RESUMEN
Probiotics are widely prescribed for prevention of antibiotics-associated dysbiosis and related adverse effects. However, probiotic impact on post-antibiotic reconstitution of the gut mucosal host-microbiome niche remains elusive. We invasively examined the effects of multi-strain probiotics or autologous fecal microbiome transplantation (aFMT) on post-antibiotic reconstitution of the murine and human mucosal microbiome niche. Contrary to homeostasis, antibiotic perturbation enhanced probiotics colonization in the human mucosa but only mildly improved colonization in mice. Compared to spontaneous post-antibiotic recovery, probiotics induced a markedly delayed and persistently incomplete indigenous stool/mucosal microbiome reconstitution and host transcriptome recovery toward homeostatic configuration, while aFMT induced a rapid and near-complete recovery within days of administration. In vitro, Lactobacillus-secreted soluble factors contributed to probiotics-induced microbiome inhibition. Collectively, potential post-antibiotic probiotic benefits may be offset by a compromised gut mucosal recovery, highlighting a need of developing aFMT or personalized probiotic approaches achieving mucosal protection without compromising microbiome recolonization in the antibiotics-perturbed host.
Asunto(s)
Antibacterianos/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Probióticos/administración & dosificación , Adolescente , Adulto , Anciano , Animales , Trasplante de Microbiota Fecal , Heces/microbiología , Femenino , Humanos , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/microbiología , Lactobacillus/efectos de los fármacos , Lactobacillus/genética , Lactobacillus/aislamiento & purificación , Lactococcus/genética , Lactococcus/aislamiento & purificación , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , ARN Ribosómico 16S/análisis , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , Adulto JovenRESUMEN
Inflammatory bowel diseases involve the dynamic interaction of host genetics, the microbiome and inflammatory responses. Here we found lower expression of NLRP12 (which encodes a negative regulator of innate immunity) in human ulcerative colitis, by comparing monozygotic twins and other patient cohorts. In parallel, Nlrp12 deficiency in mice caused increased basal colonic inflammation, which led to a less-diverse microbiome and loss of protective gut commensal strains (of the family Lachnospiraceae) and a greater abundance of colitogenic strains (of the family Erysipelotrichaceae). Dysbiosis and susceptibility to colitis associated with Nlrp12 deficency were reversed equally by treatment with antibodies targeting inflammatory cytokines and by the administration of beneficial commensal Lachnospiraceae isolates. Fecal transplants from mice reared in specific-pathogen-free conditions into germ-free Nlrp12-deficient mice showed that NLRP12 and the microbiome each contributed to immunological signaling that culminated in colon inflammation. These findings reveal a feed-forward loop in which NLRP12 promotes specific commensals that can reverse gut inflammation, while cytokine blockade during NLRP12 deficiency can reverse dysbiosis.
Asunto(s)
Clostridiales/fisiología , Colitis Ulcerosa/inmunología , Colon/fisiología , Firmicutes/fisiología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Microbiota , ARN Ribosómico 16S/análisis , Animales , Biodiversidad , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/microbiología , Colon/microbiología , Sulfato de Dextran , Heces/microbiología , Interacción Gen-Ambiente , Humanos , Inmunidad Innata/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microbiota/genética , Microbiota/inmunología , Simbiosis , Gemelos MonocigóticosRESUMEN
Specific members of the intestinal microbiota dramatically affect inflammatory bowel disease (IBD) in mice. In humans, however, identifying bacteria that preferentially affect disease susceptibility and severity remains a major challenge. Here, we used flow-cytometry-based bacterial cell sorting and 16S sequencing to characterize taxa-specific coating of the intestinal microbiota with immunoglobulin A (IgA-SEQ) and show that high IgA coating uniquely identifies colitogenic intestinal bacteria in a mouse model of microbiota-driven colitis. We then used IgA-SEQ and extensive anaerobic culturing of fecal bacteria from IBD patients to create personalized disease-associated gut microbiota culture collections with predefined levels of IgA coating. Using these collections, we found that intestinal bacteria selected on the basis of high coating with IgA conferred dramatic susceptibility to colitis in germ-free mice. Thus, our studies suggest that IgA coating identifies inflammatory commensals that preferentially drive intestinal disease. Targeted elimination of such bacteria may reduce, reverse, or even prevent disease development.
Asunto(s)
Colitis Ulcerosa/inmunología , Enfermedad de Crohn/inmunología , Inmunoglobulina A/inmunología , Microbiota , Animales , Colitis Ulcerosa/microbiología , Colitis Ulcerosa/patología , Enfermedad de Crohn/microbiología , Enfermedad de Crohn/patología , ADN Bacteriano/análisis , Disbiosis/inmunología , Disbiosis/microbiología , Humanos , Inflamasomas/inmunología , Inflamación/inmunología , Inflamación/microbiología , Intestinos/inmunología , Intestinos/microbiología , Ratones , Ratones Endogámicos C57BL , ARN Ribosómico 16S/análisis , Organismos Libres de Patógenos EspecíficosRESUMEN
The mitochondrial ribosome (mitoribosome) is a multicomponent machine that has unique structural features. Biogenesis of the human mitoribosome includes correct maturation and folding of the mitochondria-encoded RNA components (12S and 16S mt-rRNAs, and mt-tRNAVal) and their assembly together with 82 nucleus-encoded mitoribosomal proteins. This complex process requires the coordinated action of multiple assembly factors. Recent advances in single-particle cryo-electron microscopy (cryo-EM) have provided detailed insights into the specific functions of several mitoribosome assembly factors and have defined their timing. In this review we summarize mitoribosomal small (mtSSU) and large subunit (mtLSU) biogenesis based on structural findings, and we discuss potential crosstalk between mtSSU and mtLSU assembly pathways as well as coordination between mitoribosome biogenesis and other processes involved in mitochondrial gene expression.
Asunto(s)
Proteínas Mitocondriales , Ribosomas Mitocondriales , Humanos , Microscopía por Crioelectrón , Ribosomas Mitocondriales/metabolismo , ARN Ribosómico 16S/análisis , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas Ribosómicas/metabolismoRESUMEN
The gut microbiota regulate susceptibility to multiple human diseases. The Nlrp6-ASC inflammasome is widely regarded as a hallmark host innate immune axis that shapes the gut microbiota composition. This notion stems from studies reporting dysbiosis in mice lacking these inflammasome components when compared with non-littermate wild-type animals. Here, we describe microbial analyses in inflammasome-deficient mice while minimizing non-genetic confounders using littermate-controlled Nlrp6-deficient mice and ex-germ-free littermate-controlled ASC-deficient mice that were all allowed to shape their gut microbiota naturally after birth. Careful microbial phylogenetic analyses of these cohorts failed to reveal regulation of the gut microbiota composition by the Nlrp6- and ASC-dependent inflammasomes. Our results obtained in two geographically separated animal facilities dismiss a generalizable impact of Nlrp6- and ASC-dependent inflammasomes on the composition of the commensal gut microbiota and highlight the necessity for littermate-controlled experimental design in assessing the influence of host immunity on gut microbial ecology.
Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Bacterias/genética , Colitis/inmunología , Disbiosis/inmunología , Microbioma Gastrointestinal/inmunología , Inflamasomas/metabolismo , Receptores de Superficie Celular/metabolismo , Animales , Proteínas Adaptadoras de Señalización CARD , Células Cultivadas , Colitis/inducido químicamente , Colitis/microbiología , Disbiosis/microbiología , Femenino , Antecedentes Genéticos , Inmunidad Innata , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microbiota , ARN Ribosómico 16S/análisis , Receptores de Superficie Celular/genética , Dodecil Sulfato de SodioRESUMEN
The gut microbiome influences cancer development and the efficacy and safety of chemotherapy but little is known about its effects on lymphoma. We obtained stool samples from treatment-naive, newly diagnosed patients with diffuse large B-cell lymphoma (DLBCL) (n = 189). We first performed 16S ribosomal RNA gene sequencing (n = 158) and then conducted whole-genome shotgun sequencing on additional samples (n = 106). We compared the microbiome data from these patients with data from healthy controls and assessed whether microbiome characteristics were associated with treatment outcomes. The alpha diversity was significantly lower in patients with DLBCL than in healthy controls (P < .001), and the microbial composition differed significantly between the groups (P < .001). The abundance of the Enterobacteriaceae family belonging to the Proteobacteria phylum was markedly higher in patients than in healthy controls. Functional analysis of the microbiome revealed an association with opportunistic pathogenesis through type 1 pili, biofilm formation, and antibiotics resistance. Enterobacteriaceae members were significantly enriched in patients who experienced febrile neutropenia and in those who experienced relapse or progression (P < .001). Interestingly, greater abundance of Enterobacteriaceae correlated with shorter progression-free survival (P = .007). The cytokine profiles of patients whose microbiome was enriched with Enterobacteriaceae were significantly associated with interleukin 6 (P = .035) and interferon gamma (P = .045) levels. In summary, patients with DLBCL exhibited gut microbial dysbiosis. The abundance of Enterobacteriaceae correlated with treatment outcomes and febrile neutropenia. Further study is required to elucidate the origin and role of gut dysbiosis in DLBCL.
Asunto(s)
Neutropenia Febril , Microbioma Gastrointestinal , Linfoma de Células B Grandes Difuso , Humanos , Disbiosis/complicaciones , Recurrencia Local de Neoplasia , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Linfoma de Células B Grandes Difuso/complicaciones , ARN Ribosómico 16S/análisis , ARN Ribosómico 16S/genética , Heces/microbiologíaRESUMEN
We sought to determine whether pre-eclampsia, spontaneous preterm birth or the delivery of infants who are small for gestational age were associated with the presence of bacterial DNA in the human placenta. Here we show that there was no evidence for the presence of bacteria in the large majority of placental samples, from both complicated and uncomplicated pregnancies. Almost all signals were related either to the acquisition of bacteria during labour and delivery, or to contamination of laboratory reagents with bacterial DNA. The exception was Streptococcus agalactiae (group B Streptococcus), for which non-contaminant signals were detected in approximately 5% of samples collected before the onset of labour. We conclude that bacterial infection of the placenta is not a common cause of adverse pregnancy outcome and that the human placenta does not have a microbiome, but it does represent a potential site of perinatal acquisition of S. agalactiae, a major cause of neonatal sepsis.
Asunto(s)
Parto Obstétrico , Complicaciones del Trabajo de Parto/microbiología , Placenta/microbiología , Complicaciones Infecciosas del Embarazo/microbiología , Sepsis/congénito , Sepsis/microbiología , Streptococcus agalactiae/aislamiento & purificación , Streptococcus agalactiae/patogenicidad , Biopsia , Estudios de Cohortes , Contaminación de ADN , ADN Bacteriano/análisis , ADN Bacteriano/genética , ADN Bacteriano/aislamiento & purificación , Femenino , Humanos , Recién Nacido , Masculino , Metagenómica , Embarazo , Resultado del Embarazo , ARN Ribosómico 16S/análisis , ARN Ribosómico 16S/genética , Reproducibilidad de los Resultados , Análisis de Secuencia de ADNRESUMEN
BACKGROUND: The link between the prostate microbiome and prostate cancer remains unclear. Few studies have analyzed the microbiota of prostate tissue, and these have been limited by potential contamination by transrectal biopsy. Transperineal prostate biopsy offers an alternative and avoids fecal cross-contamination. We aim to characterize the prostate microbiome using transperineal biopsy. METHODS: Patients with clinical suspicion for prostate cancer who were to undergo transperineal prostate biopsy with magnetic resonance imaging (MRI) fusion guidance were prospectively enrolled from 2022 to 2023. Patients were excluded if they had Prostate Imaging Reporting and Data System lesions with scores ≤ 3, a history of prostate biopsy within 1 year, a history of prostate cancer, or antibiotic use within 30 days of biopsy. Tissue was collected from the MRI target lesions and nonneoplastic transitional zone. Bacteria were identified using 16S ribosomal RNA gene sequencing. RESULTS: Across the 42 patients, 76% were found to have prostate cancer. Beta diversity indices differed significantly between the perineum, voided urine, and prostate tissue. There were no beta diversity differences between cancerous or benign tissue, or between pre- and postbiopsy urines. There appear to be unique genera more abundant in cancerous versus benign tissue. There were no differences in alpha diversity indices relative to clinical findings including cancer status, grade, and risk group. CONCLUSIONS: We demonstrate a rigorous method to better characterize the prostate microbiome using transperineal biopsy and to limit contamination. These findings provide a framework for future large-scale studies of the microbiome of prostate cancer.
Asunto(s)
Microbiota , Perineo , Próstata , Neoplasias de la Próstata , Humanos , Masculino , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/microbiología , Próstata/patología , Próstata/microbiología , Próstata/diagnóstico por imagen , Estudios Prospectivos , Persona de Mediana Edad , Anciano , Perineo/microbiología , Perineo/patología , Imagen por Resonancia Magnética/métodos , Biopsia/métodos , Biopsia Guiada por Imagen/métodos , ARN Ribosómico 16S/análisis , ARN Ribosómico 16S/genéticaRESUMEN
A major incident occurred at the Fukushima Daiichi Nuclear Power Station following the tsunami triggered by the Tohoku-Pacific Ocean Earthquake in March 2011, whereby seawater entered the torus room in the basement of the reactor building. Here, we identify and analyze the bacterial communities in the torus room water and several environmental samples. Samples of the torus room water (1 × 109 Bq137Cs/L) were collected by the Tokyo Electric Power Company Holdings from two sampling points between 30 cm and 1 m from the bottom of the room (TW1) and the bottom layer (TW2). A structural analysis of the bacterial communities based on 16S rRNA amplicon sequencing revealed that the predominant bacterial genera in TW1 and TW2 were similar. TW1 primarily contained the genus Limnobacter, a thiosulfate-oxidizing bacterium. γ-Irradiation tests on Limnobacter thiooxidans, the most closely related phylogenetically found in TW1, indicated that its radiation resistance was similar to ordinary bacteria. TW2 predominantly contained the genus Brevirhabdus, a manganese-oxidizing bacterium. Although bacterial diversity in the torus room water was lower than seawater near Fukushima, ~70% of identified genera were associated with metal corrosion. Latent environment allocation-an analytical technique that estimates habitat distributions and co-detection analyses-revealed that the microbial communities in the torus room water originated from a distinct blend of natural marine microbial and artificial bacterial communities typical of biofilms, sludge, and wastewater. Understanding the specific bacteria linked to metal corrosion in damaged plants is important for advancing decommissioning efforts. IMPORTANCE: In the context of nuclear power station decommissioning, the proliferation of microorganisms within the reactor and piping systems constitutes a formidable challenge. Therefore, the identification of microbial communities in such environments is of paramount importance. In the aftermath of the Fukushima Daiichi Nuclear Power Station accident, microbial community analysis was conducted on environmental samples collected mainly outside the site. However, analyses using samples from on-site areas, including adjacent soil and seawater, were not performed. This study represents the first comprehensive analysis of microbial communities, utilizing meta 16S amplicon sequencing, with a focus on environmental samples collected from the radioactive element-containing water in the torus room, including the surrounding environments. Some of the identified microbial genera are shared with those previously identified in spent nuclear fuel pools in countries such as France and Brazil. Moreover, our discussion in this paper elucidates the correlation of many of these bacteria with metal corrosion.
Asunto(s)
Accidente Nuclear de Fukushima , Monitoreo de Radiación , Contaminantes Radiactivos del Agua , Agua/análisis , Radioisótopos de Cesio/análisis , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/análisis , Contaminantes Radiactivos del Agua/análisis , JapónRESUMEN
BACKGROUND: This study aimed to characterize the urinary and tumor microbiomes in patients with non-muscle-invasive bladder cancer (NMIBC) before and after transurethral resection of the bladder tumor (TURBT). METHODS: This single-center prospective study included 26 samples from 11 patients with low-grade Ta papillary NMIBC. Urine samples were collected at the index TURBT and at a 1-year follow-up cystoscopy. The metagenomic analysis of bacterial and archaeal populations was performed based on the highly variable V3-V4 region of the 16S rRNA gene. RESULTS: Phylogenetic alpha diversity of the bladder microbiome detected in urine was found to be lower at the 1-year follow-up cystoscopy compared to the time of the index TURBT (p < 0.01). Actinomyces, Candidatus cloacimonas, Sphingobacterium, Sellimonas, Fusobacterium, and Roseobacter were more differentially enriched taxa in urine at the follow-up cystoscopy than at the index TURBT. Beta diversity of urine microbiome significantly changed over time (p < 0.05). Phylogenetic alpha diversity of the microbiome was greater in tumor tissues than in paired urine samples (p<0.01). Sphingomonas, Acinetobacter, Candidatus, and Kocuria were more differentially overrepresented in tumor tissues than in urine. The enrichment of the abundance of Corynebacterium and Anaerococcus species in urine collected at TURBT was observed in patients who experienced recurrence within the follow-up period. CONCLUSIONS: In patients with low-grade NMIBC, the urine microbiome undergoes changes over time after removal of the tumor. The microbiome detected in tumor tissues is more phylogenetically diverse than in paired urine samples collected at TURBT. The interplay between bladder microbiome, tumor microbiome, and their alterations requires further studies to elucidate their predictive value and perhaps therapeutic implications.
Asunto(s)
Microbiota , Neoplasias de la Vejiga Urinaria , Humanos , Neoplasias de la Vejiga Urinaria/microbiología , Neoplasias de la Vejiga Urinaria/cirugía , Neoplasias de la Vejiga Urinaria/patología , Neoplasias de la Vejiga Urinaria/orina , Estudios Prospectivos , Masculino , Femenino , Anciano , Persona de Mediana Edad , Estudios de Seguimiento , Pronóstico , Cistectomía , Invasividad Neoplásica , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/análisis , Bacterias/aislamiento & purificación , Bacterias/genética , Bacterias/clasificación , Filogenia , Neoplasias Vesicales sin Invasión MuscularRESUMEN
Saliva is a common biological examination material at crime scenes and has high application value in forensic case investigations. It can reflect the suspect's time of crime at the scene and provide evidence of the suspect's criminal facts. Even though many researchers have proposed their experimental protocols for estimating the time since deposition (TsD) of saliva, there is still a relative lack of research on the use of microorganisms to estimate TsD. In the current study, the succession change of microbial community in saliva with different TsD values was explored to discern the microbial markers related to TsD of saliva. We gathered saliva samples from six unrelated healthy Han individuals living in Guizhou, China and exposed these samples to indoor conditions at six time points (0, 1, 3, 7, 15, and 28 days). Temporal changes of microbial compositions in these samples were investigated by 16S rRNA sequencing (V3-V4 regions). By assessing temporal variation patterns of microbial abundance at the genus level, four bacteria (Brucella, Prevotella, Pseudomonas, and Fusobacterium) were observed to show good time dependence in these samples. In addition, the hierarchical clustering and principal co-ordinates analysis results revealed that these saliva samples could be classified into t-short (≤7 days) and t-long (>7 days) groups. In the end, the random forest model was developed to predict the TsD of these samples. For the model, the root mean square error, R2, and mean absolute error between predicted and actual TsD values were 1.5213, 0.9851, and 1.1969, respectively. To sum up, we identified TsD-related microbial markers in saliva samples, which could be viewed as valuable markers for inferring the TsD of saliva.
Asunto(s)
Bacterias , Microbiota , ARN Ribosómico 16S , Saliva , Saliva/microbiología , Saliva/química , Humanos , ARN Ribosómico 16S/análisis , ARN Ribosómico 16S/genética , Bacterias/clasificación , Bacterias/aislamiento & purificación , Bacterias/genética , Masculino , Factores de Tiempo , Adulto , Femenino , ChinaRESUMEN
Determining the burial time of skeletal remains is one of the most important issues of forensic medicine. We speculated that the microbiome of gravesoil may be a promising method to infer burial time by virtue of time-dependent. As we know, forensic scientists have established various models to predict the postmortem interval of a decedent based on the changes in body and soil microbiome communities. However, limited data are available on the burial time prediction for bones, especially dismembered bones. In this exploratory study, we initially conducted 16S rRNA amplicon high-throughput sequencing on the burial soil of 10 porcine femurs within a 120-day period and analyzed the changes in soil microbial communities. Compared with the control soil, a higher Shannon index in the microbial diversity of burial soil containing bones was observed. Correlation analysis identified 61 time-related bacterial families and the best subset selection method obtained best subset, containing Thermomonosporaceae, Clostridiaceae, 0319-A21, and Oxalobacteraceae, which were used to construct a simplified multiple linear regression model with a mean absolute error (MAE) of 56.69 accumulated degree day (ADD). An additional random forest model was established based on indicators for the minimum cross-validation error of Thermomonosporaceae, Clostridiaceae, 0319-A21, Oxalobacteraceae, and Syntrophobacteraceae, with an MAE of 55.65 ADD. The produced empirical data in this pilot study provided the evidence of feasibility that the microbial successional changes of burial soil will predict the burial time of dismembered bones and may also expand the current knowledge of the effects of bone burial on soil bacterial communities.
Asunto(s)
Entierro , Microbiota , ARN Ribosómico 16S , Microbiología del Suelo , Porcinos , Animales , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/análisis , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Secuenciación de Nucleótidos de Alto Rendimiento , Huesos/microbiología , Huesos/química , Cambios Post Mortem , Suelo/química , Fémur/microbiologíaRESUMEN
Methamphetamine (MA) is a highly addictive mental stimulant, and MA abuse remains a significant public health problem worldwide, while effective treatment options are limited. Lycium barbarum polysaccharide (LBP), a major effective component extracted from Lycium barbarum, has potential health-promoting effects on the nervous system; however, its role in MA dependence remains unclear. In this study, the conditioned place preference (CPP) of MA addiction in adult male mice was established to detect changes in gut microbiota profiles after LBP treatment through 16S rRNA gene sequencing. Our results found that LBP administration could alleviate MA-induced CPP and hyperactivity. Interestingly, LBP improved MA-induced gut microbiota dysbiosis by increasing some beneficial autochthonous genus abundances, such as Allobaculum, Gordonibacter, and Ileibacterium. MA exposure induced the co-occurrence network of intestinal microbiota to become weaker and more unstable when compared with the control group, while LBP changed the above effects when compared with the MA group. Bacterial gene function prediction showed that amphetamine addiction, cocaine addiction, and short-chain fatty acid metabolism were enriched. These findings reveal that LBP might regulate MA-induced gut microbiota and behavior changes, which showed potential therapeutic applicability in treating MA addiction by regulating the gut microbiota.
Asunto(s)
Trastornos Relacionados con Anfetaminas , Medicamentos Herbarios Chinos , Disbiosis , Microbioma Gastrointestinal , Metanfetamina , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Metanfetamina/farmacología , Disbiosis/inducido químicamente , Disbiosis/microbiología , Masculino , Ratones , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/administración & dosificación , ARN Ribosómico 16S/análisis , Ratones Endogámicos C57BL , Bacterias/efectos de los fármacos , Bacterias/clasificación , Bacterias/aislamiento & purificación , Bacterias/genéticaRESUMEN
BACKGROUND: Aging-related energy homeostasis significantly affects normal heart function and disease development. The relationship between the gut microbiota and host energy metabolism has been well established. However, the influence of an aged microbiota on energy metabolism in the heart remains unclear. OBJECTIVE: The objective of this was to explore the effects of age-related microbiota composition on energy metabolism in the heart. METHODS: In this study, we used the fecal microbiota transplantation (FMT) method. The fecal microbiota from young (2-3 mo) and aged (18-22 mo) donor mice were transplanted into separate groups of young (2-3 mo) recipient mice. The analysis utilized whole 16S rRNA sequencing and plasma metabolomics to assess changes in the gut microbiota composition and metabolic potential. Energy changes were monitored by performing an oral glucose tolerance test, biochemical testing, body composition analysis, and metabolic cage measurements. Metabolic markers and markers of DNA damage were assessed in heart samples. RESULTS: FMT of an aged microbiota changed the composition of the recipient's gut microbiota, leading to an elevated Firmicutes-to-Bacteroidetes ratio. It also affected overall energy metabolism, resulting in elevated plasma glucose concentrations, impaired glucose tolerance, and epididymal fat accumulation. Notably, FMT of an aged microbiota increased the heart weight and promoted cardiac hypertrophy. Furthermore, there were significant associations between heart weight and cardiac hypertrophy indicators, epididymal fat weight, and fasting glucose concentrations. Mechanistically, FMT of an aged microbiota modulated the glucose metabolic pathway and induced myocardial oxidative damage. CONCLUSIONS: Our findings suggested that an aged microbiota can modulate metabolism and induce cardiac injury. This highlights the possible role of the gut microbiota in age-related metabolic disorders and cardiac dysfunction.
Asunto(s)
Microbioma Gastrointestinal , Ratones , Animales , ARN Ribosómico 16S/análisis , Glucosa/metabolismo , Cardiomegalia , Homeostasis , Estrés OxidativoRESUMEN
Environmental variation can shape the gut microbiome, but broad/large-scale data on among and within-population heterogeneity in the gut microbiome and the associated environmental factors of wild populations is lacking. Furthermore, previous studies have limited taxonomical coverage, and knowledge about wild avian gut microbiomes is still scarce. We investigated large-scale environmental variation in the gut microbiome of wild adult great tits across the species' European distribution range. We collected fecal samples to represent the gut microbiome and used the 16S rRNA gene sequencing to characterize the bacterial gut microbiome. Our results show that gut microbiome diversity is higher during winter and that there are compositional differences between winter and summer gut microbiomes. During winter, individuals inhabiting mixed forest habitat show higher gut microbiome diversity, whereas there was no similar association during summer. Also, temperature was found to be a small contributor to compositional differences in the gut microbiome. We did not find significant differences in the gut microbiome among populations, nor any association between latitude, rainfall and the gut microbiome. The results suggest that there is a seasonal change in wild avian gut microbiomes, but that there are still many unknown factors that shape the gut microbiome of wild bird populations.
Asunto(s)
Heces , Microbioma Gastrointestinal , ARN Ribosómico 16S , Estaciones del Año , Animales , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/análisis , Heces/microbiología , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Pájaros Cantores/microbiología , Pájaros Cantores/fisiología , Ambiente , EcosistemaRESUMEN
The relationship between dietary habits and microbiota composition during adolescence has not been well examined. This is a crucial knowledge gap to fill considering that diet-microbiota interactions influence neurodevelopment, immune system maturation and metabolic regulation. This study examined the associations between diet and the gut microbiota in a school-based sample of 136 adolescents (Mage = 12·1 years; age range 11-13 years; 48 % female; 47 % Black, 38 % non-Hispanic White, 15 % Hispanic or other minorities) from urban, suburban and rural areas in the Southeast USA. Adolescents completed the Rapid Eating Assessment for Participants and provided stool samples for 16S ribosomal RNA gene sequencing. Parents reported their child and family socio-demographic characteristics. The associations between diet and socio-demographics with gut microbiota diversity and abundance were analysed using multivariable regression models. Child race and ethnicity, sex, socio-economic status and geographic locale contributed to variation within microbiota composition (ß-diversity). Greater consumption of processed meat was associated with a lower microbial α-diversity after adjusting for socio-demographic variables. Multi-adjusted models showed that frequent consumption of nutrient-poor, energy-dense foods (e.g. sugar-sweetened beverages, fried foods, sweets) was negatively associated with abundances of genera in the family Lachnospiraceae (Anaerostipes, Fusicatenibacter and Roseburia), which are thought to play a beneficial role in host health through their production of short-chain fatty acids (SCFAs). These results provide new insights into the complex relationships among socio-demographic factors, diet and gut microbiota during adolescence. Adolescence may represent a critical window of opportunity to promote healthy eating practices that shape a homoeostatic gut microbiota with life-long benefits.
Asunto(s)
Microbioma Gastrointestinal , Niño , Humanos , Femenino , Adolescente , Masculino , Dieta , Alimentos , Conducta Alimentaria , Demografía , ARN Ribosómico 16S/análisisRESUMEN
BACKGROUND: Studies evaluating the association between the vaginal microbiota and miscarriage have produced variable results. OBJECTIVE: This study evaluated the association between periconceptual and first-trimester vaginal microbiota and women's risk for miscarriage. METHODS: At monthly preconception visits and at 9-12 weeks gestation, women collected vaginal swabs for molecular characterisation of the vaginal microbiota. Participants who became pregnant were followed to identify miscarriage versus pregnancy continuing to at least 20 weeks gestation. RESULTS: Forty-five women experienced miscarriage and 144 had pregnancies continuing to ≥20 weeks. A principal component analysis of periconceptual and first-trimester vaginal bacteria identified by 16S rRNA gene PCR with next-generation sequencing did not identify distinct bacterial communities with miscarriage versus continuing pregnancy. Using taxon-directed quantitative PCR assays, increasing concentrations of Megasphaera hutchinsoni, Mageeibacillus indolicus, Mobiluncus mulieris and Sneathia sanguinegens/vaginalis were not associated with miscarriage. In exploratory analyses, these data were examined as a binary exposure to allow for multivariable modelling. Detection of Mobiluncus mulieris in first-trimester samples was associated with miscarriage (adjusted relative risk [aRR] 2.14, 95% confidence interval [CI] 1.08, 4.22). Additional analyses compared women with early first-trimester miscarriage (range 4.7-7.3 weeks) to women with continuing pregnancies. Mobiluncus mulieris was detected in all eight (100%) first-trimester samples from women with early first-trimester miscarriage compared to 101/192 (52.6%) samples from women with continuing pregnancy (model did not converge). Detection of Mageeibacillus indolicus in first-trimester samples was also associated with early first-trimester miscarriage (aRR 4.10, 95% CI 1.17, 14.31). CONCLUSIONS: The primary analyses in this study demonstrated no association between periconceptual or first-trimester vaginal microbiota and miscarriage. Exploratory analyses showing strong associations between first-trimester detection of Mobiluncus mulieris and Mageeibacillus indolicus and early first-trimester miscarriage suggest the need for future studies to determine if these findings are reproducible.
Asunto(s)
Aborto Espontáneo , Microbiota , Primer Trimestre del Embarazo , Vagina , Humanos , Femenino , Embarazo , Vagina/microbiología , Adulto , Estudios Prospectivos , Aborto Espontáneo/microbiología , Aborto Espontáneo/epidemiología , Kenia/epidemiología , ARN Ribosómico 16S/análisis , Adulto JovenRESUMEN
OBJECTIVE: To assess whether labour variables (i.e. individuals characteristics, labour characteristics and medical interventions) impact maternal and newborn microbiomes. DESIGN: Prospective monocentric study. SETTING: Saint-Joseph Hospital tertiary maternity unit, in Paris, France. POPULATION: All consecutive primiparous women with a physiological pregnancy and term labour from 15 April to 1 June 2017. METHODS: 16S ribosomal RNA gene sequencing of the maternal vaginal, newborn skin and newborn oral microbiomes from 58 mother-baby dyads. MAIN OUTCOME MEASURES: Analysis of the effects of 19 labour variables on the composition and diversity of these microbiomes. RESULTS: The 19 labour variables explained a significant part of the variability in the vaginal, newborn oral and skin microbiomes (44%-67%). Strikingly, duration of rupture of membranes was the single factor that explained the greatest variability (adjusted R2: 7.7%-8.4%, p ≤ 0.002) and conditioned, by itself, the compositions of the three microbiomes under study. Long duration of rupture of membranes was specifically associated with a lower relative abundance of the Lactobacillus genus (1.7-fold to 68-fold reduction, p < 0.0001) as well as an increase in microbiome diversity, including genera implicated in nosocomial infections. The effects of duration of rupture of membranes were also present in newborns delivered by non-elective caesarean section. CONCLUSIONS: Maternal and newborn microbiomes were greatly affected by labour variables. Duration of rupture of membranes, even in non-elective caesarean sections, should be considered in epidemiological and microbiological studies, as well as in vaginal seeding practices.
Asunto(s)
Microbiota , Vagina , Humanos , Femenino , Recién Nacido , Embarazo , Estudios Prospectivos , Vagina/microbiología , Adulto , Piel/microbiología , Trabajo de Parto , Factores de Tiempo , ARN Ribosómico 16S/análisis , Boca/microbiología , Rotura Prematura de Membranas Fetales/microbiología , Lactobacillus/aislamiento & purificaciónRESUMEN
AIMS: The microbial profiles of peri-implantitis and periodontitis (PT) are inconclusive. The controversies mainly arise from the differences in sampling sites, targeted gene fragment, and microbiome analysis techniques. The objective of this study was to explore the microbiomes of peri-implantitis (PI), control implants (CI), PT and control teeth (CT), and the microbial change of PI after nonsurgical treatment (PIAT). METHODS: Twenty-two patients diagnosed with both PT and peri-implantitis were recruited. Clinical periodontal parameters and radiographic bone levels were recorded. In each patient, the subgingival and submucosal plaque samples were collected from sites with PI, CI, PT, CT, and PIAT. Microbiome diversity was analyzed by high-throughput amplicon sequencing using full-length of 16S rRNA gene by next generation sequencing. RESULTS: The 16S rRNA gene sequencing analysis revealed 512 OTUs in oral microbiome and 377 OTUs reached strain levels. The PI and PT groups possessed their own unique core microbiome. Treponema denticola was predominant in PI with probing depth of 8-10 mm. Interestingly, Thermovirga lienii DSM 17291 and Dialister invisus DSM 15470 were found to associate with PI. Nonsurgical treatment for peri-implantitis did not significantly alter the microbiome, except Rothia aeria. CONCLUSION: Our study suggests Treponemas species may play a pivotal role in peri-implantitis. Nonsurgical treatment did not exert a major influence on the peri-implantitis microbiome in short-term follow-up. PT and peri-implantitis possess the unique microbiome profiles, and different therapeutic strategies may be suggested in the future.
Asunto(s)
Microbiota , Periimplantitis , Periodontitis , ARN Ribosómico 16S , Humanos , Periimplantitis/microbiología , Periimplantitis/terapia , ARN Ribosómico 16S/análisis , Masculino , Femenino , Persona de Mediana Edad , Periodontitis/microbiología , Periodontitis/terapia , Secuenciación de Nucleótidos de Alto Rendimiento , Anciano , AdultoRESUMEN
AIM: Periodontitis is a potential risk factor for preterm birth (PTB) in women; however, the causal relationship or the exact mechanism remain unknown. This study aimed to compare the oral microbiome features of mothers with full-term birth (FTB) with those who had preterm delivery. METHODS: This study prospectively enrolled 60 women (30 mothers with PTB and 30 mothers with FTB), and subgingival plaque samples were collected and analysed by metagenomic 16S rDNA sequencing. Clinical measurements, including periodontal probing depth, clinical attachment level, modified gingival index (mGI) and plaque index, were performed to determine the periodontal state of the participants. Medical and obstetric data were collected as well. RESULTS: Among the periodontal measurements, mGI score, reflecting the level of gingival inflammation, exhibited a statistically significant association with PTB (adjusted odds ratio 2.705, 95% confidence interval 1.074-6.811, p = .035). When subgroup analysis was conducted based on mean mGI scores (mGI ≥ 2, high inflammation [HI] versus mGI < 2, low inflammation [LI]), microbiome analysis revealed clear distinctions in microbial compositions between PTB and FTB mothers in both the HI and LI groups. Especially in the HI group, alpha diversity exhibited a decreasing trend in PTB mothers compared to FTB mothers. Beta diversity also revealed significant differences between the two groups. In Linear Discriminant Analysis Effect Size analysis, certain anaerobic taxa, including the genera Spirochaetes, Treponema and Porphyromonas, were relatively abundant in the FTB/HI group, whereas the PTB/HI group showed a high abundance of the order Actinomycetales. Network analysis showed that the FTB/HI had relatively stronger connectivity in microbial composition than the PTB/HI group. Dysbiosis ratio of plaque microbiome, in terms of periodontitis, was significantly lower in PTB/HI group compared to FTB/HI group. CONCLUSION: The compositions of maternal subgingival microbiomes differed between PTB and FTB mothers in both the high and low levels of gingival inflammation groups. In the presence of high level of gingival inflammation, dysbiosis in plaque microbiome, in terms of periodontitis, was decreased in PTB mothers compared to FTB mothers.