Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 258
Filtrar
Más filtros

Intervalo de año de publicación
1.
Microbiology (Reading) ; 168(9)2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36048631

RESUMEN

Successful adaptation of Escherichia coli to constant environmental challenges demands the operation of a wide range of regulatory control mechanisms, some of which are global, while others are specific. Here, we show that the ability of acetate-negative phenotype strains of E. coli devoid of acetate kinase (AK) and phosphotransacetylase (PTA) to assimilate acetate when challenged at the end of growth on acetogenic substrates is explicable by the co-expression of acetyl CoA-synthetase (AcCoA-S) and acetate permease (AP). Furthermore, mRNA transcript measurements for acs and aceA, together with the enzymatic activities of their corresponding enzymes, acetyl CoA synthetase (AcCoA-S) and isocitrate lyase (ICL), clearly demonstrate that the expression of the two enzymes is inextricably linked and triggered in response to growth rate threshold signal (0.4 h-1± 0.03: n4). Interestingly, further restriction of carbon supply to the level of starvation led to the repression of acs (AcCoA-S), ackA (AK) and pta (PTA). Further, we provide evidence that the reaction sequence catalysed by PTA, AK and AcCoA-S is not in operation at low growth rates and that the reaction catalysed by AcCoA-S is not merely an ATP-dissipating reaction but rather advantageous, as it elevates the available free energy (ΔG°) in central metabolism. Moreover, the transcriptomic data reinforce the view that the expression of PEP carboxykinase is essential in gluconeogenic phenotypes.


Asunto(s)
Acetato CoA Ligasa , Escherichia coli , Acetato Quinasa/genética , Acetato Quinasa/metabolismo , Acetato CoA Ligasa/genética , Acetato CoA Ligasa/metabolismo , Acetatos/metabolismo , Acetilcoenzima A/metabolismo , Escherichia coli/metabolismo , Operón , Fosfato Acetiltransferasa/genética , Fosfato Acetiltransferasa/metabolismo
2.
Appl Environ Microbiol ; 88(11): e0043922, 2022 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-35586988

RESUMEN

Gaining insight into the behavior of bacteria at the single-cell level is important given that heterogeneous microenvironments strongly influence microbial physiology. The hybridization chain reaction (HCR) is a technique that provides in situ molecular signal amplification, enabling simultaneous mapping of multiple target RNAs at small spatial scales. To refine this method for biofilm applications, we designed and validated new probes to visualize the expression of key catabolic genes in Pseudomonas aeruginosa aggregates. In addition to using existing probes for the dissimilatory nitrate reductase (narG), we developed probes for a terminal oxidase (ccoN1), nitrite reductase (nirS), nitrous oxide reductase (nosZ), and acetate kinase (ackA). These probes can be used to determine gene expression levels across heterogeneous populations such as biofilms. Using these probes, we quantified gene expression across oxygen gradients in aggregate populations grown using the agar block biofilm assay (ABBA). We observed distinct patterns of catabolic gene expression, with upregulation occurring in particular ABBA regions both within individual aggregates and over the aggregate population. Aerobic respiration (ccoN1) showed peak expression under oxic conditions, whereas fermentation (ackA) showed peak expression in the anoxic cores of high metabolic activity aggregates near the air-agar interface. Denitrification genes narG, nirS, and nosZ showed peak expression in hypoxic and anoxic regions, although nirS expression remained at peak levels deeper into anoxic environments than other denitrification genes. These results reveal that the microenvironment correlates with catabolic gene expression in aggregates, and they demonstrate the utility of HCR in unveiling cellular activities at the microscale level in heterogeneous populations. IMPORTANCE To understand bacteria in diverse contexts, we must understand the variations in behaviors and metabolisms they express spatiotemporally. Populations of bacteria are known to be heterogeneous, but the ways this variation manifests can be challenging to characterize due to technical limitations. By focusing on energy conservation, we demonstrate that HCR v3.0 can visualize nuances in gene expression, allowing us to understand how metabolism in Pseudomonas aeruginosa biofilms responds to microenvironmental variation at high spatial resolution. We validated probes for four catabolic genes, including a constitutively expressed oxidase, acetate kinase, nitrite reductase, and nitrous oxide reductase. We showed that the genes for different modes of metabolism are expressed in overlapping but distinct subpopulations according to oxygen concentrations in a predictable fashion. The spatial transcriptomic technique described here has the potential to be used to map microbial activities across diverse environments.


Asunto(s)
Acetato Quinasa , Pseudomonas aeruginosa , Agar/metabolismo , Desnitrificación , Fermentación , Nitrato-Reductasa/genética , Nitrato-Reductasa/metabolismo , Nitrito Reductasas/genética , Nitrito Reductasas/metabolismo , Oxidorreductasas/metabolismo , Oxígeno/metabolismo , Pseudomonas aeruginosa/fisiología , ARN Mensajero/metabolismo
3.
Molecules ; 27(14)2022 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-35889224

RESUMEN

The biocatalytic system comprised of RizA and acetate kinase (AckA) combines the specific synthesis of bioactive arginyl dipeptides with efficient ATP regeneration. Immobilization of this coupled enzyme system was performed and characterized in terms of activity, specificity and reusability of the immobilisates. Co-immobilization of RizA and AckA into a single immobilisate conferred no disadvantage in comparison to immobilization of only RizA, and a small addition of AckA (20:1) was sufficient for ATP regeneration. New variants of RizA were constructed by combining mutations to yield variants with increased biocatalytic activity and specificity. A selection of RizA variants were co-immobilized with AckA and used for the production of the salt-taste enhancers Arg-Ser and Arg-Ala and the antihypertensive Arg-Phe. The best variants yielded final dipeptide concentrations of 11.3 mM Arg-Ser (T81F_A158S) and 11.8 mM Arg-Phe (K83F_S156A), the latter of which represents a five-fold increase in comparison to the wild-type enzyme. T81F_A158S retained more than 50% activity for over 96 h and K83F_S156A for over 72 h. This study provides the first example of the successful co-immobilization of an l-amino acid ligase with an ATP-regenerating enzyme and paves the way towards a bioprocess for the production of bioactive dipeptides.


Asunto(s)
Acetato Quinasa , Dipéptidos , Adenosina Trifosfato , Biocatálisis , Dipéptidos/química , Ligasas/metabolismo
4.
BMC Microbiol ; 21(1): 344, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34911440

RESUMEN

BACKGROUND: Catabolite control protein A (CcpA) regulates the transcription of lactate dehydrogenase and pyruvate formate-lyase in Streptococcus bovis, but knowledge of its role in response to different pH is still limited. In this study, a ccpA-knockout strain of S. bovis S1 was constructed and then used to examine the effects of ccpA gene deletion on the growth and fermentation characteristics of S. bovis S1 at pH 5.5 or 6.5. RESULTS: There was a significant interaction between strain and pH for the maximum specific growth rate (µmax) and growth lag period (λ), which caused a lowest µmax and a longest λ in ccpA-knockout strain at pH 5.5. Deletion of ccpA decreased the concentration and molar percentage of lactic acid, while increased those of formic acid. Strains at pH 5.5 had decreased concentrations of lactic acid and formic acid compared to pH 6.5. The significant interaction between strain and pH caused the highest production of total organic acids and acetic acid in ccpA-knockout strain at pH 6.5. The activities of α-amylase and lactate dehydrogenase decreased in ccpA-knockout strain compared to the wild-type strain, and increased at pH 5.5 compared to pH 6.5. There was a significant interaction between strain and pH for the activity of acetate kinase, which was the highest in the ccpA-knockout strain at pH 6.5. The expression of pyruvate formate-lyase and acetate kinase was higher in the ccpA-knockout strain compared to wild-type strain. The lower pH improved the relative expression of pyruvate formate-lyase, while had no effect on the relative expression of acetate kinase. The strain × pH interaction was significant for the relative expression of lactate dehydrogenase and α-amylase, both of which were highest in the wild-type strain at pH 5.5 and lowest in the ccpA-knockout strain at pH 6.5. CONCLUSIONS: Overall, low pH inhibited the growth of S. bovis S1, but did not affect the fermentation pattern. CcpA regulated S. bovis S1 growth and organic acid fermentation pattern. Moreover, there seemed to be an interaction effect between pH and ccpA deletion on regulating the growth and organic acids production of S. bovis S1.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas Represoras/metabolismo , Streptococcus bovis/crecimiento & desarrollo , Streptococcus bovis/metabolismo , Acetato Quinasa/genética , Acetato Quinasa/metabolismo , Acetiltransferasas/metabolismo , Amilasas/genética , Amilasas/metabolismo , Animales , Proteínas Bacterianas/genética , Ácidos Carboxílicos/metabolismo , Fermentación , Regulación Bacteriana de la Expresión Génica , Concentración de Iones de Hidrógeno , L-Lactato Deshidrogenasa/genética , L-Lactato Deshidrogenasa/metabolismo , Mutación , Proteínas Represoras/genética , Rumiantes/microbiología
5.
Arch Microbiol ; 203(2): 861-864, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33040182

RESUMEN

Widely distributed among prokaryotes, short chain fatty acid kinases provide a path for fatty acid entry into central metabolic pathways. These enzymes catalyze the reversible, ATP-dependent synthesis of acyl-phosphates, which leads to the production of acyl-CoA derivatives by a coordinate acyltransferase. To date, characterized representatives of short chain fatty acid kinases exhibit relatively narrow substrate specificity. In this work, biochemical characterization of a predicted acetate kinase from Rhodobacter sphaeroides reveals a novel enzyme with broad substrate specificity for primary fatty acids of varying lengths (C2--C8).


Asunto(s)
Acetato Quinasa/metabolismo , Rhodobacter sphaeroides/enzimología , Acilcoenzima A/metabolismo , Aciltransferasas/metabolismo , Ácidos Grasos/metabolismo , Especificidad por Sustrato
6.
Biosci Biotechnol Biochem ; 85(9): 2065-2075, 2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-34191007

RESUMEN

During acetic acid fermentation, acetic acid bacteria face oxygen depletion stress caused by the vigorous oxidation of ethanol to acetic acid. However, the molecular mechanisms underlying the response to oxygen depletion stress remain largely unknown. Here, we focused on an oxygen-sensing FNR homolog, FnrG, in Komagataeibacter medellinensis. Comparative transcriptomic analysis between the wild-type and fnrG-disrupted strains revealed that FnrG upregulated 8 genes (fold change >3). Recombinant FnrG bound to a specific DNA sequence only when FnrG was reconstituted anaerobically. An operon consisting of acetate kinase and xylulose-5-phosphate/fructose-6-phosphate phosphoketolase genes was found to be an FnrG regulon involved in cell survival under oxygen-limiting conditions. Moreover, a strain that overexpressed these 2 genes accumulated more acetic acid than the wild-type strain harboring an empty vector. Thus, these 2 genes could be new targets for the molecular breeding of acetic acid bacteria with high acetic acid productivity.


Asunto(s)
Acetobacteraceae/metabolismo , Proteínas Bacterianas/metabolismo , Oxígeno/metabolismo , Acetato Quinasa/genética , Ácido Acético/metabolismo , Acetobacteraceae/genética , Aldehído-Liasas/genética , Proteínas Bacterianas/genética , Celulosa/metabolismo , Fermentación , Operón , Transcriptoma
7.
Food Microbiol ; 94: 103651, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33279076

RESUMEN

Lactobacillus (L.) helveticus is widely used in food industry due to its high proteolytic activity. However, such activity varies greatly between isolates, and the determining factors regulating the strength of proteolytic activity in L. helveticus are unclear. This study sequenced the genomes of 60 fermented food-originated L. helveticus and systemically examined the proteolytic activity-determining factors. Our analyses found that the strength of proteolytic activity in L. helveticus was independent of the isolation source, geographic location, phylogenetic closeness between isolates, and distribution of cell envelope proteinases (CEPs). Genome-wide association study (GWAS) identified two genes, the acetate kinase (ackA) and a hypothetical protein, and 15 single nucleotide polymorphisms (SNPs) that were associated with the strength of the proteolytic activity. Further investigating the functions of these gene components revealed that ackA and two cysteine peptidases coding genes (pepC and srtA) rather than the highly heterogeneous and intraspecific CEPs were linked to the level of proteolytic activity. Moreover, the sequence type (ST) defined by SNP analysis revealed a total of ten STs, and significantly weaker proteolytic activity was observed among isolates of ST2. This study provides practical information for future selection of L. helveticus of strong proteolytic activity.


Asunto(s)
Acetato Quinasa/metabolismo , Proteínas Bacterianas/metabolismo , Productos Lácteos/microbiología , Grano Comestible/microbiología , Alimentos Fermentados/microbiología , Lactobacillus helveticus/enzimología , Péptido Hidrolasas/metabolismo , Acetato Quinasa/química , Acetato Quinasa/genética , Animales , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Bovinos , Genoma Bacteriano , Estudio de Asociación del Genoma Completo , Lactobacillus helveticus/genética , Lactobacillus helveticus/aislamiento & purificación , Lactobacillus helveticus/metabolismo , Péptido Hidrolasas/química , Péptido Hidrolasas/genética , Filogenia , Proteolisis
8.
Microbiology (Reading) ; 166(4): 411-421, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32553069

RESUMEN

The two-component regulatory system CiaRH of Streptococcus pneumoniae affects a large variety of physiological processes including ß-lactam resistance, competence development, maintenance of cell integrity, bacteriocin production, but also host colonization and virulence. The response regulator CiaR is active under a wide variety of conditions and the cognate CiaH kinase is not always needed to maintain CiaR activity. Using tetracycline-controlled expression of ciaR and variants, acetyl phosphate was identified in vivo as the alternative source of CiaR phosphorylation in the absence of CiaH. Concomitant inactivation of ciaH and the acetate kinase gene ackA led to very high levels of CiaR-mediated promoter activation. Strong transcriptional activation was accompanied by a high phosphorylation status of CiaR as determined by Phos-tag gel electrophoresis of S. pneumoniae cell extracts. Furthermore, AckA acted negatively upon acetyl phosphate-dependent phosphorylation of CiaR. Experiments using the Escherichia coli two-hybrid system based on adenylate cyclase reconstitution indicated binding of AckA to CiaR and therefore direct regulation. Subsequent in vitro CiaR phosphorylation experiments confirmed in vivo observations. Purified AckA was able to inhibit acetyl phosphate-dependent phosphorylation. Inhibition required the presence of ADP. AckA-mediated regulation of CiaR phosphorylation is the first example for a regulatory connection of acetate kinase to a response regulator besides controlling acetyl phosphate levels. It will be interesting to see if this novel regulation applies to other response regulators in S. pneumoniae or even in other organisms.


Asunto(s)
Acetato Quinasa/metabolismo , Proteínas Bacterianas/metabolismo , Organofosfatos/metabolismo , Proteínas Quinasas/metabolismo , Streptococcus pneumoniae/metabolismo , Acetato Quinasa/genética , Adenosina Difosfato/metabolismo , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Mutación , Fosforilación , Unión Proteica , Proteínas Quinasas/genética , Transducción de Señal , Streptococcus pneumoniae/genética
9.
Appl Microbiol Biotechnol ; 104(10): 4483-4492, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32185433

RESUMEN

Acetate is the main by-product from microbial succinate production. In this study, we performed acetate removal by Methanosarcina barkeri 227 for succinate fermentation by Actinobacillus succinogenes 130Z. The acetoclastic methanogen M. barkeri requires similar environmental factors to A. succinogenes, and the conditions required for co-cultivation were optimized in this study: gas used for anaerobicization, strain adaptation, medium composition, pH adjustment, and inoculation time points. M. barkeri 227 was adapted to acetate for 150 days, which accelerated the acetate consumption to 9-fold (from 190 to 1726 mmol gDW-1 day-1). In the acetate-adapted strain, there was a noticeable increase in transcription of genes required for acetoclastic pathway-satP (acetate transporter), ackA (acetate kinase), cdhA (carbon monoxide dehydrogenase/acetyl-CoA synthase complex), and mtrH (methyl-H4STP:CoM methyltransferase), which was not induced before the adaptation process. The activities of two energy-consuming steps in the pathway-acetate uptake and acetate kinase-increased about 3-fold. This acetate-adapted M. barkeri could be successfully applied to succinate fermentation culture of A. succinogenes, but only after pH adjustment following completion of fermentation. This study suggests the utility of M. barkeri as an acetate scavenger during fermentation for further steps towards genetic and process engineering.


Asunto(s)
Acetatos/metabolismo , Actinobacillus/metabolismo , Fermentación , Methanosarcina barkeri/enzimología , Ácido Succínico/metabolismo , Acetato Quinasa/metabolismo , Medios de Cultivo , Fosforilación
10.
Lett Appl Microbiol ; 70(2): 64-70, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31665809

RESUMEN

Escherichia coli generates acetate as an undesirable by-product that has several negative effects on protein expression, and the reduction of acetate accumulation by modifying genes of acetate synthesis pathway can improve the expression of recombinant proteins. In the present study, the effect of phosphotransacetylase (pta) or/and acetate kinase (ackA) deletion on glutamate dehydrogenase (GDH) expression was investigated. The results indicated that the disruptions of pta or/and ackA decreased the acetate accumulation and synthesis of per gram cell, and increased cell density, and GDH expression and synthesis of per gram cell. The pta gene was more important for acetate formation than the ackA gene. Using the strain with deletions of pta-ackA (SSGPA) for GDH expression, acetate accumulation (2·61 g l-1 ) and acetate synthesis of per gram cell (0·229 g g-1 ) were lowest, decreasing by 28·29 and 41·43% compared with those of the parental strain (SSG) respectively. The flux of acetate synthesis (6·6%) was decreased by 72·15% compared with that of SSG, and the highest cell density (11·38 g l-1 ), GDH expression (2·78 mg ml-1 ), and GDH formation of per gram cell (0·2442 mg mg-1 ) were obtained, which were 1·22-, 1·43- and 1·17-times higher than the parental strain respectively. SIGNIFICANCE AND IMPACT OF THE STUDY: Significance and Impact of the Study: Acetate is the key undesirable by-product in Escherichia coli cultivation, and both biomass and production of desired products are increased by the reduction of acetate accumulation. In the present study, the strains with deletions of pta or/and ackA were constructed to reduce the acetate accumulation and improve the GDH expression, and the highest expression level of GDH was obtained using the strain with lesion in pta-ackA that was 1·17-times higher than that of the parental strain. The construction strategy of recombinant E. coli for decreasing the acetate excretion can be used for high expression level of other desired products.


Asunto(s)
Acetato Quinasa/genética , Acetatos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Glutamato Deshidrogenasa/biosíntesis , Fosfato Acetiltransferasa/genética , Eliminación de Gen , Glutamato Deshidrogenasa/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Streptococcus suis/enzimología , Streptococcus suis/genética
11.
Biotechnol Lett ; 42(4): 537-549, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31974647

RESUMEN

OBJECTIVES: 2,3-Butanediol (2,3-BD) is widely used in several chemical syntheses as well as the manufacture of plastics, solvents, and antifreeze formulations, and can be manufactured by microbial glucose fermentation. Conventional (2,3-BD) fermentation typically has low productivity, yield, and purity, and is expensive for commercial applications. We aimed to delete the lactate dehydrogenase and acetate kinase (ldhA and ack) genes in Klebsiella pneumoniae HD79 by using λRed homologous recombination technology, to eliminate by-products and thereby improve (2,3-BD) production. We also analyzed the resulting gene changes by using transcriptomics. RESULTS: The yield of (2,3-BD) from the mutant Klebsiella strain was 46.21 g/L, the conversion rate was 0.47 g/g, and the productivity was 0.64 g/L·h, which represented increases of 54.9%, 20.5%, and 106.5% respectively, compared to (WT) strains. Lactate and acetate decreased by 48.2% and 62.8%, respectively. Transcriptomics analysis showed that 4628 genes were differentially expressed (404 significantly up-regulated and 162 significantly down-regulated). Moreover, the (2,3-BD) operon genes were differentially expressed. CONCLUSION: Our data showed that the biosynthesis of (2,3-BD) was regulated by inducers (lactate and acetate), a regulator (BudR), and carbon flux. Elimination of acidic by-products by ldhA and ack knockdown significantly improved (2,3-BD) production. Our results provide a deeper understanding of the mechanisms underlying (2,3-BD) production, and form a molecular basis for the improvement this process by genetic modification in the future.


Asunto(s)
Acetato Quinasa/genética , Butileno Glicoles/metabolismo , Perfilación de la Expresión Génica/métodos , Klebsiella pneumoniae/crecimiento & desarrollo , L-Lactato Deshidrogenasa/genética , Proteínas Bacterianas/genética , Técnicas de Cultivo Celular por Lotes , Fermentación , Eliminación de Gen , Regulación Bacteriana de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Análisis de Secuencia de ARN
12.
J Basic Microbiol ; 60(8): 722-729, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32452552

RESUMEN

As a multifunctional lactic acid bacterium, Lactobacillus plantarum has been proved to survive in the human gastrointestinal tract, and it can also colonize this tract. In this study, the effects of L. plantarum ATCC 14917 metabolic profile caused by initial acid-base (pH 5.5 and 8.5) stress were investigated using 1 H nuclear magnetic resonance spectroscopy and multivariate data analysis. The results showed that the metabolome mainly consisted of 14 metabolites, including the components like amino acids, sugars, organic acids, and alkaloids. According to the nontargeted principal component analysis, there was a decrease in most of the metabolites in the alkali-treated group (mainly change in PC1) except acetate, whereas the production of lactate and glycine was increased in the acid-treated group (mainly change in PC2). Furthermore, the initial alkali stress inhibits the secretion of lactic acid, as a decrease was observed in the activity of lactate dehydrogenase and acetic dehydrogenase of L. plantarum ATCC 14917 in the alkali group. All these findings revealed that alkali stress could limit the acid environment formation of L. plantarum 14917 in the fermentation process; however, low acid pH is more suitable for the growth of L. plantarum.


Asunto(s)
Ácidos/metabolismo , Álcalis/metabolismo , Lactobacillus plantarum/metabolismo , Estrés Fisiológico , Acetato Quinasa/metabolismo , Proteínas Bacterianas/metabolismo , L-Lactato Deshidrogenasa/metabolismo , Lactobacillus plantarum/enzimología , Lactobacillus plantarum/crecimiento & desarrollo , Metaboloma
13.
Microb Cell Fact ; 18(1): 179, 2019 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-31640713

RESUMEN

BACKGROUND: Pseudomonas putida is a metabolically versatile, genetically accessible, and stress-robust species with outstanding potential to be used as a workhorse for industrial applications. While industry recognises the importance of robustness under micro-oxic conditions for a stable production process, the obligate aerobic nature of P. putida, attributed to its inability to produce sufficient ATP and maintain its redox balance without molecular oxygen, severely limits its use for biotechnology applications. RESULTS: Here, a combination of genome-scale metabolic modelling and comparative genomics is used to pinpoint essential [Formula: see text]-dependent processes. These explain the inability of the strain to grow under anoxic conditions: a deficient ATP generation and an inability to synthesize essential metabolites. Based on this, several P. putida recombinant strains were constructed harbouring acetate kinase from Escherichia coli for ATP production, and a class I dihydroorotate dehydrogenase and a class III anaerobic ribonucleotide triphosphate reductase from Lactobacillus lactis for the synthesis of essential metabolites. Initial computational designs were fine-tuned by means of adaptive laboratory evolution. CONCLUSIONS: We demonstrated the value of combining in silico approaches, experimental validation and adaptive laboratory evolution for microbial design by making the strictly aerobic Pseudomonas putida able to grow under micro-oxic conditions.


Asunto(s)
Proteínas Bacterianas/genética , Microorganismos Modificados Genéticamente , Oxígeno/metabolismo , Pseudomonas putida , Acetato Quinasa/genética , Acetato Quinasa/metabolismo , Anaerobiosis , Proteínas Bacterianas/metabolismo , Dihidroorotato Deshidrogenasa , Escherichia coli/enzimología , Escherichia coli/metabolismo , Genómica , Lactobacillus/enzimología , Lactobacillus/metabolismo , Ingeniería Metabólica , Microorganismos Modificados Genéticamente/genética , Microorganismos Modificados Genéticamente/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/genética , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Ribonucleótido Reductasas/genética , Ribonucleótido Reductasas/metabolismo
14.
Microb Cell Fact ; 17(1): 102, 2018 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-29970091

RESUMEN

BACKGROUND: High production cost of bioplastics polyhydroxyalkanoates (PHA) is a major obstacle to replace traditional petro-based plastics. To address the challenges, strategies towards upstream metabolic engineering and downstream fermentation optimizations have been continuously pursued. Given that the feedstocks especially carbon sources account up to a large portion of the production cost, it is of great importance to explore low cost substrates to manufacture PHA economically. RESULTS: Escherichia coli was metabolically engineered to synthesize poly-3-hydroxybutyrate (P3HB), poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P3HB4HB), and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) using acetate as a main carbon source. Overexpression of phosphotransacetylase/acetate kinase pathway was shown to be an effective strategy for improving acetate assimilation and biopolymer production. The recombinant strain overexpressing phosphotransacetylase/acetate kinase and P3HB synthesis operon produced 1.27 g/L P3HB when grown on minimal medium supplemented with 10 g/L yeast extract and 5 g/L acetate in shake flask cultures. Further introduction succinate semialdehyde dehydrogenase, 4-hydroxybutyrate dehydrogenase, and CoA transferase lead to the accumulation of P3HB4HB, reaching a titer of 1.71 g/L with a 4-hydroxybutyrate monomer content of 5.79 mol%. When 1 g/L of α-ketoglutarate or citrate was added to the medium, P3HB4HB titer increased to 1.99 and 2.15 g/L, respectively. To achieve PHBV synthesis, acetate and propionate were simultaneously supplied and propionyl-CoA transferase was overexpressed to provide 3-hydroxyvalerate precursor. The resulting strain produced 0.33 g/L PHBV with a 3-hydroxyvalerate monomer content of 6.58 mol%. Further overexpression of propionate permease improved PHBV titer and 3-hydroxyvalerate monomer content to 1.09 g/L and 10.37 mol%, respectively. CONCLUSIONS: The application of acetate as carbon source for microbial fermentation could reduce the consumption of food and agro-based renewable bioresources for biorefineries. Our proposed metabolic engineering strategies illustrate the feasibility for producing polyhydroxyalkanoates using acetate as a main carbon source. Overall, as an abundant and renewable resource, acetate would be developed into a cost-effective feedstock to achieve low cost production of chemicals, materials, and biofuels.


Asunto(s)
Acetatos/metabolismo , Escherichia coli/metabolismo , Ingeniería Metabólica , Polihidroxialcanoatos/biosíntesis , Ácido 3-Hidroxibutírico/biosíntesis , Acetato Quinasa/genética , Técnicas de Cultivo Celular por Lotes , Biopolímeros/biosíntesis , Carbono/metabolismo , Escherichia coli/genética , Fermentación , Fosfato Acetiltransferasa/genética , Plásticos
15.
Biochim Biophys Acta ; 1860(6): 1163-72, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26922831

RESUMEN

BACKGROUND: Acetate is an end-product of the PPi-dependent fermentative glycolysis in Entamoeba histolytica; it is synthesized from acetyl-CoA by ADP-forming acetyl-CoA synthetase (ACS) with net ATP synthesis or from acetyl-phosphate by a unique PPi-forming acetate kinase (AcK). The relevance of these enzymes to the parasite ATP and PPi supply, respectively, are analyzed here. METHODS: The recombinant enzymes were kinetically characterized and their physiological roles were analyzed by transcriptional gene silencing and further metabolic analyses in amoebae. RESULTS: Recombinant ACS showed higher catalytic efficiencies (Vmax/Km) for acetate formation than for acetyl-CoA formation and high acetyl-CoA levels were found in trophozoites. Gradual ACS gene silencing (49-93%) significantly decreased the acetate flux without affecting the levels of glycolytic metabolites and ATP in trophozoites. However, amoebae lacking ACS activity were unable to reestablish the acetyl-CoA/CoA ratio after an oxidative stress challenge. Recombinant AcK showed activity only in the acetate formation direction; however, its substrate acetyl-phosphate was undetected in axenic parasites. AcK gene silencing did not affect acetate production in the parasites but promoted a slight decrease (10-20%) in the hexose phosphates and PPi levels. CONCLUSIONS: These results indicated that the main role of ACS in the parasite energy metabolism is not ATP production but to recycle CoA for glycolysis to proceed under aerobic conditions. AcK does not contribute to acetate production but might be marginally involved in PPi and hexosephosphate homeostasis. SIGNIFICANCE: The previous, long-standing hypothesis that these enzymes importantly contribute to ATP and PPi supply in amoebae can now be ruled out.


Asunto(s)
Acetato Quinasa/fisiología , Acetato CoA Ligasa/fisiología , Difosfatos/metabolismo , Entamoeba histolytica/metabolismo , Acetato Quinasa/genética , Acetato CoA Ligasa/genética , Acetatos/metabolismo , Adenosina Trifosfato/metabolismo , Metabolismo Energético , Etanol/metabolismo , Glucólisis
16.
Mol Microbiol ; 99(3): 497-511, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26448059

RESUMEN

Salmonella enterica catabolizes ethanolamine inside a compartment known as the metabolosome. The ethanolamine utilization (eut) operon of this bacterium encodes all functions needed for the assembly and function of this structure. To date, the roles of EutQ and EutP were not known. Herein we show that both proteins have acetate kinase activity and that EutQ is required during anoxic growth of S. enterica on ethanolamine and tetrathionate. EutP and EutQ-dependent ATP synthesis occurred when enzymes were incubated with ADP, Mg(II) ions and acetyl-phosphate. EutQ and EutP also synthesized acetyl-phosphate from ATP and acetate. Although EutP had acetate kinase activity, ΔeutP strains lacked discernible phenotypes under the conditions where ΔeutQ strains displayed clear phenotypes. The kinetic parameters indicate that EutP is a faster enzyme than EutQ. Our evidence supports the conclusion that EutQ and EutP represent novel classes of acetate kinases. We propose that EutQ is necessary to drive flux through the pathway under physiological conditions, preventing a buildup of acetaldehyde. We also suggest that ATP generated by these enzymes may be used as a substrate for EutT, the ATP-dependent corrinoid adenosyltransferase and for the EutA ethanolamine ammonia-lyase reactivase.


Asunto(s)
Acetato Quinasa/metabolismo , Proteínas Bacterianas/metabolismo , Etanolamina/metabolismo , Salmonella typhimurium/enzimología , Acetato Quinasa/química , Acetato Quinasa/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Cinética , Salmonella typhimurium/genética , Salmonella typhimurium/crecimiento & desarrollo , Salmonella typhimurium/metabolismo
17.
Appl Environ Microbiol ; 83(7)2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28130304

RESUMEN

In the dental caries pathogen Streptococcus mutans, phosphotransacetylase (Pta) and acetate kinase (Ack) convert pyruvate into acetate with the concomitant generation of ATP. The genes for this pathway are tightly regulated by multiple environmental and intracellular inputs, but the basis for differential expression of the genes for Pta and Ack in S. mutans had not been investigated. Here, we show that inactivation in S. mutans of ccpA or codY reduced the activity of the ackA promoter, whereas a ccpA mutant displayed elevated pta promoter activity. The interactions of CcpA with the promoter regions of both genes were observed using electrophoretic mobility shift and DNase protection assays. CodY bound to the ackA promoter region but only in the presence of branched-chain amino acids (BCAAs). DNase footprinting revealed that the upstream region of both genes contains two catabolite-responsive elements (cre1 and cre2) that can be bound by CcpA. Notably, the cre2 site of ackA overlaps with a CodY-binding site. The CcpA- and CodY-binding sites in the promoter region of both genes were further defined by site-directed mutagenesis. Some differences between the reported consensus CodY binding site and the region protected by S. mutans CodY were noted. Transcription of the pta and ackA genes in the ccpA mutant strain was markedly different at low pH relative to transcription at neutral pH. Thus, CcpA and CodY are direct regulators of transcription of ackA and pta in S. mutans that optimize acetate metabolism in response to carbohydrate, amino acid availability, and environmental pH.IMPORTANCE The human dental caries pathogen Streptococcus mutans is remarkably adept at coping with extended periods of carbohydrate limitation during fasting periods. The phosphotransacetylase-acetate kinase (Pta-Ack) pathway in S. mutans modulates carbohydrate flux and fine-tunes the ability of the organisms to cope with stressors that are commonly encountered in the oral cavity. Here, we show that CcpA controls transcription of the pta and ackA genes via direct interaction with the promoter regions of both genes and that branched-chain amino acids (BCAAs), particularly isoleucine, enhance the ability of CodY to bind to the promoter region of the ackA gene. A working model is proposed to explain how regulation of pta and ackA genes by these allosterically controlled regulatory proteins facilitates proper carbon flow and energy production, which are essential functions during infection and pathogenesis as carbohydrate and amino acid availability continually fluctuate.


Asunto(s)
Acetatos/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Streptococcus mutans/genética , Streptococcus mutans/metabolismo , Acetato Quinasa/genética , Aminoácidos de Cadena Ramificada/metabolismo , Sitios de Unión , Metabolismo de los Hidratos de Carbono , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Caries Dental/microbiología , Concentración de Iones de Hidrógeno , Mutagénesis Sitio-Dirigida , Fosfato Acetiltransferasa/genética , Fosfato Acetiltransferasa/metabolismo , Regiones Promotoras Genéticas , Ácido Pirúvico/metabolismo , Transcripción Genética
18.
Plant Cell ; 26(11): 4499-518, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25381350

RESUMEN

Chlamydomonas reinhardtii insertion mutants disrupted for genes encoding acetate kinases (EC 2.7.2.1) (ACK1 and ACK2) and a phosphate acetyltransferase (EC 2.3.1.8) (PAT2, but not PAT1) were isolated to characterize fermentative acetate production. ACK1 and PAT2 were localized to chloroplasts, while ACK2 and PAT1 were shown to be in mitochondria. Characterization of the mutants showed that PAT2 and ACK1 activity in chloroplasts plays a dominant role (relative to ACK2 and PAT1 in mitochondria) in producing acetate under dark, anoxic conditions and, surprisingly, also suggested that Chlamydomonas has other pathways that generate acetate in the absence of ACK activity. We identified a number of proteins associated with alternative pathways for acetate production that are encoded on the Chlamydomonas genome. Furthermore, we observed that only modest alterations in the accumulation of fermentative products occurred in the ack1, ack2, and ack1 ack2 mutants, which contrasts with the substantial metabolite alterations described in strains devoid of other key fermentation enzymes.


Asunto(s)
Acetato Quinasa/metabolismo , Acetatos/metabolismo , Chlamydomonas reinhardtii/enzimología , Cloroplastos/metabolismo , Fosfato Acetiltransferasa/metabolismo , Acetato Quinasa/genética , Proteínas Algáceas/genética , Proteínas Algáceas/metabolismo , Chlamydomonas reinhardtii/genética , Fermentación , Mitocondrias/metabolismo , Mutagénesis Insercional , Fosfato Acetiltransferasa/genética
19.
Appl Microbiol Biotechnol ; 101(10): 4327-4337, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28238080

RESUMEN

Clostridium tyrobutyricum is a promising organism for butyrate and n-butanol production, but cannot grow on sucrose. Three genes (scrA, scrB, and scrK) involved in the sucrose catabolic pathway, along with an aldehyde/alcohol dehydrogenase gene, were cloned from Clostridium acetobutylicum and introduced into C. tyrobutyricum (Δack) with acetate kinase knockout. In batch fermentation, the engineered strain Ct(Δack)-pscrBAK produced 14.8-18.8 g/L butanol, with a high butanol/total solvent ratio of ∼0.94 (w/w), from sucrose and sugarcane juice. Moreover, stable high butanol production with a high butanol yield of 0.25 g/g and productivity of 0.28 g/L∙h was obtained in batch fermentation without using antibiotics for selection pressure, suggesting that Ct(Δack)-pscrBAK is genetically stable. Furthermore, sucrose utilization by Ct(Δack)-pscrBAK was not inhibited by glucose, which would usually cause carbon catabolite repression on solventogenic clostridia. Ct(Δack)-pscrBAK is thus advantageous for use in biobutanol production from sugarcane juice and other sucrose-rich feedstocks.


Asunto(s)
1-Butanol/metabolismo , Clostridium tyrobutyricum/genética , Clostridium tyrobutyricum/metabolismo , Ingeniería Metabólica , Saccharum/metabolismo , Acetato Quinasa/genética , Acetato Quinasa/metabolismo , Alcohol Deshidrogenasa/genética , Alcohol Deshidrogenasa/metabolismo , Butanoles/metabolismo , Ácido Butírico/metabolismo , Represión Catabólica , Clostridium/genética , Etanol/metabolismo , Fermentación , Jugos de Frutas y Vegetales/microbiología , Expresión Génica , Glucosa/metabolismo , Sacarosa/metabolismo
20.
J Proteome Res ; 15(4): 1205-12, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-26975873

RESUMEN

The phosphotransacetylase-acetate kinase (Pta-AckA) pathway is thought to be a vital ATP generating pathway for Staphylococcus aureus. Disruption of the Pta-AckA pathway during overflow metabolism causes significant reduction in growth rate and viability, albeit not due to intracellular ATP depletion. Here, we demonstrate that toxicity associated with inactivation of the Pta-AckA pathway resulted from an altered intracellular redox environment. Growth of the pta and ackA mutants under anaerobic conditions partially restored cell viability. NMR metabolomics analyses and (13)C6-glucose metabolism tracing experiments revealed the activity of multiple pathways that promote redox (NADH/NAD(+)) turnover to be enhanced in the pta and ackA mutants during anaerobic growth. Restoration of redox homeostasis in the pta mutant by overexpressing l- lactate dehydrogenase partially restored its viability under aerobic conditions. Together, our findings suggest that during overflow metabolism, the Pta-AckA pathway plays a critical role in preventing cell viability defects by promoting intracellular redox homeostasis.


Asunto(s)
Acetato Quinasa/genética , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Metabolómica , Fosfato Acetiltransferasa/genética , Staphylococcus aureus/genética , Acetato Quinasa/deficiencia , Adenosina Trifosfato/biosíntesis , Aerobiosis , Anaerobiosis , Proteínas Bacterianas/metabolismo , Isótopos de Carbono , Glucosa/metabolismo , Homeostasis , L-Lactato Deshidrogenasa/metabolismo , Espectroscopía de Resonancia Magnética , Viabilidad Microbiana , Mutación , NAD/metabolismo , Oxidación-Reducción , Fosfato Acetiltransferasa/deficiencia , Staphylococcus aureus/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA