Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.351
Filtrar
Más filtros

Intervalo de año de publicación
1.
Traffic ; 25(9): e12953, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39301720

RESUMEN

Adenoviral pVII proteins are multifunctional, highly basic, histone-like proteins that can bind to and transport the viral genome into the host cell nucleus. Despite the identification of several nuclear localization signals (NLSs) in the pVII protein of human adenovirus (HAdV)2, the mechanistic details of nuclear transport are largely unknown. Here we provide a full characterization of the nuclear import of precursor (Pre-) pVII protein from an ancient siadenovirus, frog siadenovirus 1 (FrAdV1), using a combination of structural, functional, and biochemical approaches. Two strong NLSs (termed NLSa and NLSd) interact with importin (IMP)ß1 and IMPα, respectively, and are the main drivers of nuclear import. A weaker NLS (termed NLSb) also contributes, together with an additional signal (NLSc) which we found to be important for nucleolar targeting and intranuclear binding. Expression of wild-type and NLS defective derivatives Pre-pVII in the presence of selective inhibitors of different nuclear import pathways revealed that, unlike its human counterpart, FrAdV1 Pre-pVII nuclear import is dependent on IMPα/ß1 and IMPß1, but not on transportin-1 (IMPß2). Clearly, AdVs evolved to maximize the nuclear import pathways for the pVII proteins, whose subcellular localization is the result of a complex process. Therefore, our results pave the way for an evolutionary comparison of the interaction of different AdVs with the host cell nuclear transport machinery.


Asunto(s)
Transporte Activo de Núcleo Celular , Señales de Localización Nuclear , Señales de Localización Nuclear/metabolismo , Humanos , Núcleo Celular/metabolismo , beta Carioferinas/metabolismo , Animales , alfa Carioferinas/metabolismo , alfa Carioferinas/genética , Proteínas Virales/metabolismo , Proteínas Virales/genética , Adenoviridae/metabolismo , Adenoviridae/genética , Secuencia de Aminoácidos
2.
Proc Natl Acad Sci U S A ; 120(44): e2310770120, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37883435

RESUMEN

The multifunctional adenovirus E1B-55K oncoprotein can induce cell transformation in conjunction with adenovirus E1A gene products. Previous data from transient expression studies and in vitro experiments suggest that these growth-promoting activities correlate with E1B-55K-mediated transcriptional repression of p53-targeted genes. Here, we analyzed genome-wide occupancies and transcriptional consequences of species C5 and A12 E1B-55Ks in transformed mammalian cells by combinatory ChIP and RNA-seq analyses. E1B-55K-mediated repression correlates with tethering of the viral oncoprotein to p53-dependent promoters via DNA-bound p53. Moreover, we found that E1B-55K also interacts with and represses transcription of numerous p53-independent genes through interactions with transcription factors that play central roles in cancer and stress signaling. Our results demonstrate that E1B-55K oncoproteins function as promiscuous transcriptional repressors of both p53-dependent and -independent genes and further support the model that manipulation of cellular transcription is central to adenovirus-induced cell transformation and oncogenesis.


Asunto(s)
Adenovirus Humanos , Proteínas Oncogénicas Virales , Animales , Humanos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Adenovirus Humanos/genética , Adenovirus Humanos/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Proteínas E1B de Adenovirus/genética , Proteínas E1B de Adenovirus/metabolismo , Transformación Celular Neoplásica/genética , Adenoviridae/genética , Adenoviridae/metabolismo , Proteínas Oncogénicas Virales/metabolismo , ADN , Mamíferos/genética
3.
PLoS Pathog ; 19(2): e1011156, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36745676

RESUMEN

Human adenoviruses (HAdVs) are a large family of DNA viruses counting more than a hundred strains divided into seven species (A to G). HAdVs induce respiratory tract infections, gastroenteritis and conjunctivitis. APOBEC3B is a cytidine deaminase that restricts several DNA viruses. APOBEC3B is also implicated in numerous cancers where it is responsible for the introduction of clustered mutations into the cellular genome. In this study, we demonstrate that APOBEC3B is an adenovirus restriction factor acting through a deaminase-dependent mechanism. APOBEC3B introduces C-to-T clustered mutations into the adenovirus genome. APOBEC3B reduces the propagation of adenoviruses by limiting viral genome replication, progression to late phase, and production of infectious virions. APOBEC3B restriction efficiency varies between adenoviral strains, the A12 strain being more sensitive to APOBEC3B than the B3 or C2 strains. In A12-infected cells, APOBEC3B clusters in the viral replication centers. Importantly, we show that adenovirus infection leads to a reduction of the quantity and/or enzymatic activity of the APOBEC3B protein depending on the strains. The A12 strain seems less able to resist APOBEC3B than the B3 or C2 strains, a characteristic which could explain the strong depletion of the APOBEC3-targeted motifs in the A12 genome. These findings suggest that adenoviruses evolved different mechanisms to antagonize APOBEC3B. Elucidating these mechanisms could benefit the design of cancer treatments. This study also identifies adenoviruses as triggers of the APOBEC3B-mediated innate response. The involvement of certain adenoviral strains in the genesis of the APOBEC3 mutational signature observed in tumors deserves further study.


Asunto(s)
Infecciones por Adenoviridae , Neoplasias , Humanos , Adenoviridae/genética , Adenoviridae/metabolismo , Citidina Desaminasa/genética , Citidina Desaminasa/metabolismo , Proteínas/metabolismo , Neoplasias/patología , Antígenos de Histocompatibilidad Menor/genética
4.
Mol Ther ; 32(1): 103-123, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-37919899

RESUMEN

Targeted delivery and cell-type-specific expression of gene-editing proteins in various cell types in vivo represent major challenges for all viral and non-viral delivery platforms developed to date. Here, we describe the development and analysis of artificial vectors for intravascular delivery (AVIDs), an engineered adenovirus-based gene delivery platform that allows for highly targeted, safe, and efficient gene delivery to human hematopoietic stem and progenitor cells (HSPCs) in vivo after intravenous vector administration. Due to a set of refined structural modifications, intravenous administration of AVIDs did not trigger cytokine storm, hepatotoxicity, or thrombocytopenia. Single intravenous administration of AVIDs to humanized mice, grafted with human CD34+ cells, led to up to 20% transduction of CD34+CD38-CD45RA- HSPC subsets in the bone marrow. Importantly, targeted in vivo transduction of CD34+CD38-CD45RA-CD90-CD49f+ subsets, highly enriched for human hematopoietic stem cells (HSCs), reached up to 19%, which represented a 1,900-fold selectivity in gene delivery to HSC-enriched over lineage-committed CD34-negative cell populations. Because the AVID platform allows for regulated, cell-type-specific expression of gene-editing technologies as well as expression of immunomodulatory proteins to ensure persistence of corrected HSCs in vivo, the HSC-targeted AVID platform may enable development of curative therapies through in vivo gene correction in human HSCs after a single intravenous administration.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas , Humanos , Animales , Ratones , Células Madre Hematopoyéticas/metabolismo , Técnicas de Transferencia de Gen , Antígenos CD34/metabolismo , Terapia Genética , Adenoviridae/genética , Adenoviridae/metabolismo
5.
Br J Cancer ; 130(7): 1187-1195, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38316993

RESUMEN

BACKGROUND: Pancreatic cancer is an aggressive, immunologically "cold" tumor. Oncolytic virotherapy is a promising treatment to overcome this problem. We developed a telomerase-specific oncolytic adenovirus armed with p53 gene (OBP-702). METHODS: We investigated the efficacy of OBP-702 for pancreatic cancer, focusing on its long-term effects via long-lived memory CD8 + T cells including tissue-resident memory T cells (TRMs) and effector memory T cells (TEMs) differentiated from effector memory precursor cells (TEMps). RESULTS: First, in vitro, OBP-702 significantly induced adenosine triphosphate (ATP), which is important for memory T cell establishment. Next, in vivo, OBP-702 local treatment to murine pancreatic PAN02 tumors increased TEMps via ATP induction from tumors and IL-15Rα induction from macrophages, leading to TRM and TEM induction. Activation of these memory T cells by OBP-702 was also maintained in combination with gemcitabine+nab-paclitaxel (GN) in a PAN02 bilateral tumor model, and GN + OBP-702 showed significant anti-tumor effects and increased TRMs in OBP-702-uninjected tumors. Finally, in a neoadjuvant model, in which PAN02 cells were re-inoculated after resection of treated-PAN02 tumors, GN + OBP-702 provided long-term anti-tumor effects even after tumor resection. CONCLUSION: OBP-702 can be a long-term immunostimulant with sustained anti-tumor effects on immunologically cold pancreatic cancer.


Asunto(s)
Viroterapia Oncolítica , Virus Oncolíticos , Neoplasias Pancreáticas , Telomerasa , Humanos , Animales , Ratones , Adenoviridae/genética , Adenoviridae/metabolismo , Proteína p53 Supresora de Tumor/genética , Telomerasa/genética , Telomerasa/metabolismo , Línea Celular Tumoral , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/terapia , Adenosina Trifosfato , Virus Oncolíticos/genética , Virus Oncolíticos/metabolismo
6.
J Virol ; 97(5): e0189822, 2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-37125921

RESUMEN

Human adenoviruses (HAdVs) are widespread pathogens that generally cause mild infections in immunocompetent individuals but severe or even fatal diseases in immunocompromised patients. In order to counteract the host immune defenses, HAdVs encode various immunomodulatory proteins in the early transcription unit 3 (E3). The E3/49K protein is a highly glycosylated type I transmembrane protein uniquely expressed by species D HAdVs. Its N-terminal ectodomain sec49K is released by metalloprotease-mediated shedding at the cell surface and binds to the receptor-like protein tyrosine phosphatase CD45, a critical regulator of leukocyte activation and functions. It remained elusive which domains of CD45 and E3/49K are involved in the interaction and whether such an interaction can also occur on the cell surface with membrane-anchored full-length E3/49K. Here, we show that the two extracellular domains R1 and R2 of E3/49K bind to the same site in the domain d3 of CD45. This interaction enforces the dimerization of CD45, causing the inhibition of T cell receptor signaling. Intriguingly, the membrane-anchored E3/49K appears to be designed like a "molecular fishing rod" using an extended disordered region of E3/49K as a "fishing line" to bridge the distance between the plasma membrane of infected cells and the CD45 binding site on T cells to effectively position the domains R1 and R2 as baits for CD45 binding. This design strongly suggests that both secreted sec49K as well as membrane-anchored full-length E3/49K have immunomodulatory functions. The forced dimerization of CD45 may be applied as a therapeutic strategy in chronic inflammatory disorders and cancer. IMPORTANCE The battle between viruses and their hosts is an ongoing arms race. Whereas the host tries to detect and eliminate the virus, the latter counteracts such antiviral measures to replicate and spread. Adenoviruses have evolved various mechanisms to evade the human immune response. The E3/49K protein of species D adenoviruses mediates the inhibition of immune cell function via binding to the protein tyrosine phosphatase CD45. Here, we show that E3/49K triggers the dimerization of CD45 and thereby inhibits its phosphatase activity. Intriguingly, the membrane-anchored E3/49K seems to be designed like a "molecular fishing rod" with the two CD45 binding domains of E3/49K as baits positioned at the end of an extended disordered region reminiscent of a fishing line. The adenoviral strategy to inhibit CD45 activity by forced dimerization may be used for therapeutic intervention in autoimmune diseases or to prevent graft rejection after transplantation.


Asunto(s)
Proteínas E3 de Adenovirus , Adenovirus Humanos , Humanos , Adenoviridae/metabolismo , Proteínas E3 de Adenovirus/química , Proteínas E3 de Adenovirus/metabolismo , Dimerización , Receptores de Antígenos de Linfocitos T/metabolismo , Antígenos Comunes de Leucocito
7.
J Virol ; 97(6): e0037023, 2023 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-37219458

RESUMEN

DNA replication of E1-deleted first-generation adenoviruses (AdV) in cultured cancer cells has been reported repeatedly and it was suggested that certain cellular proteins could functionally compensate for E1A, leading to the expression of the early region 2 (E2)-encoded proteins and subsequently virus replication. Referring to this, the observation was named E1A-like activity. In this study, we investigated different cell cycle inhibitors with respect to their ability to increase viral DNA replication of dl70-3, an E1-deleted adenovirus. Our analyses of this issue revealed that in particular inhibition of cyclin-dependent kinases 4/6 (CDK4/6i) increased E1-independent adenovirus E2-expression and viral DNA replication. Detailed analysis of the E2-expression in dl70-3 infected cells by RT-qPCR showed that the increase in E2-expression originated from the E2-early promoter. Mutations of the two E2F-binding sites in the E2-early promoter (pE2early-LucM) caused a significant reduction in E2-early promoter activity in trans-activation assays. Accordingly, mutations of the E2F-binding sites in the E2-early promoter in a virus named dl70-3/E2Fm completely abolished CDK4/6i induced viral DNA replication. Thus, our data show that E2F-binding sites in the E2-early promoter are crucial for E1A independent adenoviral DNA replication of E1-deleted vectors in cancer cells. IMPORTANCE E1-deleted AdV vectors are considered replication deficient and are important tools for the study of virus biology, gene therapy, and large-scale vaccine development. However, deletion of the E1 genes does not completely abolish viral DNA replication in cancer cells. Here, we report, that the two E2F-binding sites in the adenoviral E2-early promoter contribute substantially to the so-called E1A-like activity in tumor cells. With this finding, on the one hand, the safety profile of viral vaccine vectors can be increased and, on the other hand, the oncolytic property for cancer therapy might be improved through targeted manipulation of the host cell.


Asunto(s)
Adenoviridae , Ciclo Celular , Replicación del ADN , Replicación Viral , Adenoviridae/genética , Adenoviridae/metabolismo , Proteínas E1A de Adenovirus/genética , Proteínas E1A de Adenovirus/metabolismo , Sitios de Unión , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Células/efectos de los fármacos , Células/virología , Replicación del ADN/efectos de los fármacos , ADN Viral/metabolismo , Regulación Viral de la Expresión Génica/efectos de los fármacos , Mutación , Regiones Promotoras Genéticas/genética , Inhibidores de Proteínas Quinasas/farmacología , Replicación Viral/fisiología , Humanos
8.
PLoS Pathog ; 18(7): e1010736, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35857795

RESUMEN

Intracellular pathogens cause membrane distortion and damage as they enter host cells. Cells perceive these membrane alterations as danger signals and respond by activating autophagy. This response has primarily been studied during bacterial invasion, and only rarely in viral infections. Here, we investigate the cellular response to membrane damage during adenoviral entry. Adenoviruses and their vector derivatives, that are an important vaccine platform against SARS-CoV-2, enter the host cell by endocytosis followed by lysis of the endosomal membrane. We previously showed that cells mount a locally confined autophagy response at the site of endosomal membrane lysis. Here we describe the mechanism of autophagy induction: endosomal membrane damage activates the kinase TBK1 that accumulates in its phosphorylated form at the penetration site. Activation and recruitment of TBK1 require detection of membrane damage by galectin 8 but occur independently of classical autophagy receptors or functional autophagy. Instead, TBK1 itself promotes subsequent autophagy that adenoviruses need to take control of. Deletion of TBK1 reduces LC3 lipidation during adenovirus infection and restores the infectivity of an adenovirus mutant that is restricted by autophagy. By comparing adenovirus-induced membrane damage to sterile lysosomal damage, we implicate TBK1 in the response to a broader range of types of membrane damage. Our study thus highlights an important role for TBK1 in the cellular response to adenoviral endosome penetration and places TBK1 early in the pathway leading to autophagy in response to membrane damage.


Asunto(s)
Infecciones por Adenoviridae , Autofagia , Endosomas , Proteínas Serina-Treonina Quinasas , Adenoviridae/metabolismo , Infecciones por Adenoviridae/metabolismo , Endosomas/metabolismo , Galectinas/metabolismo , Humanos , Proteínas Serina-Treonina Quinasas/genética
9.
Mol Cell ; 64(3): 565-579, 2016 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-27871486

RESUMEN

Expression changes of competing endogenous RNAs (ceRNAs) have been proposed to influence microRNA (miRNA) activity and thereby regulate other transcripts containing miRNA-binding sites. Here, we find that although miRNA levels define the extent of repression, they have little effect on the magnitude of the ceRNA expression change required to observe derepression. Canonical 6-nt sites, which typically mediate modest repression, can nonetheless compete for miRNA binding, with potency ∼20% of that observed for canonical 8-nt sites. In aggregate, low-affinity/background sites also contribute to competition. Sites with extensive additional complementarity can appear as more potent, but only because they induce miRNA degradation. Cooperative binding of proximal sites for the same or different miRNAs does increase potency. These results provide quantitative insights into the stoichiometric relationship between miRNAs and target abundance, target-site spacing, and affinity requirements for ceRNA-mediated gene regulation, and the unusual circumstances in which ceRNA-mediated gene regulation might be observed.


Asunto(s)
Regulación de la Expresión Génica , Redes Reguladoras de Genes , Hepatocitos/metabolismo , MicroARNs/genética , ARN Mensajero/genética , Adenoviridae/genética , Adenoviridae/metabolismo , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Unión Competitiva , Genes Reporteros , Hepatocitos/citología , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , MicroARNs/metabolismo , Plásmidos/química , Plásmidos/metabolismo , Cultivo Primario de Células , ARN Mensajero/metabolismo , Transformación Genética , Proteína Fluorescente Roja
10.
Nucleic Acids Res ; 50(3): 1201-1220, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-34671803

RESUMEN

Eukaryotic cells recognize intracellular pathogens through pattern recognition receptors, including sensors of aberrant nucleic acid structures. Sensors of double-stranded RNA (dsRNA) are known to detect replication intermediates of RNA viruses. It has long been suggested that annealing of mRNA from symmetrical transcription of both top and bottom strands of DNA virus genomes can produce dsRNA during infection. Supporting this hypothesis, nearly all DNA viruses encode inhibitors of dsRNA-recognition pathways. However, direct evidence that DNA viruses produce dsRNA is lacking. Contrary to dogma, we show that the nuclear-replicating DNA virus adenovirus (AdV) does not produce detectable levels of dsRNA during infection. In contrast, abundant dsRNA is detected within the nucleus of cells infected with AdV mutants defective for viral RNA processing. In the presence of nuclear dsRNA, the cytoplasmic dsRNA sensor PKR is relocalized and activated within the nucleus. Accumulation of viral dsRNA occurs in the late phase of infection, when unspliced viral transcripts form intron/exon base pairs between top and bottom strand transcripts. We propose that DNA viruses actively limit dsRNA formation by promoting efficient splicing and mRNA processing, thus avoiding detection and restriction by host innate immune sensors of pathogenic nucleic acids.


Asunto(s)
Adenoviridae , Empalme del ARN , ARN Viral , Adenoviridae/genética , Adenoviridae/metabolismo , ARN Bicatenario/genética , ARN Bicatenario/metabolismo , ARN Mensajero/metabolismo , ARN Viral/genética , ARN Viral/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA