Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.271
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Nanobiotechnology ; 22(1): 214, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38689291

RESUMEN

Combination of tumor immunotherapy with photothermal therapy (PTT) is a feasible tactic to overcome the drawback of immunotherapy such as poor immune response. Via triggering the immunogenic cells death (ICD), PTT can stimulate the activity of immune cells, but meanwhile, the level of adenosine is elevated via the CD73-induced decomposition of ATP which is overexpressed accompanying with the PTT process, resulting in negative feedback to impair the immune stimulation. Herein, we developed a novel biomimetic photothermal nanodrug to specifically block CD73 for inhibition of adenosine production and more efficient priming of the suppressive immune microenvironments. The nanodrug, named as AptEM@CBA, is constructed by encapsulation of photothermal agent black phosphorus quantum dots (BPQDs) and selective CD73 inhibitor α, ß-Methyleneadenosine 5'-diphosphate (AMPCP) in chitosan nanogels, which are further covered with aptamer AS1411 modified erythrocyte membrane (EM) for biomimetic camouflage. With AS1411 induced active targeting and EM induced long blood circulation time, the enrichment of the nanodrug tumor sites is promoted. The photothermal treatment promotes the maturation of dendritic cells. Meanwhile, the release of AMPCP suppress the adenosine generation via CD73 blockade, alleviating the impairment of adenosine to dendritic cells and suppressing regulatory T cells, synergically stimulate the activity of T cells. The combination of CD73 blockade with PTT, not only suppresses the growth of primary implanted tumors, but also boosts strong antitumor immunity to inhibit the growth of distal tumors, providing good potential for tumor photoimmunotherapy.


Asunto(s)
5'-Nucleotidasa , Adenosina Difosfato , Adenosina , Inmunoterapia , Terapia Fototérmica , Animales , Humanos , Ratones , 5'-Nucleotidasa/antagonistas & inhibidores , Adenosina/química , Adenosina/análogos & derivados , Adenosina/farmacología , Adenosina Difosfato/análogos & derivados , Materiales Biomiméticos/química , Materiales Biomiméticos/farmacología , Biomimética/métodos , Línea Celular Tumoral , Células Dendríticas/efectos de los fármacos , Células Dendríticas/inmunología , Inmunoterapia/métodos , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Nanopartículas/química , Neoplasias/terapia , Neoplasias/tratamiento farmacológico , Terapia Fototérmica/métodos , Puntos Cuánticos/química , Microambiente Tumoral/efectos de los fármacos , Masculino
2.
Cell Mol Life Sci ; 79(3): 152, 2022 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-35212809

RESUMEN

ATP and adenosine have emerged as important signaling molecules involved in vascular remodeling, retinal functioning and neurovascular coupling in the mammalian eye. However, little is known about the regulatory mechanisms of purinergic signaling in the eye. Here, we used three-dimensional multiplexed imaging, in situ enzyme histochemistry, flow cytometric analysis, and single cell transcriptomics to characterize the whole pattern of purine metabolism in mouse and human eyes. This study identified ecto-nucleoside triphosphate diphosphohydrolase-1 (NTPDase1/CD39), NTPDase2, and ecto-5'-nucleotidase/CD73 as major ocular ecto-nucleotidases, which are selectively expressed in the photoreceptor layer (CD73), optic nerve head, retinal vasculature and microglia (CD39), as well as in neuronal processes and cornea (CD39, NTPDase2). Specifically, microglial cells can create a spatially arranged network in the retinal parenchyma by extending and retracting their branched CD39high/CD73low processes and forming local "purinergic junctions" with CD39low/CD73- neuronal cell bodies and CD39high/CD73- retinal blood vessels. The relevance of the CD73-adenosine pathway was confirmed by flash electroretinography showing that pharmacological inhibition of adenosine production by injection of highly selective CD73 inhibitor PSB-12489 in the vitreous cavity of dark-adapted mouse eyes rendered the animals hypersensitive to prolonged bright light, manifested as decreased a-wave and b-wave amplitudes. The impaired electrical responses of retinal cells in PSB-12489-treated mice were not accompanied by decrease in total thickness of the retina or death of photoreceptors and retinal ganglion cells. Our study thus defines ocular adenosine metabolism as a complex and spatially integrated network and further characterizes the critical role of CD73 in maintaining the functional activity of retinal cells.


Asunto(s)
5'-Nucleotidasa/metabolismo , Adenosina/metabolismo , Luz , Retina/efectos de la radiación , 5'-Nucleotidasa/antagonistas & inhibidores , 5'-Nucleotidasa/genética , Adenosina Difosfato/análogos & derivados , Adenosina Difosfato/farmacología , Adenosina Trifosfato/metabolismo , Animales , Antígenos CD/genética , Antígenos CD/metabolismo , Apoptosis/efectos de los fármacos , Apoptosis/efectos de la radiación , Apirasa/genética , Apirasa/metabolismo , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Microglía/metabolismo , Células Fotorreceptoras/metabolismo , Retina/metabolismo , Retina/fisiología , Células Ganglionares de la Retina/citología , Células Ganglionares de la Retina/metabolismo
3.
Immunity ; 38(3): 555-69, 2013 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-23477737

RESUMEN

Monocyte-derived macrophages are essential for recovery after spinal cord injury, but their homing mechanism is poorly understood. Here, we show that although of common origin, the homing of proinflammatory (M1) and the "alternatively activated" anti-inflammatory (M2) macrophages to traumatized spinal cord (SC) was distinctly regulated, neither being through breached blood-brain barrier. The M1 macrophages (Ly6c(hi)CX3CR1(lo)) derived from monocytes homed in a CCL2 chemokine-dependent manner through the adjacent SC leptomeninges. The resolving M2 macrophages (Ly6c(lo)CX3CR1(hi)) derived from monocytes trafficked through a remote blood-cerebrospinal-fluid (CSF) barrier, the brain-ventricular choroid plexus (CP), via VCAM-1-VLA-4 adhesion molecules and epithelial CD73 enzyme for extravasation and epithelial transmigration. Blockage of these determinants, or mechanical CSF flow obstruction, inhibited M2 macrophage recruitment and impaired motor-function recovery. The CP, along with the CSF and the central canal, provided an anti-inflammatory supporting milieu, potentially priming the trafficking monocytes. Overall, our finding demonstrates that the route of monocyte entry to central nervous system provides an instructional environment to shape their function.


Asunto(s)
Plexo Coroideo/inmunología , Macrófagos/inmunología , Traumatismos de la Médula Espinal/inmunología , Médula Espinal/inmunología , 5'-Nucleotidasa/antagonistas & inhibidores , 5'-Nucleotidasa/genética , 5'-Nucleotidasa/inmunología , Adenosina Difosfato/análogos & derivados , Adenosina Difosfato/farmacología , Animales , Antígenos Ly/inmunología , Antígenos Ly/metabolismo , Barrera Hematoencefálica/inmunología , Barrera Hematoencefálica/metabolismo , Receptor 1 de Quimiocinas CX3C , Movimiento Celular/genética , Movimiento Celular/inmunología , Plexo Coroideo/metabolismo , Inhibidores Enzimáticos/farmacología , Citometría de Flujo , Expresión Génica/inmunología , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Integrina alfa4beta1/genética , Integrina alfa4beta1/inmunología , Antígenos Comunes de Leucocito/inmunología , Antígenos Comunes de Leucocito/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Meninges/inmunología , Meninges/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Confocal , Monocitos/efectos de los fármacos , Monocitos/inmunología , Monocitos/metabolismo , Receptores de Quimiocina/genética , Receptores de Quimiocina/inmunología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/líquido cefalorraquídeo , Traumatismos de la Médula Espinal/genética , Molécula 1 de Adhesión Celular Vascular/genética , Molécula 1 de Adhesión Celular Vascular/inmunología
4.
Platelets ; 33(8): 1301-1306, 2022 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-35514261

RESUMEN

Platelet activation by adenosine diphosphate (ADP) is mediated through two G-protein-coupled receptors, P2Y1 and P2Y12, which signal through Gq and Gi, respectively. P2Y1 stimulation leads to phospholipase C activation and an increase in cytosolic calcium necessary for CalDAG-GEF1 activation. Engagement of P2Y12 inhibits adenylate cyclase, which reduces cAMP, and activation of PI3-kinase, which inhibits RASA3 resulting in sustained activated Rap1b. In this study we activated human platelets with 2-MeSADP in the presence of LY294002, a PI3-kinase inhibitor, AR-C69931MX, a P2Y12 antagonist or MRS2179, a P2Y1 antagonist. We measured the phosphorylation of Akt on Ser473 as an indicator of PI3-kinase activity. As previously shown, LY294002 and ARC69931MX abolished 2MeSADP-induced Akt phosphorylation. MRS2179 reduced ADP-induced Akt phosphorylation but did not abolish it. Rap1b activation, however, was only reduced, but not ablated, using LY294002 and was completely inhibited by ARC69931MX or MRS2179. Furthermore, 2MeSADP-induced Rap1b activation was abolished in either P2Y1 or P2Y12 null platelets. These data suggest that ADP-induced Rap1b activation requires both P2Y1 and P2Y12. In addition, although stimulation of P2Y12 results in PI3-kinase activation leading to Akt phosphorylation and Rap1b activation, Rap1b activation can occur independently of PI3-kinase downstream of P2Y12. Thus, we propose that the P2Y12 receptor can regulate Rap1b, possibly through RASA3, in a pathway independent of PI3-kinase.


Asunto(s)
Fosfatidilinositol 3-Quinasas , Receptores Purinérgicos P2 , Adenosina Difosfato/análogos & derivados , Adenosina Difosfato/metabolismo , Adenosina Difosfato/farmacología , Adenilil Ciclasas/metabolismo , Plaquetas/metabolismo , Calcio/metabolismo , Humanos , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Antagonistas del Receptor Purinérgico P2Y , Receptores Purinérgicos P2/metabolismo , Receptores Purinérgicos P2Y1/metabolismo , Receptores Purinérgicos P2Y12/metabolismo , Tionucleótidos , Fosfolipasas de Tipo C/metabolismo , Proteínas de Unión al GTP rap/metabolismo
5.
Proc Natl Acad Sci U S A ; 116(19): 9558-9567, 2019 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-31000599

RESUMEN

Chikungunya virus (CHIKV) is transmitted to humans through mosquitoes and causes Chikungunya fever. Nonstructural protein 2 (nsP2) exhibits the protease and RNA helicase activities that are required for viral RNA replication and transcription. Unlike for the C-terminal protease, the structure of the N-terminal RNA helicase (nsP2h) has not been determined. Here, we report the crystal structure of the nsP2h bound to the conserved 3'-end 14 nucleotides of the CHIKV genome and the nonhydrolyzable transition-state nucleotide analog ADP-AlF4 Overall, the structural analysis revealed that nsP2h adopts a uniquely folded N-terminal domain followed by a superfamily 1 RNA helicase fold. The conserved helicase motifs establish polar contacts with the RNA backbone. There are three hydrophobic residues (Y161, F164, and F287) which form stacking interactions with RNA bases and thereby bend the RNA backbone. An F287A substitution that disrupted these stacking interactions increased the basal ATPase activity but decreased the RNA binding affinity. Furthermore, the F287A substitution reduced viral infectivity by attenuating subgenomic RNA synthesis. Replication of the mutant virus was restored by pseudoreversion (A287V) or adaptive mutations in the RecA2 helicase domain (T358S or V410I). Y161A and/or F164A substitutions, which were designed to disrupt the interactions with the RNA molecule, did not affect the ATPase activity but completely abolished the replication and transcription of viral RNA and the infectivity of CHIKV. Our study sheds light on the roles of the RNA helicase region in viral replication and provides insights that might be applicable to alphaviruses and other RNA viruses in general.


Asunto(s)
Adenosina Difosfato/análogos & derivados , Virus Chikungunya/química , Compuestos Organometálicos/química , ARN Helicasas/química , ARN Viral/química , Proteínas Virales/química , Adenosina Difosfato/química , Virus Chikungunya/metabolismo , Dominios Proteicos , ARN Helicasas/metabolismo , ARN Viral/biosíntesis , Proteínas Virales/metabolismo
6.
Arch Biochem Biophys ; 711: 109017, 2021 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-34411580

RESUMEN

A previous study showed that 2'-3'-O-(2,4,6-trinitrophenyl) adenosine 5'-triphosphate (TNP-ATP) was a weak allosteric activator of Rhizobium etli pyruvate carboxylase (RePC) in the absence of acetyl-CoA. On the other hand, TNP-ATP inhibited the allosteric activation of RePC by acetyl-CoA. Here, we aimed to study the role of triphosphate group of TNP-ATP on its allosteric activation of the enzyme and inhibition of acetyl-CoA-dependent activation of RePC using TNP-ATP and its derivatives, including TNP-ADP, TNP-AMP and TNP-adenosine. The pyruvate carboxylation activity was assayed to determine the effect of reducing the number of phosphate groups in TNP-ATP derivatives on allosteric activation and inhibition of acetyl-CoA activation of RePC and chicken liver pyruvate carboxylase (CLPC). Reducing the number of phosphate groups in TNP-ATP derivatives decreased the activation efficacy for both RePC and CLPC compared to TNP-ATP. The apparent binding affinity and inhibition of activation of the enzymes by acetyl-CoA were also diminished when the number of phosphate groups in the TNP-ATP derivatives was reduced. Whilst TNP-AMP activated RePC, it did not activate CLPC, but it did inhibit acetyl-CoA activation of both RePC and CLPC. Similarly, TNP-adenosine did not activate RePC; however, it did inhibit acetyl-CoA activation using a different mechanism compared to phosphorylated TNP-derivatives. These findings indicate that mechanisms of PC activation and inhibition of acetyl-CoA activation by TNP-ATP and its derivatives are different. This study provides the basis for possible drug development for treatment of metabolic diseases and cancers with aberrant expression of PC.


Asunto(s)
Acetilcoenzima A/química , Adenosina Trifosfato/análogos & derivados , Regulación Alostérica/efectos de los fármacos , Activadores de Enzimas/química , Piruvato Carboxilasa/química , Adenosina Difosfato/análogos & derivados , Adenosina Difosfato/química , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/química , Adenosina Trifosfato/química , Animales , Pollos , Pruebas de Enzimas , Cinética , Hígado/enzimología , Estructura Molecular
7.
Nature ; 518(7539): 435-438, 2015 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-25470043

RESUMEN

Members of the dynein family, consisting of cytoplasmic and axonemal isoforms, are motors that move towards the minus ends of microtubules. Cytoplasmic dynein-1 (dynein-1) plays roles in mitosis and cellular cargo transport, and is implicated in viral infections and neurodegenerative diseases. Cytoplasmic dynein-2 (dynein-2) performs intraflagellar transport and is associated with human skeletal ciliopathies. Dyneins share a conserved motor domain that couples cycles of ATP hydrolysis with conformational changes to produce movement. Here we present the crystal structure of the human cytoplasmic dynein-2 motor bound to the ATP-hydrolysis transition state analogue ADP.vanadate. The structure reveals a closure of the motor's ring of six AAA+ domains (ATPases associated with various cellular activites: AAA1-AAA6). This induces a steric clash with the linker, the key element for the generation of movement, driving it into a conformation that is primed to produce force. Ring closure also changes the interface between the stalk and buttress coiled-coil extensions of the motor domain. This drives helix sliding in the stalk which causes the microtubule binding domain at its tip to release from the microtubule. Our structure answers the key questions of how ATP hydrolysis leads to linker remodelling and microtubule affinity regulation.


Asunto(s)
Citoplasma , Dineínas Citoplasmáticas/química , Dineínas Citoplasmáticas/metabolismo , Adenosina Difosfato/análogos & derivados , Adenosina Difosfato/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Humanos , Hidrólisis , Modelos Moleculares , Movimiento , Conformación Proteica
8.
Nature ; 520(7547): 317-21, 2015 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-25822790

RESUMEN

In response to adenosine 5'-diphosphate, the P2Y1 receptor (P2Y1R) facilitates platelet aggregation, and thus serves as an important antithrombotic drug target. Here we report the crystal structures of the human P2Y1R in complex with a nucleotide antagonist MRS2500 at 2.7 Å resolution, and with a non-nucleotide antagonist BPTU at 2.2 Å resolution. The structures reveal two distinct ligand-binding sites, providing atomic details of P2Y1R's unique ligand-binding modes. MRS2500 recognizes a binding site within the seven transmembrane bundle of P2Y1R, which is different in shape and location from the nucleotide binding site in the previously determined structure of P2Y12R, representative of another P2YR subfamily. BPTU binds to an allosteric pocket on the external receptor interface with the lipid bilayer, making it the first structurally characterized selective G-protein-coupled receptor (GPCR) ligand located entirely outside of the helical bundle. These high-resolution insights into P2Y1R should enable discovery of new orthosteric and allosteric antithrombotic drugs with reduced adverse effects.


Asunto(s)
Nucleótidos de Desoxiadenina/química , Nucleótidos de Desoxiadenina/metabolismo , Antagonistas del Receptor Purinérgico P2Y/química , Receptores Purinérgicos P2Y1/química , Receptores Purinérgicos P2Y1/metabolismo , Uracilo/análogos & derivados , Adenosina Difosfato/análogos & derivados , Adenosina Difosfato/química , Adenosina Difosfato/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Nucleótidos de Desoxiadenina/farmacología , Humanos , Ligandos , Modelos Moleculares , Conformación Molecular , Antagonistas del Receptor Purinérgico P2Y/metabolismo , Antagonistas del Receptor Purinérgico P2Y/farmacología , Tionucleótidos/química , Tionucleótidos/metabolismo , Uracilo/química , Uracilo/metabolismo , Uracilo/farmacología
9.
Biol Pharm Bull ; 44(3): 458-460, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33642556

RESUMEN

The functional role of ATP released from sympathetic nerve terminals was examined in isolated guinea pig ventricular papillary muscles. The contractile force of papillary muscles was increased by field electrical stimulation of sympathetic nerve endings. This increase was attenuated by pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (PPADS) or suramin, blockers of the P2X receptor, and was abolished by propranolol and prazosin. PPADS, suramin, and ATP affected neither the basal contractile force nor the positive inotropic effect of noradrenaline. These results provide functional evidence that ATP released from sympathetic nerve terminals enhances noradrenaline release and contributes to sympathetic nerve-induced inotropy.


Asunto(s)
Adenosina Trifosfato/fisiología , Retroalimentación Fisiológica , Músculos Papilares/fisiología , Sistema Nervioso Simpático , Función Ventricular , Adenosina Difosfato/análogos & derivados , Adenosina Difosfato/farmacología , Animales , Cobayas , Ventrículos Cardíacos , Masculino , Contracción Muscular , Norepinefrina/fisiología , Prazosina/farmacología , Propranolol/farmacología , Fosfato de Piridoxal/análogos & derivados , Fosfato de Piridoxal/farmacología , Suramina/farmacología
10.
Int J Mol Sci ; 22(2)2021 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-33435130

RESUMEN

Endothelial cells and astrocytes preferentially express metabotropic P2Y nucleotide receptors, which are involved in the maintenance of vascular and neural function. Among these, P2Y1 and P2Y2 receptors appear as main actors, since their stimulation induces intracellular calcium mobilization and activates signaling cascades linked to cytoskeletal reorganization. In the present work, we have analyzed, by means of atomic force microscopy (AFM) in force spectroscopy mode, the mechanical response of human umbilical vein endothelial cells (HUVEC) and astrocytes upon 2MeSADP and UTP stimulation. This approach allows for simultaneous measurement of variations in factors such as Young's modulus, maximum adhesion force and rupture event formation, which reflect the potential changes in both the stiffness and adhesiveness of the plasma membrane. The largest effect was observed in both endothelial cells and astrocytes after P2Y2 receptor stimulation with UTP. Such exposure to UTP doubled the Young's modulus and reduced both the adhesion force and the number of rupture events. In astrocytes, 2MeSADP stimulation also had a remarkable effect on AFM parameters. Additional studies performed with the selective P2Y1 and P2Y13 receptor antagonists revealed that the 2MeSADP-induced mechanical changes were mediated by the P2Y13 receptor, although they were negatively modulated by P2Y1 receptor stimulation. Hence, our results demonstrate that AFM can be a very useful tool to evaluate functional native nucleotide receptors in living cells.


Asunto(s)
Adenosina Difosfato/análogos & derivados , Astrocitos/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Receptores Purinérgicos P2Y1/metabolismo , Receptores Purinérgicos P2/metabolismo , Tionucleótidos/metabolismo , Uridina Trifosfato/metabolismo , Adenosina Difosfato/metabolismo , Adenosina Difosfato/farmacología , Astrocitos/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Humanos , Microscopía de Fuerza Atómica , Transducción de Señal , Tionucleótidos/farmacología , Uridina Trifosfato/farmacología
11.
Pak J Pharm Sci ; 34(1): 129-134, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34248012

RESUMEN

The aim of this study was to examine the effects of glycosaminoglycan (GAG) from Urechis unicinctus on the P2Y1 receptor pathway and expression of related factors in rat platelets. The concentration of calcium ion (Ca2+) in rat platelets was determined by double wavelength Fura-2 fluorescence spectrophotometry, and the concentrations of inositol trisphosphate (IP3) and glycoprotein IIb/IIIa (GPIIb/IIIa) in rat platelets were measured using the enzymatic immunoassay method. The phosphorylation levels of phospholipase C (PLC), phospholipase A2 (PLA2), protein kinase C (PKC), and p38 mitogen-activated protein kinase (p38MAPK) were also detected by Western blot. It was found that the GAG from U. unicinctus significantly reduced the Ca2+ and IP3 levels in rat platelets (p<0.05, p<0.01). Moreover, medium and high concentrations of GAG significantly reduced the concentration of the platelet membrane GPIIb/IIIa in rats (p<0.05, p<0.01). The phosphorylation levels of PLC, PLA)2), PKC and p38MAPK in rat platelets were also inhibited by GAG and P)2)Y)1) receptor blocker MRS2179 (p<0.05, p<0.01). However, the degree of inhibition of GAG was lower than that of MRS2179. The results laid a foundation for further utilization of the glycosaminoglycan.


Asunto(s)
Productos Biológicos/farmacología , Plaquetas/efectos de los fármacos , Plaquetas/metabolismo , Glicosaminoglicanos/farmacología , Receptores Purinérgicos P2Y1/biosíntesis , Adenosina Difosfato/análogos & derivados , Adenosina Difosfato/farmacología , Animales , Productos Biológicos/aislamiento & purificación , Relación Dosis-Respuesta a Droga , Glicosaminoglicanos/aislamiento & purificación , Nematodos , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/biosíntesis , Antagonistas del Receptor Purinérgico P2Y/farmacología , Ratas , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Proteínas Quinasas p38 Activadas por Mitógenos/biosíntesis
12.
J Neurosci ; 39(27): 5377-5392, 2019 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-31048325

RESUMEN

Extracellular ATP activates inflammatory responses to tissue injury. It is also implicated in establishing lasting network hyperexcitability in the brain by acting upon independent receptor systems. Whereas the fast-acting P2X channels have well-established roles driving neuroinflammation and increasing hyperexcitability, the slower-acting metabotropic P2Y receptors have received much less attention. Recent studies of P2Y1 receptor function in seizures and epilepsy have produced contradictory results, suggesting that the role of this receptor during seizure pathology may be highly sensitive to context. Here, by using male mice, we demonstrate that the metabotropic P2Y1 receptor mediates either proconvulsive or anticonvulsive responses, dependent on the time point of activation in relation to the induction of status epilepticus. P2Y1 deficiency or a P2Y1 antagonist (MRS2500) administered before a chemoconvulsant, exacerbates epileptiform activity, whereas a P2Y1 agonist (MRS2365) administered at this time point is anticonvulsant. When these drugs are administered after the onset of status epilepticus, however, their effect on seizure severity is reversed, with the antagonist now anticonvulsant and the agonist proconvulsant. This result was consistent across two different mouse models of status epilepticus (intra-amygdala kainic acid and intraperitoneal pilocarpine). Pharmacologic P2Y1 blockade during status epilepticus reduces also associated brain damage, delays the development of epilepsy and, when applied during epilepsy, suppresses spontaneous seizures, in mice. Our data show a context-specific role for P2Y1 during seizure pathology and demonstrate that blocking P2Y1 after status epilepticus and during epilepsy has potent anticonvulsive effects, suggesting that P2Y1 may be a novel candidate for the treatment of drug-refractory status epilepticus and epilepsy.SIGNIFICANCE STATEMENT This is the first study to fully characterize the contribution of a metabotropic purinergic P2Y receptor during acute seizures and epilepsy. The findings suggest that targeting P2Y1 may offer a potential novel treatment strategy for drug-refractory status epilepticus and epilepsy. Our data demonstrate a context-specific role of P2Y1 activation during seizures, switching from a proconvulsive to an anticonvulsive role depending on physiopathological context. Thus, our study provides a possible explanation for seemingly conflicting results obtained between studies of different brain diseases where P2Y1 targeting has been proposed as a potential treatment strategy and highlights that the timing of pharmacological interventions is of critical importance to the understanding of how receptors contribute to the generation of seizures and the development of epilepsy.


Asunto(s)
Encéfalo/fisiopatología , Epilepsia/fisiopatología , Receptores Purinérgicos P2Y1/fisiología , Estado Epiléptico/fisiopatología , Adenosina Difosfato/administración & dosificación , Adenosina Difosfato/análogos & derivados , Animales , Encéfalo/efectos de los fármacos , Nucleótidos de Desoxiadenina/administración & dosificación , Modelos Animales de Enfermedad , Electroencefalografía , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Agonistas del Receptor Purinérgico P2Y/administración & dosificación , Antagonistas del Receptor Purinérgico P2Y/administración & dosificación , Receptores Purinérgicos P2Y1/genética
13.
Purinergic Signal ; 16(4): 543-559, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33129204

RESUMEN

Rapid phosphoester hydrolysis of endogenous purine and pyrimidine nucleotides has challenged the characterization of the role of P2 receptors in physiology and pathology. Nucleotide phosphoester stabilization has been pursued on a number of medicinal chemistry fronts. We investigated the in vitro and in vivo stability and pharmacokinetics of prototypical nucleotide P2Y1 receptor (P2Y1R) agonists and antagonists. These included the riboside nucleotide agonist 2-methylthio-ADP and antagonist MRS2179, as well as agonist MRS2365 and antagonist MRS2500 containing constrained (N)-methanocarba rings, which were previously reported to form nucleotides that are more slowly hydrolyzed at the α-phosphoester compared with the ribosides. In vitro incubations in mouse and human plasma and blood demonstrated the rapid hydrolysis of these compounds to nucleoside metabolites. This metabolism was inhibited by EDTA to chelate divalent cations required by ectonucleotidases for nucleotide hydrolysis. This rapid hydrolysis was confirmed in vivo in mouse pharmacokinetic studies that demonstrate that MRS2365 is a prodrug of the nucleoside metabolite AST-004 (MRS4322). Furthermore, we demonstrate that the nucleoside metabolites of MRS2365 and 2-methylthio-ADP are adenosine receptor (AR) agonists, notably at A3 and A1ARs. In vivo efficacy of MRS2365 in murine models of traumatic brain injury and stroke can be attributed to AR activation by its nucleoside metabolite AST-004, rather than P2Y1R activation. This research suggests the importance of reevaluation of previous in vitro and in vivo research of P2YRs and P2XRs as there is a potential that the pharmacology attributed to nucleotide agonists is due to AR activation by active nucleoside metabolites.


Asunto(s)
Agonistas del Receptor de Adenosina A1/farmacocinética , Agonistas del Receptor de Adenosina A3/farmacocinética , Profármacos/farmacocinética , Agonistas del Receptor Purinérgico P2Y/farmacocinética , Adenosina Difosfato/análogos & derivados , Adenosina Difosfato/farmacocinética , Animales , Nucleótidos de Desoxiadenina/farmacocinética , Femenino , Humanos , Ratones , Ratones Endogámicos C57BL , Antagonistas del Receptor Purinérgico P2Y/farmacocinética , Receptor de Adenosina A1/metabolismo , Receptor de Adenosina A3/metabolismo , Receptores Purinérgicos P2Y1/metabolismo
14.
Purinergic Signal ; 16(1): 73-84, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32067141

RESUMEN

ATP is a cotransmitter released with other neurotransmitters from sympathetic nerves, where it stimulates purinergic receptors. Purinergic adenosine P1 receptors (coupled to Gi/o proteins) produce sympatho-inhibition in several autonomic effectors by prejunctional inhibition of neurotransmitter release. Similarly, signalling through P2Y12 and P2Y13 receptors coupled to Gi/o proteins is initiated by the ATP breakdown product ADP. Hence, this study has pharmacologically investigated a possible role of ADP-induced inhibition of the cardioaccelerator sympathetic drive in pithed rats, using a stable ADP analogue (ADPßS) and selective antagonists for the purinergic P2Y1, P2Y12 and P2Y13 receptors. Accordingly, male Wistar rats were pithed and: (i) pretreated i.v. with gallamine (25 mg/kg) and desipramine (50 µg/kg) for preganglionic spinal (C7-T1) stimulation of the cardioaccelerator sympathetic drive (n = 78); or (ii) prepared for receiving i.v. injections of exogenous noradrenaline (n = 12). The i.v. continuous infusions of ADPßS (10 and 30 µg/kg/min) dose-dependently inhibited the tachycardic responses to electrical sympathetic stimulation, but not those to exogenous noradrenaline. The cardiac sympatho-inhibition produced by 30 µg/kg/min ADPßS was (after i.v. administration of compounds) (i) unchanged by 1-ml/kg bidistilled water or 300-µg/kg MRS 2500 (P2Y1 receptor antagonist), (ii) abolished by 300-µg/kg PSB 0739 (P2Y12 receptor antagonist) and (iii) partially blocked by 3000-µg/kg MRS 2211 (P2Y13 receptor antagonist). Our results suggest that ADPßS induces a cardiac sympatho-inhibition that mainly involves the P2Y12 receptor subtype and, probably to a lesser extent, the P2Y13 receptor subtype. These receptors may represent therapeutic targets for treating cardiovascular pathologies, including stroke and myocardial infarctions.


Asunto(s)
Adenosina Difosfato/análogos & derivados , Fenómenos Fisiológicos Cardiovasculares/efectos de los fármacos , Receptores Purinérgicos P2Y12/metabolismo , Receptores Purinérgicos P2/metabolismo , Sistema Nervioso Simpático/fisiología , Tionucleótidos/farmacología , Adenosina Difosfato/farmacología , Animales , Masculino , Ratas , Ratas Wistar , Sistema Nervioso Simpático/efectos de los fármacos
15.
Neurourol Urodyn ; 39(6): 1667-1678, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32531084

RESUMEN

AIMS: As PDGFRα (+) cells appear not to suppress the excitability of detrusor smooth muscle by generating SK3-dependent hyperpolarising as proposed in the gastrointestinal tract, we further explored the functional roles of PDGFRα (+) cells in regulating the spontaneous activity of urogenital tissues. METHODS: Using PDGFRα-eGFP mice, intracellular Ca2+ signaling in PDGFRα (+) cells of the bladder lamina propria, renal pelvis, and seminal vesicle were visualized using Cal-590 fluorescence. The distribution and SK3 expression of PDGFRα (+) cells were also examined by immunohistochemistry. RESULTS: In the bladder lamina propria, SK3 (-) PDGFRα (+) cells exhibited spontaneous Ca2+ transients and responded to stimulation of P2Y1 purinoceptors with MRS2365 (100 nM) or adenosine diphosphate (ADP) (100 µM) by developing Ca2+ transients. In the proximal renal pelvis, PDGFRα (+) cells were distributed in the mucosal, muscular and serosal layers but did not express SK3 immunoreactivity. PDGFRα (+) cells in the musculature resembling atypical smooth muscle cells generated spontaneous Ca2+ transients that were partially suppressed upon P2Y1-stimulation, while vigorously responding to human angiotensin II (100 nM). In the seminal vesicle, PDGFRα (+) cells in the musculature but not mucosa expressed SK3 immunoreactivity. In the mucosa, the P2Y1 stimulation evoked Ca2+ transients in both PDGFRα (+) cells and PDGFRα (-) cells. CONCLUSION: PDGFRα (+) cells in spontaneously active urogenital tissues display heterogeneity in terms of their SK3 expression and P2Y1-induced Ca2+ responses. Muscular PDGFRα (+) cells in the renal pelvis and mucosal PDGFRα (+) cells in the seminal vesicle may generate depolarizing signals to drive smooth muscle cells.


Asunto(s)
Músculo Liso/metabolismo , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Vejiga Urinaria/metabolismo , Adenosina Difosfato/análogos & derivados , Animales , Masculino , Ratones , Ratones Transgénicos , Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/genética , Vejiga Urinaria/diagnóstico por imagen
16.
Nature ; 509(7498): 119-22, 2014 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-24784220

RESUMEN

The P2Y12 receptor (P2Y12R), one of eight members of the P2YR family expressed in humans, is one of the most prominent clinical drug targets for inhibition of platelet aggregation. Although mutagenesis and modelling studies of the P2Y12R provided useful insights into ligand binding, the agonist and antagonist recognition and function at the P2Y12R remain poorly understood at the molecular level. Here we report the structures of the human P2Y12R in complex with the full agonist 2-methylthio-adenosine-5'-diphosphate (2MeSADP, a close analogue of endogenous agonist ADP) at 2.5 Šresolution, and the corresponding ATP derivative 2-methylthio-adenosine-5'-triphosphate (2MeSATP) at 3.1 Šresolution. These structures, together with the structure of the P2Y12R with antagonist ethyl 6-(4-((benzylsulfonyl)carbamoyl)piperidin-1-yl)-5-cyano-2-methylnicotinate (AZD1283), reveal striking conformational changes between nucleotide and non-nucleotide ligand complexes in the extracellular regions. Further analysis of these changes provides insight into a distinct ligand binding landscape in the δ-group of class A G-protein-coupled receptors (GPCRs). Agonist and non-nucleotide antagonist adopt different orientations in the P2Y12R, with only partially overlapped binding pockets. The agonist-bound P2Y12R structure answers long-standing questions surrounding P2Y12R-agonist recognition, and reveals interactions with several residues that had not been reported to be involved in agonist binding. As a first example, to our knowledge, of a GPCR in which agonist access to the binding pocket requires large-scale rearrangements in the highly malleable extracellular region, the structural and docking studies will therefore provide invaluable insight into the pharmacology and mechanisms of action of agonists and different classes of antagonists for the P2Y12R and potentially for other closely related P2YRs.


Asunto(s)
Adenosina Difosfato/análogos & derivados , Adenosina Trifosfato/análogos & derivados , Agonistas del Receptor Purinérgico P2Y/química , Receptores Purinérgicos P2Y12/química , Tionucleótidos/química , Adenosina Difosfato/química , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Humanos , Ligandos , Modelos Moleculares , Niacina/análogos & derivados , Niacina/química , Niacina/metabolismo , Conformación Proteica , Agonistas del Receptor Purinérgico P2Y/metabolismo , Antagonistas del Receptor Purinérgico P2Y/química , Antagonistas del Receptor Purinérgico P2Y/metabolismo , Receptores Purinérgicos P2Y12/metabolismo , Especificidad por Sustrato , Sulfonamidas/química , Sulfonamidas/metabolismo , Tionucleótidos/metabolismo
17.
Eur Neurol ; 83(2): 195-212, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32474563

RESUMEN

INTRODUCTION: Spinal cord injury (SCI) causes most severe motor and sensory dysfunctions. In Chinese traditional medicine, the agonist of a purinergic receptor is believed to have a positive effect on SCIs, and 2-Methylthio-adenosine-5'-diphosphate (2-MesADP) is a selective agonist of the P2Y purinergic receptor. METHODS: To investigate its therapeutic function and molecular mechanism in SCI, transcriptome analysis associated with weighted gene co-expression network analysis (WGCNA) was carried out at various time points after T9 crush injury. RESULTS: 2-MesADP demonstrated recovery of limb motor function at the 6 weeks after injury, accompanied by neuronal regeneration and axon remyelination at 2 and 6 weeks. Furthermore, gene profiling revealed alternated gene expression with the treatment of 2-MesADP. These genes were assigned to a total of 38 modules, followed by gene ontology analysis; of these, 18 represented neuronal apoptosis and regeneration, immune response, synaptic transmission, cell cycle, and angiogenesis. In the neuronal apoptosis and regeneration module, Nefh, NeuroD6, and Dcx in the 2-MesADP group were noticed due to their interesting expression pattern. The gene expression patterns of Mag, Mog, and Cnp, which played key roles in myelination, were significantly changed with the treatment of 2-MesADP. Wnt signal pathway was the most important pathway in 2-MesADP treatment for acute SCI. CONCLUSION: 2-MesADP enhanced locomotor recovery in mouse SCI by altering the expression of neuronal apoptosis and remyelination-related genes and Wnt signaling pathways.


Asunto(s)
Adenosina Difosfato/análogos & derivados , Regulación de la Expresión Génica/efectos de los fármacos , Locomoción/fisiología , Agonistas Purinérgicos/farmacología , Recuperación de la Función/efectos de los fármacos , Traumatismos de la Médula Espinal , Tionucleótidos/farmacología , Adenosina Difosfato/farmacología , Animales , Proteína Doblecortina , Humanos , Ratones , Regeneración Nerviosa/efectos de los fármacos , Recuperación de la Función/fisiología , Remielinización/efectos de los fármacos , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/patología , Traumatismos de la Médula Espinal/fisiopatología
18.
Int J Mol Sci ; 21(11)2020 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-32486261

RESUMEN

Platelet G protein-coupled receptors (GPCRs) regulate platelet function by mediating the response to various agonists, including adenosine diphosphate (ADP), thromboxane A2, and thrombin. Although GPCR kinases (GRKs) are considered to have the crucial roles in most GPCR functions, little is known regarding the regulation of GPCR signaling and mechanisms of GPCR desensitization by GRKs in platelets. In this study, we investigated the functional role of GRK6 and the molecular basis for regulation of specific GPCR desensitization by GRK6 in platelets. We used GRK6 knockout mice to evaluate the functional role of GRK6 in platelet activation. Platelet aggregation, dense- and -granule secretion, and fibrinogen receptor activation induced by 2-MeSADP, U46619, thrombin, and AYPGKF were significantly potentiated in GRK6-/- platelets compared to the wild-type (WT) platelets. However, collagen-related peptide (CRP)-induced platelet aggregation and secretion were not affected in GRK6-/- platelets. Interestingly, platelet aggregation induced by co-stimulation of serotonin and epinephrine which activate Gq-coupled 5HT2A and Gz-coupled 2A adrenergic receptors, respectively, was not affected in GRK6-/- platelets, suggesting that GRK6 was involved in specific GPCR regulation. In addition, platelet aggregation in response to the second challenge of ADP and AYPGKF was restored in GRK6-/- platelets whereas re-stimulation of the agonist failed to induce aggregation in WT platelets, indicating that GRK6 contributed to P2Y1, P2Y12, and PAR4 receptor desensitization. Furthermore, 2-MeSADP-induced Akt phosphorylation and AYPGKF-induced Akt, extracellular signal-related kinase (ERK), and protein kinase Cδ (PKC) phosphorylation were significantly potentiated in GRK6-/- platelets. Finally, GRK6-/- mice exhibited an enhanced and stable thrombus formation after FeCl3 injury to the carotid artery and shorter tail bleeding times, indicating that GRK6-/- mice were more susceptible to thrombosis and hemostasis. We conclude that GRK6 plays an important role in regulating platelet functional responses and thrombus formation through selective GPCR desensitization.


Asunto(s)
Plaquetas/metabolismo , Quinasas de Receptores Acoplados a Proteína-G/metabolismo , Regulación de la Expresión Génica , Activación Plaquetaria , Receptores Acoplados a Proteínas G/metabolismo , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacología , Adenosina Difosfato/análogos & derivados , Adenosina Difosfato/metabolismo , Adenosina Difosfato/farmacología , Animales , Femenino , Hemostáticos , Masculino , Ratones , Ratones Noqueados , Oligopéptidos/farmacología , Fosforilación , Agregación Plaquetaria , Tionucleótidos/farmacología , Trombina/metabolismo , Tromboxano A2/metabolismo
19.
Int J Mol Sci ; 21(12)2020 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-32580317

RESUMEN

A new approach to improve the effectiveness of acute myeloid leukemia (AML) treatment is to use the properties of purinergic signaling molecules secreted into the bone marrow milieu in response to leukemic cell growth. Therefore, our study aimed to evaluate the effects of extracellular adenine nucleotides and adenosine on the growth and death parameters in the leukemic THP-1 cell line. Cells were exposed to ATP, ADP, AMP, adenosine and nonhydrolyzable analogues of ATP and ADP (ATPγS and ADPßS) in a 1-1000 µM broad concentration range. The basal mRNA expression of the P1 and P2 receptors was evaluated by real-time PCR. Changes in the processes of cell growth and death were assessed by flow cytometry analysis of proliferation, cell cycle and apoptosis. Chemotaxis toward stromal cell-derived factor-1 (SDF-1) was performed using the modified Boyden chamber assay, and chemokine receptor type 4 (CXCR4) surface expression was quantified by flow cytometry. We indicated several antileukemic actions. High micromolar concentrations (100-1000 µM) of extracellular adenine nucleotides and adenosine inhibit the growth of cells by arresting the cell cycle and/or inducing apoptosis. ATP is characterized by the highest potency and widest range of effects, and is responsible for the cell cycle arrest and the apoptosis induction. Compared to ATP, the effect of ADP is slightly weaker. Adenosine mostly has a cytotoxic effect, with the induction of apoptosis. The last studied nucleotide, AMP, demonstrated only a weak cytotoxic effect without affecting the cell cycle. In addition, cell migration towards SDF-1 was inhibited by low micromolar concentrations (10 µM). One of the reasons for this action of ATPγS and adenosine was a reduction in CXCR4 surface expression, but this only partially explains the mechanism of antimigratory action. In summary, extracellular adenine nucleotides and adenosine inhibit THP-1 cell growth, cause death of cells and modulate the functioning of the SDF-1/CXCR4 axis. Thus, they negatively affect the processes that are responsible for the progression of AML and the difficulties in AML treatment.


Asunto(s)
Adenosina Difosfato/análogos & derivados , Adenosina Difosfato/farmacología , Adenosina Monofosfato/farmacología , Adenosina Trifosfato/análogos & derivados , Adenosina Trifosfato/farmacología , Adenosina/farmacología , Leucemia Mieloide Aguda/patología , Tionucleótidos/farmacología , Marcadores de Afinidad , Apoptosis , Ciclo Celular , Movimiento Celular , Proliferación Celular , Matriz Extracelular/metabolismo , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/metabolismo , Células Tumorales Cultivadas
20.
RNA ; 23(7): 1110-1124, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28416566

RESUMEN

Three families of nucleic acid-dependent ATPases (DEAH/RHA, Ski2-like, and NS3/NPH-II), termed the DExH ATPases, are thought to execute myriad functions by processive, ATP-dependent, 3' to 5' translocation along single-stranded nucleic acid. While the mechanism of translocation of the viral NS3/NPH-II family has been studied extensively, it has not been clear if or how the principles that have emerged for this family extend to the other two families. Here we report the crystal structure of the yeast DEAH/RHA family ATPase Prp43p, which functions in splicing and ribosome biogenesis, in complex with poly-uracil and a nonhydrolyzable ATP analog. The structure reveals a conserved DEAH/RHA-specific variation of motif Ib within the RecA1 domain of the catalytic core, in which the motif elongates as a ß-hairpin that bookends the 3' end of a central RNA stack, a function that in the viral and Ski-2 families is performed by an auxiliary domain. Supporting a fundamental role in translocation, mutations in this hairpin abolished helicase activity without affecting RNA binding or ATPase activity. While the structure reveals differences with viral ATPases in the RecA1 domain, our structure demonstrates striking similarities with viral ATPases in the RecA2 domain of the catalytic core, including both a prominent ß-hairpin that bookends the 5' end of the RNA stack and a dynamic motif Va that is implicated in mediating translocation. Our crystal structure, genetic, and biochemical experiments, as well as comparisons with other DExH ATPases, support a generalized mechanism for the DExH class of helicases involving a pair of bookends that inchworm along RNA.


Asunto(s)
ARN Helicasas DEAD-box/química , ARN Helicasas DEAD-box/metabolismo , ARN de Hongos/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Adenosina Difosfato/análogos & derivados , Sitios de Unión , Dominio Catalítico , Cristalografía por Rayos X , ARN Helicasas DEAD-box/genética , Modelos Moleculares , Mutación , Unión Proteica , Dominios Proteicos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA