that, aside from silencing of genes with complementary sequences, dsRNA-induced RNAi affects the production of heritable endogenous small RNAs, which regulate the expression of RNAi factors. Manipulating genes in this feedback pathway changes the duration of heritable silencing. Such active control of transgenerational effects could be adaptive, since ancestral responses would be detrimental if the environments of the progeny and the ancestors were different.


Asunto(s)
Caenorhabditis elegans/genética , Epigénesis Genética , Interferencia de ARN , ARN de Helminto/genética , ARN Pequeño no Traducido/genética , Animales , Caenorhabditis elegans/crecimiento & desarrollo , Caenorhabditis elegans/metabolismo , Retroalimentación , ARN Bicatenario/metabolismo , ARN Interferente Pequeño/metabolismo
7.
Cell ; 167(1): 111-121.e13, 2016 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-27662085

RESUMEN

Bacterial small RNAs (sRNAs) have been implicated in various aspects of post-transcriptional gene regulation. Here, we demonstrate that sRNAs also act at the level of transcription termination. We use the rpoS gene, which encodes a general stress sigma factor σ(S), as a model system, and show that sRNAs DsrA, ArcZ, and RprA bind the rpoS 5'UTR to suppress premature Rho-dependent transcription termination, both in vitro and in vivo. sRNA-mediated antitermination markedly stimulates transcription of rpoS during the transition to the stationary phase of growth, thereby facilitating a rapid adjustment of bacteria to global metabolic changes. Next generation RNA sequencing and bioinformatic analysis indicate that Rho functions as a global "attenuator" of transcription, acting at the 5'UTR of hundreds of bacterial genes, and that its suppression by sRNAs is a widespread mode of bacterial gene regulation.


Asunto(s)
Proteínas Bacterianas/metabolismo , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , ARN Pequeño no Traducido/metabolismo , Factor sigma/metabolismo , Terminación de la Transcripción Genética , Regiones no Traducidas 5'
8.
Mol Cell ; 83(9): 1489-1501.e5, 2023 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-37116495

RESUMEN

Small ribonucleoproteins (sRNPs) target nascent precursor RNAs to guide folding, modification, and splicing during transcription. Yet, rapid co-transcriptional folding of the RNA can mask sRNP sites, impeding target recognition and regulation. To examine how sRNPs target nascent RNAs, we monitored binding of bacterial Hfq⋅DsrA sRNPs to rpoS transcripts using single-molecule co-localization co-transcriptional assembly (smCoCoA). We show that Hfq⋅DsrA recursively samples the mRNA before transcription of the target site to poise it for base pairing with DsrA. We adapted smCoCoA to precisely measure when the target site is synthesized and revealed that Hfq⋅DsrA often binds the mRNA during target site synthesis close to RNA polymerase (RNAP). We suggest that targeting transcripts near RNAP allows an sRNP to capture a site before the transcript folds, providing a kinetic advantage over post-transcriptional targeting. We propose that other sRNPs may also use RNAP-proximal targeting to hasten recognition and regulation.


Asunto(s)
Proteínas de Escherichia coli , ARN Pequeño no Traducido , Proteínas Bacterianas/metabolismo , ARN Pequeño no Traducido/genética , ARN Pequeño no Traducido/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , ARN Mensajero/metabolismo , Emparejamiento Base , ARN Bacteriano/metabolismo , Proteína de Factor 1 del Huésped/genética , Proteína de Factor 1 del Huésped/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica
9.
Mol Cell ; 83(24): 4479-4493.e6, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38096826

RESUMEN

4.5SH RNA is a highly abundant, small rodent-specific noncoding RNA that localizes to nuclear speckles enriched in pre-mRNA-splicing regulators. To investigate the physiological functions of 4.5SH RNA, we have created mutant mice that lack the expression of 4.5SH RNA. The mutant mice exhibited embryonic lethality, suggesting that 4.5SH RNA is an essential species-specific noncoding RNA in mice. RNA-sequencing analyses revealed that 4.5SH RNA protects the transcriptome from abnormal exonizations of the antisense insertions of the retrotransposon SINE B1 (asB1), which would otherwise introduce deleterious premature stop codons or frameshift mutations. Mechanistically, 4.5SH RNA base pairs with complementary asB1-containing exons via the target recognition region and recruits effector proteins including Hnrnpm via its 5' stem loop region. The modular organization of 4.5SH RNA allows us to engineer a programmable splicing regulator to induce the skipping of target exons of interest. Our results also suggest the general existence of splicing regulatory noncoding RNAs.


Asunto(s)
Empalme del ARN , ARN Pequeño no Traducido , Ratones , Animales , Empalme del ARN/genética , Exones/genética , Retroelementos/genética , Codón sin Sentido , Empalme Alternativo
10.
Annu Rev Biochem ; 84: 381-404, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25747400

RESUMEN

The RNA polymerase II transcription cycle is often divided into three major stages: initiation, elongation, and termination. Research over the last decade has blurred these divisions and emphasized the tightly regulated transitions that occur as RNA polymerase II synthesizes a transcript from start to finish. Transcription termination, the process that marks the end of transcription elongation, is regulated by proteins that interact with the polymerase, nascent transcript, and/or chromatin template. The failure to terminate transcription can cause accumulation of aberrant transcripts and interfere with transcription at downstream genes. Here, we review the mechanism, regulation, and physiological impact of a termination pathway that targets small noncoding transcripts produced by RNA polymerase II. We emphasize the Nrd1-Nab3-Sen1 pathway in yeast, in which the process has been extensively studied. The importance of understanding small RNA termination pathways is underscored by the need to control noncoding transcription in eukaryotic genomes.


Asunto(s)
ARN Polimerasa II/metabolismo , ARN Pequeño no Traducido/metabolismo , Terminación de la Transcripción Genética , Animales , Fenómenos Fisiológicos Celulares , Humanos , Procesamiento Postranscripcional del ARN , Saccharomyces cerevisiae/genética
11.
Nat Rev Mol Cell Biol ; 19(12): 774-790, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30425324

RESUMEN

The idea that epigenetic determinants such as DNA methylation, histone modifications or RNA can be passed to the next generation through meiotic products (gametes) is long standing. Such meiotic epigenetic inheritance (MEI) is fairly common in yeast, plants and nematodes, but its extent in mammals has been much debated. Advances in genomics techniques are now driving the profiling of germline and zygotic epigenomes, thereby improving our understanding of MEI in diverse species. Whereas the role of DNA methylation in MEI remains unclear, insights from genome-wide studies suggest that a previously underappreciated fraction of mammalian genomes bypass epigenetic reprogramming during development. Notably, intergenerational inheritance of histone modifications, tRNA fragments and microRNAs can affect gene regulation in the offspring. It is important to note that MEI in mammals rarely constitutes transgenerational epigenetic inheritance (TEI), which spans multiple generations. In this Review, we discuss the examples of MEI in mammals, including mammalian epigenome reprogramming, and the molecular mechanisms of MEI in vertebrates in general. We also discuss the implications of the inheritance of histone modifications and small RNA for embryogenesis in metazoans, with a particular focus on insights gained from genome-wide studies.


Asunto(s)
Epigénesis Genética/genética , Epigénesis Genética/fisiología , Mamíferos/genética , Animales , Metilación de ADN/genética , Desarrollo Embrionario/genética , Epigenómica/métodos , Regulación del Desarrollo de la Expresión Génica/genética , Genoma , Histonas/genética , Humanos , ARN Pequeño no Traducido/genética
12.
Cell ; 161(4): 790-802, 2015 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-25957686

RESUMEN

Upon exposure to stress, tRNAs are enzymatically cleaved, yielding distinct classes of tRNA-derived fragments (tRFs), yielding distinct classes of tRFs. We identify a novel class of tRFs derived from tRNA(Glu), tRNA(Asp), tRNA(Gly), and tRNA(Tyr) that, upon induction, suppress the stability of multiple oncogenic transcripts in breast cancer cells by displacing their 3' untranslated regions (UTRs) from the RNA-binding protein YBX1. This mode of post-transcriptional silencing is sequence specific, as these fragments all share a common motif that matches the YBX1 recognition sequence. Loss-of-function and gain-of-function studies, using anti-sense locked-nucleic acids (LNAs) and synthetic RNA mimetics, respectively, revealed that these fragments suppress growth under serum-starvation, cancer cell invasion, and metastasis by breast cancer cells. Highly metastatic cells evade this tumor-suppressive pathway by attenuating the induction of these tRFs. Our findings reveal a tumor-suppressive role for specific tRNA-derived fragments and describe a molecular mechanism for their action. This transcript displacement-based mechanism may generalize to other tRNA, ribosomal-RNA, and sno-RNA fragments.


Asunto(s)
Neoplasias de la Mama/patología , ARN Pequeño no Traducido/metabolismo , Proteína 1 de Unión a la Caja Y/antagonistas & inhibidores , Proteína 1 de Unión a la Caja Y/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Células HEK293 , Humanos , Metástasis de la Neoplasia , Oligonucleótidos/farmacología , ARN Pequeño no Traducido/análisis , ARN Pequeño no Traducido/genética , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Análisis de Secuencia de ARN
13.
Cell ; 160(1-2): 228-40, 2015 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-25579683

RESUMEN

Quorum sensing is a cell-cell communication process that bacteria use to transition between individual and social lifestyles. In vibrios, homologous small RNAs called the Qrr sRNAs function at the center of quorum-sensing pathways. The Qrr sRNAs regulate multiple mRNA targets including those encoding the quorum-sensing regulatory components luxR, luxO, luxM, and aphA. We show that a representative Qrr, Qrr3, uses four distinct mechanisms to control its particular targets: the Qrr3 sRNA represses luxR through catalytic degradation, represses luxM through coupled degradation, represses luxO through sequestration, and activates aphA by revealing the ribosome binding site while the sRNA itself is degraded. Qrr3 forms different base-pairing interactions with each mRNA target, and the particular pairing strategy determines which regulatory mechanism occurs. Combined mathematical modeling and experiments show that the specific Qrr regulatory mechanism employed governs the potency, dynamics, and competition of target mRNA regulation, which in turn, defines the overall quorum-sensing response.


Asunto(s)
Percepción de Quorum , ARN Bacteriano/metabolismo , ARN Pequeño no Traducido/metabolismo , Vibrio/metabolismo , Secuencia de Bases , Escherichia coli/genética , Secuencias Invertidas Repetidas , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , ARN Bacteriano/química , ARN Bacteriano/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Pequeño no Traducido/química , ARN Pequeño no Traducido/genética , Vibrio/genética
14.
Cell ; 160(4): 644-658, 2015 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-25640237

RESUMEN

Transcription in eukaryotes produces a number of long noncoding RNAs (lncRNAs). Two of these, MALAT1 and Menß, generate a tRNA-like small RNA in addition to the mature lncRNA. The stability of these tRNA-like small RNAs and bona fide tRNAs is monitored by the CCA-adding enzyme. Whereas CCA is added to stable tRNAs and tRNA-like transcripts, a second CCA repeat is added to certain unstable transcripts to initiate their degradation. Here, we characterize how these two scenarios are distinguished. Following the first CCA addition cycle, nucleotide binding to the active site triggers a clockwise screw motion, producing torque on the RNA. This ejects stable RNAs, whereas unstable RNAs are refolded while bound to the enzyme and subjected to a second CCA catalytic cycle. Intriguingly, with the CCA-adding enzyme acting as a molecular vise, the RNAs proofread themselves through differential responses to its interrogation between stable and unstable substrates.


Asunto(s)
Archaeoglobus fulgidus/enzimología , Mitocondrias/enzimología , ARN Nucleotidiltransferasas/metabolismo , ARN de Transferencia/química , ARN de Transferencia/metabolismo , Archaeoglobus fulgidus/metabolismo , Secuencia de Bases , Dominio Catalítico , Humanos , Mitocondrias/metabolismo , Modelos Moleculares , Conformación de Ácido Nucleico , ARN Nucleotidiltransferasas/química , ARN Nucleotidiltransferasas/genética , Estabilidad del ARN , ARN Pequeño no Traducido/metabolismo
15.
Nature ; 630(8017): 720-727, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38839949

RESUMEN

Spermatozoa harbour a complex and environment-sensitive pool of small non-coding RNAs (sncRNAs)1, which influences offspring development and adult phenotypes1-7. Whether spermatozoa in the epididymis are directly susceptible to environmental cues is not fully understood8. Here we used two distinct paradigms of preconception acute high-fat diet to dissect epididymal versus testicular contributions to the sperm sncRNA pool and offspring health. We show that epididymal spermatozoa, but not developing germ cells, are sensitive to the environment and identify mitochondrial tRNAs (mt-tRNAs) and their fragments (mt-tsRNAs) as sperm-borne factors. In humans, mt-tsRNAs in spermatozoa correlate with body mass index, and paternal overweight at conception doubles offspring obesity risk and compromises metabolic health. Sperm sncRNA sequencing of mice mutant for genes involved in mitochondrial function, and metabolic phenotyping of their wild-type offspring, suggest that the upregulation of mt-tsRNAs is downstream of mitochondrial dysfunction. Single-embryo transcriptomics of genetically hybrid two-cell embryos demonstrated sperm-to-oocyte transfer of mt-tRNAs at fertilization and suggested their involvement in the control of early-embryo transcription. Our study supports the importance of paternal health at conception for offspring metabolism, shows that mt-tRNAs are diet-induced and sperm-borne and demonstrates, in a physiological setting, father-to-offspring transfer of sperm mitochondrial RNAs at fertilization.


Asunto(s)
Dieta Alta en Grasa , Epigénesis Genética , Mitocondrias , ARN Mitocondrial , Espermatozoides , Animales , Femenino , Humanos , Masculino , Ratones , Índice de Masa Corporal , Dieta Alta en Grasa/efectos adversos , Embrión de Mamíferos/citología , Embrión de Mamíferos/embriología , Embrión de Mamíferos/metabolismo , Epidídimo/citología , Epigénesis Genética/genética , Fertilización/genética , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Ratones Endogámicos C57BL , Mitocondrias/genética , Mitocondrias/metabolismo , Mitocondrias/patología , Obesidad/genética , Obesidad/metabolismo , Obesidad/etiología , Oocitos/metabolismo , Sobrepeso/genética , Sobrepeso/metabolismo , Herencia Paterna/genética , ARN Mitocondrial/genética , ARN Mitocondrial/metabolismo , ARN Pequeño no Traducido/genética , ARN Pequeño no Traducido/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Espermatozoides/metabolismo , Testículo/citología , Transcripción Genética
16.
Mol Cell ; 82(22): 4189-4191, 2022 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-36400003

RESUMEN

Sahar Melamed spoke with Molecular Cell about his interdisciplinary group at the Hebrew University of Jerusalem, which applies experimental and computational approaches to studying regulatory RNAs in bacteria. He talks about the development of RIL-seq to study sRNAs, his approach to applying for academic positions, and the importance of believing in yourself.


Asunto(s)
ARN Pequeño no Traducido , ARN Bacteriano , Bacterias/genética
17.
Cell ; 158(2): 237-238, 2014 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-25036622

RESUMEN

Epigenetic inheritance of resistance to exogenous nucleic acids via small interfering (si) RNA is well established in animal models. Rechavi et al. demonstrate epigenetic inheritance of a starvation-induced pattern of gene silencing caused by endogenous siRNAs and resulting in an increased longevity in the third generation progeny. Combined with recent findings in prokaryotes, these results suggest that Lamarckian-type inheritance of acquired traits is a major evolutionary phenomenon.


Asunto(s)
Caenorhabditis elegans/fisiología , Epigénesis Genética , ARN Pequeño no Traducido/genética , ARN Pequeño no Traducido/metabolismo , Animales , Humanos
18.
Cell ; 158(2): 277-287, 2014 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-25018105

RESUMEN

Evidence from animal studies and human famines suggests that starvation may affect the health of the progeny of famished individuals. However, it is not clear whether starvation affects only immediate offspring or has lasting effects; it is also unclear how such epigenetic information is inherited. Small RNA-induced gene silencing can persist over several generations via transgenerationally inherited small RNA molecules in C. elegans, but all known transgenerational silencing responses are directed against foreign DNA introduced into the organism. We found that starvation-induced developmental arrest, a natural and drastic environmental change, leads to the generation of small RNAs that are inherited through at least three consecutive generations. These small, endogenous, transgenerationally transmitted RNAs target genes with roles in nutrition. We defined genes that are essential for this multigenerational effect. Moreover, we show that the F3 offspring of starved animals show an increased lifespan, corroborating the notion of a transgenerational memory of past conditions.


Asunto(s)
Caenorhabditis elegans/fisiología , Epigénesis Genética , ARN Pequeño no Traducido/genética , ARN Pequeño no Traducido/metabolismo , Animales , Caenorhabditis elegans/genética , Humanos , Longevidad , Modelos Animales , Interferencia de ARN , ARN de Helminto/genética , ARN de Helminto/metabolismo , Inanición
19.
Cell ; 156(5): 920-34, 2014 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-24581493

RESUMEN

Argonaute (Ago) proteins mediate posttranscriptional gene repression by binding guide miRNAs to regulate targeted RNAs. To confidently assess Ago-bound small RNAs, we adapted a mouse embryonic stem cell system to express a single epitope-tagged Ago protein family member in an inducible manner. Here, we report the small RNA profile of Ago-deficient cells and show that Ago-dependent stability is a common feature of mammalian miRNAs. Using this criteria and immunopurification, we identified an Ago-dependent class of noncanonical miRNAs derived from protein-coding gene promoters, which we name transcriptional start site miRNAs (TSS-miRNAs). A subset of promoter-proximal RNA polymerase II (RNAPII) complexes produces hairpin RNAs that are processed in a DiGeorge syndrome critical region gene 8 (Dgcr8)/Drosha-independent but Dicer-dependent manner. TSS-miRNA activity is detectable from endogenous levels and following overexpression of mRNA constructs. Finally, we present evidence of differential expression and conservation in humans, suggesting important roles in gene regulation.


Asunto(s)
Regulación de la Expresión Génica , Regiones Promotoras Genéticas , ARN Polimerasa II/metabolismo , ARN Pequeño no Traducido/metabolismo , Elongación de la Transcripción Genética , Animales , Proteínas Argonautas , Secuencia de Bases , Factor de Especificidad de Desdoblamiento y Poliadenilación/metabolismo , Células Madre Embrionarias/metabolismo , Técnicas Genéticas , Humanos , Ratones , ARN Pequeño no Traducido/química , ARN Pequeño no Traducido/genética , Sitio de Iniciación de la Transcripción
20.
Cell ; 156(5): 935-49, 2014 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-24529477

RESUMEN

The CRISPR-associated endonuclease Cas9 can be targeted to specific genomic loci by single guide RNAs (sgRNAs). Here, we report the crystal structure of Streptococcus pyogenes Cas9 in complex with sgRNA and its target DNA at 2.5 Å resolution. The structure revealed a bilobed architecture composed of target recognition and nuclease lobes, accommodating the sgRNA:DNA heteroduplex in a positively charged groove at their interface. Whereas the recognition lobe is essential for binding sgRNA and DNA, the nuclease lobe contains the HNH and RuvC nuclease domains, which are properly positioned for cleavage of the complementary and noncomplementary strands of the target DNA, respectively. The nuclease lobe also contains a carboxyl-terminal domain responsible for the interaction with the protospacer adjacent motif (PAM). This high-resolution structure and accompanying functional analyses have revealed the molecular mechanism of RNA-guided DNA targeting by Cas9, thus paving the way for the rational design of new, versatile genome-editing technologies.


Asunto(s)
Proteínas Asociadas a CRISPR/química , Cristalografía por Rayos X , Endonucleasas/química , ARN Bacteriano/química , Streptococcus pyogenes/química , Secuencia de Aminoácidos , Bacterias/enzimología , Proteínas Asociadas a CRISPR/metabolismo , ADN Bacteriano/química , ADN Bacteriano/metabolismo , Endonucleasas/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , ARN Bacteriano/metabolismo , Alineación de Secuencia , Streptococcus pyogenes/enzimología , Streptococcus pyogenes/metabolismo , ARN Pequeño no Traducido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA