Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 355
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(34): e2206240119, 2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-35969734

RESUMEN

Neurodegenerative diseases are characterized by the pathologic accumulation of aggregated proteins. Known as amyloid, these fibrillar aggregates include proteins such as tau and amyloid-ß (Aß) in Alzheimer's disease (AD) and alpha-synuclein (αSyn) in Parkinson's disease (PD). The development and spread of amyloid fibrils within the brain correlates with disease onset and progression, and inhibiting amyloid formation is a possible route toward therapeutic development. Recent advances have enabled the determination of amyloid fibril structures to atomic-level resolution, improving the possibility of structure-based inhibitor design. In this work, we use these amyloid structures to design inhibitors that bind to the ends of fibrils, "capping" them so as to prevent further growth. Using de novo protein design, we develop a library of miniprotein inhibitors of 35 to 48 residues that target the amyloid structures of tau, Aß, and αSyn. Biophysical characterization of top in silico designed inhibitors shows they form stable folds, have no sequence similarity to naturally occurring proteins, and specifically prevent the aggregation of their targeted amyloid-prone proteins in vitro. The inhibitors also prevent the seeded aggregation and toxicity of fibrils in cells. In vivo evaluation reveals their ability to reduce aggregation and rescue motor deficits in Caenorhabditis elegans models of PD and AD.


Asunto(s)
Péptidos beta-Amiloides/antagonistas & inhibidores , Agregación Patológica de Proteínas/tratamiento farmacológico , alfa-Sinucleína/antagonistas & inhibidores , Proteínas tau/antagonistas & inhibidores , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Amiloide/química , Péptidos beta-Amiloides/metabolismo , Amiloidosis , Humanos , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Agregación Patológica de Proteínas/metabolismo , alfa-Sinucleína/metabolismo , Proteínas tau/química
2.
PLoS Genet ; 17(11): e1009911, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34780474

RESUMEN

The capacity of a cell to maintain proteostasis progressively declines during aging. Virtually all age-associated neurodegenerative disorders associated with aggregation of neurotoxic proteins are linked to defects in the cellular proteostasis network, including insufficient lysosomal hydrolysis. Here, we report that proteotoxicity in yeast and Drosophila models for Parkinson's disease can be prevented by increasing the bioavailability of Ca2+, which adjusts intracellular Ca2+ handling and boosts lysosomal proteolysis. Heterologous expression of human α-synuclein (αSyn), a protein critically linked to Parkinson's disease, selectively increases total cellular Ca2+ content, while the levels of manganese and iron remain unchanged. Disrupted Ca2+ homeostasis results in inhibition of the lysosomal protease cathepsin D and triggers premature cellular and organismal death. External administration of Ca2+ reduces αSyn oligomerization, stimulates cathepsin D activity and in consequence restores survival, which critically depends on the Ca2+/calmodulin-dependent phosphatase calcineurin. In flies, increasing the availability of Ca2+ discloses a neuroprotective role of αSyn upon manganese overload. In sum, we establish a molecular interplay between cathepsin D and calcineurin that can be activated by Ca2+ administration to counteract αSyn proteotoxicity.


Asunto(s)
Calcineurina/genética , Catepsina D/genética , Enfermedad de Parkinson/genética , alfa-Sinucleína/genética , Envejecimiento/efectos de los fármacos , Envejecimiento/genética , Animales , Animales Modificados Genéticamente/genética , Calcio/metabolismo , Calcio/farmacología , Muerte Celular/genética , Drosophila melanogaster/genética , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Lisosomas/efectos de los fármacos , Lisosomas/genética , Neuronas/efectos de los fármacos , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Agregación Patológica de Proteínas/tratamiento farmacológico , Agregación Patológica de Proteínas/genética , Agregación Patológica de Proteínas/patología , Proteolisis/efectos de los fármacos , Saccharomyces cerevisiae/genética
3.
Molecules ; 29(12)2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38930877

RESUMEN

Tau protein is a microtubule-associated protein that is widely distributed in the central nervous system and maintains and regulates neuronal morphology and function. Tau protein aggregates abnormally and forms neurofibrillary tangles in neurodegenerative diseases, disrupting the structure and function of neurons and leading to neuronal death, which triggers the initiation and progression of neurological disorders. The aggregation of tau protein in neurodegenerative diseases is associated with post-translational modifications, which may affect the hydrophilicity, spatial conformation, and stability of tau protein, promoting tau protein aggregation and the formation of neurofibrillary tangles. Therefore, studying the role of tau protein in neurodegenerative diseases and the mechanism of aberrant aggregation is important for understanding the mechanism of neurodegenerative diseases and finding therapeutic approaches. This review describes the possible mechanisms by which tau protein promotes neurodegenerative diseases, the post-translational modifications of tau protein and associated influencing factors, and the current status of drug discovery and development related to tau protein, which may contribute to the development of new therapeutic approaches to alleviate or treat neurodegenerative diseases.


Asunto(s)
Enfermedades Neurodegenerativas , Procesamiento Proteico-Postraduccional , Proteínas tau , Proteínas tau/metabolismo , Humanos , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/metabolismo , Animales , Desarrollo de Medicamentos , Agregación Patológica de Proteínas/metabolismo , Agregación Patológica de Proteínas/tratamiento farmacológico , Ovillos Neurofibrilares/metabolismo , Terapia Molecular Dirigida
4.
J Biol Chem ; 298(5): 101902, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35390347

RESUMEN

Parkinson's disease is a neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra, as well as the accumulation of intraneuronal proteinaceous inclusions known as Lewy bodies and Lewy neurites. The major protein component of Lewy inclusions is the intrinsically disordered protein α-synuclein (α-Syn), which can adopt diverse amyloid structures. Different conformational strains of α-Syn have been proposed to be related to the onset of distinct synucleinopathies; however, how specific amyloid fibrils cause distinctive pathological traits is not clear. Here, we generated three different α-Syn amyloid conformations at different pH and salt concentrations and analyzed the activity of SynuClean-D (SC-D), a small aromatic molecule, on these strains. We show that incubation of α-Syn with SC-D reduced the formation of aggregates and the seeded polymerization of α-Syn in all cases. Moreover, we found that SC-D exhibited a general fibril disaggregation activity. Finally, we demonstrate that treatment with SC-D also reduced strain-specific intracellular accumulation of phosphorylated α-Syn inclusions. Taken together, we conclude that SC-D may be a promising hit compound to inhibit polymorphic α-Syn aggregation.


Asunto(s)
Fármacos Neuroprotectores/farmacología , Enfermedad de Parkinson , Piridinas/farmacología , alfa-Sinucleína , Amiloide/metabolismo , Humanos , Cuerpos de Lewy/metabolismo , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Polimerizacion , Agregación Patológica de Proteínas/tratamiento farmacológico , Sinucleinopatías/tratamiento farmacológico , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo
5.
J Biol Chem ; 298(10): 102417, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36037967

RESUMEN

Γ-Crystallins play a major role in age-related lens transparency. Their destabilization by mutations and physical chemical insults are associated with cataract formation. Therefore, drugs that increase their stability should have anticataract properties. To this end, we screened 2560 Federal Drug Agency-approved drugs and natural compounds for their ability to suppress or worsen H2O2 and/or heat-mediated aggregation of bovine γ-crystallins. The top two drugs, closantel (C), an antihelminthic drug, and gambogic acid (G), a xanthonoid, attenuated thermal-induced protein unfolding and aggregation as shown by turbidimetry fluorescence spectroscopy dynamic light scattering and electron microscopy of human or mouse recombinant crystallins. Furthermore, binding studies using fluorescence inhibition and hydrophobic pocket-binding molecule bis-8-anilino-1-naphthalene sulfonic acid revealed static binding of C and G to hydrophobic sites with medium-to-low affinity. Molecular docking to HγD and other γ-crystallins revealed two binding sites, one in the "NC pocket" (residues 50-150) of HγD and one spanning the "NC tail" (residues 56-61 to 168-174 in the C-terminal domain). Multiple binding sites overlap with those of the protective mini αA-crystallin chaperone MAC peptide. Mechanistic studies using bis-8-anilino-1-naphthalene sulfonic acid as a proxy drug showed that it bound to MAC sites, improved Tm of both H2O2 oxidized and native human gamma D, and suppressed turbidity of oxidized HγD, most likely by trapping exposed hydrophobic sites. The extent to which these drugs act as α-crystallin mimetics and reduce cataract progression remains to be demonstrated. This study provides initial insights into binding properties of C and G to γ-crystallins.


Asunto(s)
Materiales Biomiméticos , Catarata , Cristalino , Chaperonas Moleculares , Agregación Patológica de Proteínas , Salicilanilidas , Xantonas , alfa-Cristalinas , gamma-Cristalinas , Animales , Bovinos , Humanos , Ratones , alfa-Cristalinas/metabolismo , Catarata/tratamiento farmacológico , Catarata/prevención & control , Catarata/genética , gamma-Cristalinas/metabolismo , Peróxido de Hidrógeno/metabolismo , Cristalino/metabolismo , Chaperonas Moleculares/metabolismo , Simulación del Acoplamiento Molecular , Naftalenos/metabolismo , Ácidos Sulfónicos/metabolismo , Salicilanilidas/química , Salicilanilidas/farmacología , Salicilanilidas/uso terapéutico , Xantonas/química , Xantonas/farmacología , Xantonas/uso terapéutico , Agregación Patológica de Proteínas/tratamiento farmacológico , Materiales Biomiméticos/química , Materiales Biomiméticos/farmacología , Materiales Biomiméticos/uso terapéutico
6.
Nature ; 552(7684): 187-193, 2017 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-29211722

RESUMEN

Alzheimer's disease is a common and devastating disease characterized by aggregation of the amyloid-ß peptide. However, we know relatively little about the underlying molecular mechanisms or how to treat patients with Alzheimer's disease. Here we provide bioinformatic and experimental evidence of a conserved mitochondrial stress response signature present in diseases involving amyloid-ß proteotoxicity in human, mouse and Caenorhabditis elegans that involves the mitochondrial unfolded protein response and mitophagy pathways. Using a worm model of amyloid-ß proteotoxicity, GMC101, we recapitulated mitochondrial features and confirmed that the induction of this mitochondrial stress response was essential for the maintenance of mitochondrial proteostasis and health. Notably, increasing mitochondrial proteostasis by pharmacologically and genetically targeting mitochondrial translation and mitophagy increases the fitness and lifespan of GMC101 worms and reduces amyloid aggregation in cells, worms and in transgenic mouse models of Alzheimer's disease. Our data support the relevance of enhancing mitochondrial proteostasis to delay amyloid-ß proteotoxic diseases, such as Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Péptidos beta-Amiloides/toxicidad , Homeostasis , Mitocondrias/metabolismo , Proteostasis , Enfermedad de Alzheimer/genética , Animales , Caenorhabditis elegans/genética , Modelos Animales de Enfermedad , Homeostasis/efectos de los fármacos , Humanos , Masculino , Memoria/fisiología , Ratones , Ratones Transgénicos , Mitocondrias/efectos de los fármacos , Mitocondrias/genética , Mitocondrias/patología , Mitofagia/efectos de los fármacos , Mitofagia/genética , NAD/metabolismo , Niacinamida/análogos & derivados , Niacinamida/farmacología , Fosforilación Oxidativa , Agregación Patológica de Proteínas/tratamiento farmacológico , Biosíntesis de Proteínas/efectos de los fármacos , Proteostasis/efectos de los fármacos , Compuestos de Piridinio , Respuesta de Proteína Desplegada/genética
7.
Proc Natl Acad Sci U S A ; 117(39): 24251-24257, 2020 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-32929030

RESUMEN

Understanding the mechanism of action of compounds capable of inhibiting amyloid-fibril formation is critical to the development of potential therapeutics against protein-misfolding diseases. A fundamental challenge for progress is the range of possible target species and the disparate timescales involved, since the aggregating proteins are simultaneously the reactants, products, intermediates, and catalysts of the reaction. It is a complex problem, therefore, to choose the states of the aggregating proteins that should be bound by the compounds to achieve the most potent inhibition. We present here a comprehensive kinetic theory of amyloid-aggregation inhibition that reveals the fundamental thermodynamic and kinetic signatures characterizing effective inhibitors by identifying quantitative relationships between the aggregation and binding rate constants. These results provide general physical laws to guide the design and optimization of inhibitors of amyloid-fibril formation, revealing in particular the important role of on-rates in the binding of the inhibitors.


Asunto(s)
Amiloide/química , Modelos Químicos , Agregación Patológica de Proteínas/tratamiento farmacológico , Diseño de Fármacos , Cinética , Terapia Molecular Dirigida , Termodinámica
8.
J Neurosci ; 41(35): 7479-7491, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34290084

RESUMEN

Cell-to-cell transmission of α-synuclein (α-syn) pathology is considered to underlie the spread of neurodegeneration in Parkinson's disease (PD). Previous studies have demonstrated that α-syn is secreted under physiological conditions in neuronal cell lines and primary neurons. However, the molecular mechanisms that regulate extracellular α-syn secretion remain unclear. In this study, we found that inhibition of monoamine oxidase-B (MAO-B) enzymatic activity facilitated α-syn secretion in human neuroblastoma SH-SY5Y cells. Both inhibition of MAO-B by selegiline or rasagiline and siRNA-mediated knock-down of MAO-B facilitated α-syn secretion. However, TVP-1022, the S-isomer of rasagiline that is 1000 times less active, failed to facilitate α-syn secretion. Additionally, the MAO-B inhibition-induced increase in α-syn secretion was unaffected by brefeldin A, which inhibits endoplasmic reticulum (ER)/Golgi transport, but was blocked by probenecid and glyburide, which inhibit ATP-binding cassette (ABC) transporter function. MAO-B inhibition preferentially facilitated the secretion of detergent-insoluble α-syn protein and decreased its intracellular accumulation under chloroquine-induced lysosomal dysfunction. Moreover, in a rat model (male Sprague Dawley rats) generated by injecting recombinant adeno-associated virus (rAAV)-A53T α-syn, subcutaneous administration of selegiline delayed the striatal formation of Ser129-phosphorylated α-syn aggregates, and mitigated loss of nigrostriatal dopaminergic neurons. Selegiline also delayed α-syn aggregation and dopaminergic neuronal loss in a cell-to-cell transmission rat model (male Sprague Dawley rats) generated by injecting rAAV-wild-type α-syn and externally inoculating α-syn fibrils into the striatum. These findings suggest that MAO-B inhibition modulates the intracellular clearance of detergent-insoluble α-syn via the ABC transporter-mediated non-classical secretion pathway, and temporarily suppresses the formation and transmission of α-syn aggregates.SIGNIFICANCE STATEMENT The identification of a neuroprotective agent that slows or stops the progression of motor impairments is required to treat Parkinson's disease (PD). The process of α-synuclein (α-syn) aggregation is thought to underlie neurodegeneration in PD. Here, we demonstrated that pharmacological inhibition or knock-down of monoamine oxidase-B (MAO-B) in SH-SY5Y cells facilitated α-syn secretion via a non-classical pathway involving an ATP-binding cassette (ABC) transporter. MAO-B inhibition preferentially facilitated secretion of detergent-insoluble α-syn protein and reduced its intracellular accumulation under chloroquine-induced lysosomal dysfunction. Additionally, MAO-B inhibition by selegiline protected A53T α-syn-induced nigrostriatal dopaminergic neuronal loss and suppressed the formation and cell-to-cell transmission of α-syn aggregates in rat models. We therefore propose a new function of MAO-B inhibition that modulates α-syn secretion and aggregation.


Asunto(s)
Neuronas Dopaminérgicas/efectos de los fármacos , Indanos/uso terapéutico , Inhibidores de la Monoaminooxidasa/uso terapéutico , Monoaminooxidasa/fisiología , Trastornos Parkinsonianos/tratamiento farmacológico , Agregación Patológica de Proteínas/tratamiento farmacológico , Selegilina/uso terapéutico , alfa-Sinucleína/metabolismo , Transportadoras de Casetes de Unión a ATP/metabolismo , Animales , Muerte Celular , Línea Celular Tumoral , Cuerpo Estriado/metabolismo , Cuerpo Estriado/patología , Medios de Cultivo Condicionados , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Técnicas de Silenciamiento del Gen , Vectores Genéticos/administración & dosificación , Humanos , Inyecciones , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Masculino , Monoaminooxidasa/genética , Mutación Missense , Neuroblastoma , Agregación Patológica de Proteínas/genética , Agregación Patológica de Proteínas/metabolismo , Transporte de Proteínas/efectos de los fármacos , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/farmacología , Ratas , Ratas Sprague-Dawley , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/toxicidad , Sustancia Negra/metabolismo , Sustancia Negra/patología , alfa-Sinucleína/genética
9.
Acc Chem Res ; 54(9): 2172-2184, 2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33881820

RESUMEN

Alzheimer's disease (AD), as the primary cause of dementia, has seriously affected millions of people worldwide and brought a very heavy financial and social burden. With the growth of population and aging, the situation will worsen unless efficacious drugs are found to reverse, stop, or even slow down disease progression. More and more evidence has demonstrated that amyloid-ß (Aß) aggregation is an upstream causative factor in AD pathogenesis and then triggers a slew of pathological events. Furthermore, the concentrated redox metal ions in the AD brain, especially Cu(II), can significantly exacerbate Aß aggregation and contribute to the formation of neurotoxic reactive oxygen species (ROS). Therefore, the inhibition of Aß aggregation and relief of amyloidosis-initiated neurotoxicity play a critical role in AD treatment. Until now, several methods have been proposed to modulate Aß aggregation, such as developing aggregation inhibitors to interfere with Aß assembly via noncovalent interactions, copper chelators to cut off metal-accelerated Aß aggregation and concomitant cytotoxicity, photooxidation to reduce the hydrophobicity and aggregation tendency of Aß, thermal dissociation to disrupt amyloid aggregates susceptible to temperature, degradation with artificial protease to fracture the Aß peptide into small fragments, and the clearance of peripheral Aß to bypass the obstruction of the BBB and reduce the Aß burden.In this Account, we focus on our contributions to the development of Aß-targeted multifunctional molecules and nanoparticles, emphasizing the diversified strategies and synergistic therapeutic effects. These therapeutic agents possess the following multifunctionalities: (1) compared with frequently used aggregation inhibitors restricted by intrinsically feeble and sensitive noncovalent interactions, multifunctional agents can efficiently block Aß aggregation by exploiting two or more Aß-specific inhibition strategies simultaneously; (2) apart from regulating Aß aggregation, multipronged agents can also target and modulate other pathological factors in AD pathogenesis, such as increased oxidative stress, abnormal copper accumulation, and irreversible neuron loss; (3) multifunctional platforms with both diagnostic and therapeutic modalities through integrating in situ imaging, real-time diagnostics, a multitarget direction, stimuli-responsive drug release, and the blood-brain barrier (BBB) translocation features are instrumental in improving drug levels at trouble sites, diminishing off-target adverse reactions, evaluating therapeutic effects, and averting overtreatment.Given the fact that amyloid aggregation, local inflammation, and metal dyshomeostasis are universal biomarkers shared by various neurodegenerative disorders, this Account provides a perspective for the evolution of customized therapeutic agents with multiple reactivities for other neurodegenerative diseases. In addition, recent studies have indicated that Aß aggregates can enter the nucleus and induce DNA damage and anomalous conformational transition. We also explore the influences of DNA on the biological effects of Aß aggregates.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Péptidos beta-Amiloides/antagonistas & inhibidores , Fármacos Neuroprotectores/farmacología , Agregación Patológica de Proteínas/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Humanos , Fármacos Neuroprotectores/química , Agregado de Proteínas/efectos de los fármacos , Agregación Patológica de Proteínas/metabolismo
10.
Brain ; 144(9): 2745-2758, 2021 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-34687213

RESUMEN

Human prion diseases are fatal neurodegenerative disorders that include sporadic, infectious and genetic forms. Inherited Creutzfeldt-Jakob disease due to the E200K mutation of the prion protein-coding gene is the most common form of genetic prion disease. The phenotype resembles that of sporadic Creutzfeldt-Jakob disease at both the clinical and pathological levels, with a median disease duration of 4 months. To date, there is no available treatment for delaying the occurrence or slowing the progression of human prion diseases. Existing in vivo models do not allow high-throughput approaches that may facilitate the discovery of compounds targeting pathological assemblies of human prion protein or their effects on neuronal survival. Here, we generated a genetic model in the nematode Caenorhabditis elegans, which is devoid of any homologue of the prion protein, by expressing human prion protein with the E200K mutation in the mechanosensitive neuronal system. Expression of E200K prion protein induced a specific behavioural pattern and neurodegeneration of green fluorescent protein-expressing mechanosensitive neurons, in addition to the formation of intraneuronal inclusions associated with the accumulation of a protease-resistant form of the prion protein. We demonstrated that this experimental system is a powerful tool for investigating the efficacy of anti-prion compounds on both prion-induced neurodegeneration and prion protein misfolding, as well as in the context of human prion protein. Within a library of 320 compounds that have been approved for human use and cross the blood-brain barrier, we identified five molecules that were active against the aggregation of the E200K prion protein and the neurodegeneration it induced in transgenic animals. This model breaks a technological limitation in prion therapeutic research and provides a key tool to study the deleterious effects of misfolded prion protein in a well-described neuronal system.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Modelos Animales de Enfermedad , Enfermedades por Prión/genética , Proteínas Priónicas/genética , Tubulina (Proteína)/genética , Animales , Animales Modificados Genéticamente , Benzocaína/administración & dosificación , Benzocaína/análogos & derivados , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Caenorhabditis elegans , Humanos , Naloxona/administración & dosificación , Piroxicam/administración & dosificación , Piroxicam/análogos & derivados , Enfermedades por Prión/tratamiento farmacológico , Enfermedades por Prión/metabolismo , Proteínas Priónicas/metabolismo , Agregación Patológica de Proteínas/tratamiento farmacológico , Agregación Patológica de Proteínas/genética , Agregación Patológica de Proteínas/metabolismo
11.
Nature ; 537(7618): 50-6, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27582220

RESUMEN

Alzheimer's disease (AD) is characterized by deposition of amyloid-ß (Aß) plaques and neurofibrillary tangles in the brain, accompanied by synaptic dysfunction and neurodegeneration. Antibody-based immunotherapy against Aß to trigger its clearance or mitigate its neurotoxicity has so far been unsuccessful. Here we report the generation of aducanumab, a human monoclonal antibody that selectively targets aggregated Aß. In a transgenic mouse model of AD, aducanumab is shown to enter the brain, bind parenchymal Aß, and reduce soluble and insoluble Aß in a dose-dependent manner. In patients with prodromal or mild AD, one year of monthly intravenous infusions of aducanumab reduces brain Aß in a dose- and time-dependent manner. This is accompanied by a slowing of clinical decline measured by Clinical Dementia Rating-Sum of Boxes and Mini Mental State Examination scores. The main safety and tolerability findings are amyloid-related imaging abnormalities. These results justify further development of aducanumab for the treatment of AD. Should the slowing of clinical decline be confirmed in ongoing phase 3 clinical trials, it would provide compelling support for the amyloid hypothesis.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/psicología , Péptidos beta-Amiloides/antagonistas & inhibidores , Péptidos beta-Amiloides/metabolismo , Anticuerpos Monoclonales Humanizados/uso terapéutico , Placa Amiloide/tratamiento farmacológico , Placa Amiloide/metabolismo , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Amiloide/efectos de los fármacos , Amiloide/metabolismo , Péptidos beta-Amiloides/química , Animales , Anticuerpos Monoclonales Humanizados/administración & dosificación , Anticuerpos Monoclonales Humanizados/efectos adversos , Anticuerpos Monoclonales Humanizados/farmacocinética , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Ensayos Clínicos Fase III como Asunto , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Femenino , Humanos , Masculino , Ratones , Ratones Transgénicos , Persona de Mediana Edad , Modelos Biológicos , Placa Amiloide/patología , Agregación Patológica de Proteínas/tratamiento farmacológico , Solubilidad
12.
Mol Cell Neurosci ; 112: 103612, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33722677

RESUMEN

The multifactorial neurological condition called Alzheimer's disease (AD) primarily affects elderly individuals. Despite the calamitous consequences of AD, curative strategies for a regimen to apply remain inadequate as several factors contribute to AD etiology. Drug repurposing is an advance strategy prior to drug discovery as various effective drugs perform through alteration of multiple targets, and the present "poly-pharmacology" can be a curative approach to complex disorders. AD's multifactorial behavior actively encourages the hypothesis for a drug design approach focused on drug repurposing. In this study, we discovered that an antifungal drug, Caspofungin (CAS) is a potent Aß aggregation inhibitor that displays significantly reduced toxicity associated with AD. Drug reprofiling and REMD simulations demonstrated that CAS interacts with the ß-sheet section, known as Aß amyloid fibrils hotspot. CAS leads to destabilization of ß-sheet and, conclusively, in its devaluation. Later, in vitro experiments were acquired in which the fibrillar volume was reduced for CAS-treated Aß peptide. For the first time ever, this study has determined an antifungal agent as the Aß amyloid aggregation's potent inhibitor. Several efficient sequence-reliant potent inhibitors can be developed in future against the amyloid aggregation for different amyloid peptide by the processing and conformational optimization of CAS.


Asunto(s)
Péptidos beta-Amiloides/efectos de los fármacos , Antifúngicos/farmacología , Caspofungina/farmacología , Agregación Patológica de Proteínas/prevención & control , Enfermedad de Alzheimer/tratamiento farmacológico , Secuencia de Aminoácidos , Animales , Antifúngicos/uso terapéutico , Caspofungina/uso terapéutico , Reposicionamiento de Medicamentos , Humanos , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Ligandos , Modelos Moleculares , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Agregación Patológica de Proteínas/tratamiento farmacológico , Conformación Proteica , Estructura Secundaria de Proteína/efectos de los fármacos
13.
J Cell Mol Med ; 25(20): 9634-9646, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34486218

RESUMEN

Multiple system atrophy (MSA) is a fatal neurodegenerative disease where the histopathological hallmark is glial cytoplasmic inclusions in oligodendrocytes, rich of aggregated alpha-synuclein (aSyn). Therefore, therapies targeting aSyn aggregation and toxicity have been studied as a possible disease-modifying therapy for MSA. Our earlier studies show that inhibition of prolyl oligopeptidase (PREP) with KYP-2047 reduces aSyn aggregates in several models. Here, we tested the effects of KYP-2047 on a MSA cellular models, using rat OLN-AS7 and human MO3.13 oligodendrocyte cells. As translocation of p25α to cell cytosol has been identified as an inducer of aSyn aggregation in MSA models, the cells were transiently transfected with p25α. Similar to earlier studies, p25α increased aSyn phosphorylation and aggregation, and caused tubulin retraction and impaired autophagy in OLN-AS7 cells. In both cellular models, p25α transfection increased significantly aSyn mRNA levels and also increased the levels of inactive protein phosphatase 2A (PP2A). However, aSyn or p25α did not cause any cellular death in MO3.13 cells, questioning their use as a MSA model. Simultaneous administration of 10 µM KYP-2047 improved cell viability, decreased insoluble phosphorylated aSyn and normalized autophagy in OLN-AS7 cells but similar impact was not seen in MO3.13 cells.


Asunto(s)
Atrofia de Múltiples Sistemas/metabolismo , Atrofia de Múltiples Sistemas/patología , Prolil Oligopeptidasas/antagonistas & inhibidores , Agregado de Proteínas/efectos de los fármacos , Agregación Patológica de Proteínas/metabolismo , alfa-Sinucleína/metabolismo , Línea Celular , Supervivencia Celular , Humanos , Atrofia de Múltiples Sistemas/tratamiento farmacológico , Atrofia de Múltiples Sistemas/etiología , Proteínas del Tejido Nervioso/metabolismo , Oligodendroglía/metabolismo , Oligodendroglía/patología , Fosforilación , Agregación Patológica de Proteínas/tratamiento farmacológico
14.
Neurobiol Dis ; 160: 105515, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34571136

RESUMEN

Brain inclusions mainly composed of misfolded and aggregated TAR DNA binding protein 43 (TDP-43), are characteristic hallmarks of amyotrophic lateral sclerosis (ALS). Irrespective of the role played by the inclusions, their reduction represents an important therapeutic pathway that is worth exploring. Their removal can either lead to the recovery of TDP-43 function by removing the self-templating conformers that sequester the protein in the inclusions, and/or eliminate any potential intrinsic toxicity of the aggregates. The search for curative therapies has been hampered by the lack of ALS models for use in high-throughput screening. We adapted, optimised, and extensively characterised our previous ALS cellular model for such use. The model demonstrated efficient aggregation of endogenous TDP-43, and concomitant loss of its splicing regulation function. We provided a proof-of-principle for its eventual use in high-throughput screening using compounds of the tricyclic family and showed that recovery of TDP-43 function can be achieved by the enhanced removal of TDP-43 aggregates by these compounds. We observed that the degradation of the aggregates occurs independent of the autophagy pathway beyond autophagosome-lysosome fusion, but requires a functional proteasome pathway. The in vivo translational effect of the cellular model was tested with two of these compounds in a Drosophila model expressing a construct analogous to the cellular model, where thioridazine significantly improved the locomotive defect. Our findings have important implications as thioridazine cleared TDP-43 aggregates and recovered TDP-43 functionality. This study also highlights the importance of a two-stage, in vitro and in vivo model system to cross-check the search for small molecules that can clear TDP-43 aggregates in TDP-43 proteinopathies.


Asunto(s)
Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Proteínas de Unión al ADN/metabolismo , Antagonistas de Dopamina/uso terapéutico , Proteínas de Drosophila/metabolismo , Agregación Patológica de Proteínas/tratamiento farmacológico , Tioridazina/uso terapéutico , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Animales , Autofagia/efectos de los fármacos , Línea Celular , Modelos Animales de Enfermedad , Antagonistas de Dopamina/farmacología , Drosophila , Humanos , Agregación Patológica de Proteínas/metabolismo , Agregación Patológica de Proteínas/patología , Tioridazina/farmacología
15.
Biochem Biophys Res Commun ; 539: 15-19, 2021 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-33412416

RESUMEN

BACKGROUND: Treatment of neurodegenerative diseases, such as Parkinson's disease, Huntington's chorea, Alzheimer's disease, is one of the priority directions in modern medicine. Thus, search and production of new physiologically active substances for the treatment of neurodegenerative disorders is one of the most important tasks for organic chemistry. The approach based on the replacement of a peptide bond in a peptide molecule with a structural isostere, non-hydrolyzable methylene phosphoryl fragment makes it possible to increase the metabolic stability of peptide molecules to the destructive action of peptidases. METHODS: This work is devoted to the approbation of a new synthetic approach to the production of physiologically active substances in a series of peptide-type compounds with activity by replacing the peptide bond with isosteric methylene-phosphoryl fragment with the preservation of the original amino acid sequence. RESULTS: A phosphine analog of the known physiologically active tripeptide proline-glycine-proline was obtained, cytotoxicity and neuroprotective properties of the initial tripeptide and its phosphine analog were studied. CONCLUSION: Preliminary biological tests have shown that the obtained phosphine analog of the proline-glycine-proline tripeptide is involved in modulating the formation of sediments in the cellular system of proteinopathy, which may indicate their potential antiaggregatory properties.


Asunto(s)
Enfermedades Neurodegenerativas/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Oligopéptidos/farmacología , Fosfinas/química , Prolina/análogos & derivados , Agregación Patológica de Proteínas/tratamiento farmacológico , Línea Celular Tumoral , Humanos , Enfermedades Neurodegenerativas/metabolismo , Fármacos Neuroprotectores/química , Oligopéptidos/química , Fosfinas/farmacología , Prolina/química , Prolina/farmacología , Agregación Patológica de Proteínas/metabolismo
16.
Cell Commun Signal ; 19(1): 16, 2021 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-33579328

RESUMEN

BACKGROUND: Amyloid aggregate deposition is the key feature of Alzheimer's disease. The proteinaceous aggregates found in the afflicted brain are the intra-neuronal neurofibrillary tangles formed by the microtubule-associated protein Tau and extracellular deposits, senile plaques, of amyloid beta (Aß) peptide proteolytically derived from the amyloid precursor protein. Accumulation of these aggregates has manifestations in the later stages of the disease, such as memory loss and cognitive inabilities originating from the neuronal dysfunction, neurodegeneration, and brain atrophy. Treatment of this disease at the late stages is difficult, and many clinical trials have failed. Hence, the goal is to find means capable of preventing the aggregation of these intrinsically disordered proteins by inhibiting the early stages of their pathological transformations. Polyphenols are known to be neuroprotective agents with the noticeable potential against many neurodegenerative diseases, such as Alzheimer's, Parkinson's, and Prion diseases. METHODS: We analyzed the capability of Baicalein to inhibit aggregation of human Tau protein by a multifactorial analysis that included several biophysical and biochemical techniques. RESULTS: The potency of Baicalein, a polyphenol from the Scutellaria baicalensis Georgi, against in vitro Tau aggregation and PHF dissolution has been screened and validated. ThS fluorescence assay revealed the potent inhibitory activity of Baicalein, whereas ANS revealed its mechanism of Tau inhibition viz. by oligomer capture and dissociation. In addition, Baicalein dissolved the preformed mature fibrils of Tau thereby possessing a dual target action. Tau oligomers formed by Baicalein were non-toxic to neuronal cells, highlighting its role as a potent molecule to be screened against AD. CONCLUSION: In conclusion, Baicalein inhibits aggregation of hTau40 by enhancing the formation of SDS-stable oligomers and preventing fibril formation. Baicalein-induced oligomers do not affect the viability of the neuroblastoma cells. Therefore, Baicalein can be considered as a lead molecule against Tau pathology in AD. Video Abstract.


Asunto(s)
Flavanonas/farmacología , Fármacos Neuroprotectores/farmacología , Agregación Patológica de Proteínas/tratamiento farmacológico , Proteínas tau/metabolismo , Animales , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Escherichia coli/genética , Heparina , Ratones , Agregación Patológica de Proteínas/metabolismo , Conformación Proteica , Proteínas tau/química , Proteínas tau/genética
17.
J Nat Prod ; 84(4): 1096-1103, 2021 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-33600175

RESUMEN

Type 2 diabetes mellitus (T2DM) is associated with pancreatic ß-cell dysfunction and insulin resistance. Islet amyloid polypeptide (IAPP) aggregation is found to induce islet ß-cell death in T2DM patients. Recently, we demonstrated that yakuchinone B derivative 1 exhibited inhibitory activity against IAPP aggregation. Thus, in this study, a series of synthesized yakuchinone B-inspired compounds were tested for their anti-IAPP aggregation activity. Four of these compounds, 4e-h, showed greater activity than the lead compound 1, in the sub-µM range (IC50 = 0.7-0.8 µM). The molecular docking analysis revealed crucial hydrogen bonds between the compounds and residues S19 and N22 and important hydrophobic interactions with residue I26. Notably, compounds 4g and 4h significantly protected ß-cells against IAPP-induced toxicity with EC50 values of 0.1 and 0.2 µM, respectively. In contrast, the protective activities of compounds 4e and 4f were weak. Overall, these results suggest that the compounds exhibiting IAPP aggregation-inhibiting activity have the potential to treat T2DM.


Asunto(s)
Diarilheptanoides/síntesis química , Polipéptido Amiloide de los Islotes Pancreáticos/antagonistas & inhibidores , Animales , Línea Celular , Resistencia a la Insulina , Células Secretoras de Insulina/efectos de los fármacos , Simulación del Acoplamiento Molecular , Agregación Patológica de Proteínas/tratamiento farmacológico , Ratas
18.
Nature ; 523(7562): 607-11, 2015 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-26200341

RESUMEN

The human lens is comprised largely of crystallin proteins assembled into a highly ordered, interactive macro-structure essential for lens transparency and refractive index. Any disruption of intra- or inter-protein interactions will alter this delicate structure, exposing hydrophobic surfaces, with consequent protein aggregation and cataract formation. Cataracts are the most common cause of blindness worldwide, affecting tens of millions of people, and currently the only treatment is surgical removal of cataractous lenses. The precise mechanisms by which lens proteins both prevent aggregation and maintain lens transparency are largely unknown. Lanosterol is an amphipathic molecule enriched in the lens. It is synthesized by lanosterol synthase (LSS) in a key cyclization reaction of a cholesterol synthesis pathway. Here we identify two distinct homozygous LSS missense mutations (W581R and G588S) in two families with extensive congenital cataracts. Both of these mutations affect highly conserved amino acid residues and impair key catalytic functions of LSS. Engineered expression of wild-type, but not mutant, LSS prevents intracellular protein aggregation of various cataract-causing mutant crystallins. Treatment by lanosterol, but not cholesterol, significantly decreased preformed protein aggregates both in vitro and in cell-transfection experiments. We further show that lanosterol treatment could reduce cataract severity and increase transparency in dissected rabbit cataractous lenses in vitro and cataract severity in vivo in dogs. Our study identifies lanosterol as a key molecule in the prevention of lens protein aggregation and points to a novel strategy for cataract prevention and treatment.


Asunto(s)
Catarata/tratamiento farmacológico , Catarata/metabolismo , Lanosterol/farmacología , Lanosterol/uso terapéutico , Agregado de Proteínas/efectos de los fármacos , Agregación Patológica de Proteínas/tratamiento farmacológico , Adulto , Secuencia de Aminoácidos , Amiloide/química , Amiloide/efectos de los fármacos , Amiloide/metabolismo , Amiloide/ultraestructura , Animales , Secuencia de Bases , Catarata/congénito , Catarata/genética , Catarata/patología , Línea Celular , Niño , Cristalinas/química , Cristalinas/genética , Cristalinas/metabolismo , Cristalinas/ultraestructura , Perros , Femenino , Humanos , Lanosterol/administración & dosificación , Cristalino/efectos de los fármacos , Cristalino/metabolismo , Cristalino/patología , Masculino , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteínas Mutantes/ultraestructura , Linaje , Agregación Patológica de Proteínas/patología
19.
Cell Mol Life Sci ; 77(6): 977-996, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31552448

RESUMEN

The polyglutamine (polyQ) diseases are a group of nine fatal, adult-onset neurodegenerative disorders characterized by the misfolding and aggregation of mutant proteins containing toxic expansions of CAG/polyQ tracts. The heat shock protein 90 and 70 (Hsp90/Hsp70) chaperone machinery is a key component of cellular protein quality control, playing a role in the regulation of folding, aggregation, and degradation of polyQ proteins. The ability of Hsp70 to facilitate disaggregation and degradation of misfolded proteins makes it an attractive therapeutic target in polyQ diseases. Genetic studies have demonstrated that manipulation of Hsp70 and related co-chaperones can enhance the disaggregation and/or degradation of misfolded proteins in models of polyQ disease. Therefore, the development of small molecules that enhance Hsp70 activity is of great interest. However, it is still unclear if currently available Hsp70 modulators can selectively enhance disaggregation or degradation of misfolded proteins without perturbing other Hsp70 functions essential for cellular homeostasis. This review discusses the multifaceted role of Hsp70 in protein quality control and the opportunities and challenges Hsp70 poses as a potential therapeutic target in polyQ disease.


Asunto(s)
Proteínas HSP70 de Choque Térmico/metabolismo , Péptidos/metabolismo , Agregación Patológica de Proteínas/metabolismo , Animales , Humanos , Enfermedad de Huntington/tratamiento farmacológico , Enfermedad de Huntington/metabolismo , Terapia Molecular Dirigida , Atrofia Muscular Espinal/tratamiento farmacológico , Atrofia Muscular Espinal/metabolismo , Agregación Patológica de Proteínas/tratamiento farmacológico , Pliegue de Proteína/efectos de los fármacos , Deficiencias en la Proteostasis/tratamiento farmacológico , Deficiencias en la Proteostasis/metabolismo , Ataxias Espinocerebelosas/tratamiento farmacológico , Ataxias Espinocerebelosas/metabolismo
20.
Biochem J ; 477(3): 645-670, 2020 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-31939603

RESUMEN

The aggregation of the protein alpha synuclein (α-Syn), a known contributor in Parkinson's disease (PD) pathogenesis is triggered by transition metal ions through occupational exposure and disrupted metal ion homeostasis. Naturally occurring small molecules such as polyphenols have emerged as promising inhibitors of α-Syn fibrillation and toxicity and could be potential therapeutic agents against PD. Here, using an array of biophysical tools combined with cellular assays, we demonstrate that the novel polyphenolic compound scutellarin efficiently inhibits the uninduced and metal-induced fibrillation of α-Syn by acting at the nucleation stage and stabilizes a partially folded intermediate of α-Syn to form SDS-resistant, higher-order oligomers (∼680 kDa) and also disaggregates preformed fibrils of α-Syn into similar type of higher-order oligomers. ANS binding assay, fluorescence lifetime measurements and cell-toxicity experiments reveal scutellarin-generated oligomers as compact, low hydrophobicity structures with modulated surface properties and significantly reduced cytotoxicity than the fibrillation intermediates of α-Syn control. Fluorescence spectroscopy and isothermal titration calorimetry establish the binding between scutellarin and α-Syn to be non-covalent in nature and of moderate affinity (Ka ∼ 105 M-1). Molecular docking approaches suggest binding of scutellarin to the residues present in the NAC region and C-terminus of monomeric α-Syn and the C-terminal residues of fibrillar α-Syn, demonstrating inhibition of fibrillation upon binding to these residues and possible stabilization of the autoinhibitory conformation of α-Syn. These findings reveal interesting insights into the mechanism of scutellarin action and establish it as an efficient modulator of uninduced as well as metal-induced α-Syn fibrillation and toxicity.


Asunto(s)
Apigenina/farmacología , Glucuronatos/farmacología , Enfermedad de Parkinson , Agregado de Proteínas/efectos de los fármacos , Agregación Patológica de Proteínas/tratamiento farmacológico , alfa-Sinucleína/metabolismo , Amiloide/efectos de los fármacos , Amiloide/metabolismo , Humanos , Simulación del Acoplamiento Molecular , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Agregación Patológica de Proteínas/metabolismo , alfa-Sinucleína/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA