Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.143
Filtrar
Más filtros

Intervalo de año de publicación
1.
Nature ; 615(7954): 841-847, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36991191

RESUMEN

The abyssal ocean circulation is a key component of the global meridional overturning circulation, cycling heat, carbon, oxygen and nutrients throughout the world ocean1,2. The strongest historical trend observed in the abyssal ocean is warming at high southern latitudes2-4, yet it is unclear what processes have driven this warming, and whether this warming is linked to a slowdown in the ocean's overturning circulation. Furthermore, attributing change to specific drivers is difficult owing to limited measurements, and because coupled climate models exhibit biases in the region5-7. In addition, future change remains uncertain, with the latest coordinated climate model projections not accounting for dynamic ice-sheet melt. Here we use a transient forced high-resolution coupled ocean-sea-ice model to show that under a high-emissions scenario, abyssal warming is set to accelerate over the next 30 years. We find that meltwater input around Antarctica drives a contraction of Antarctic Bottom Water (AABW), opening a pathway that allows warm Circumpolar Deep Water greater access to the continental shelf. The reduction in AABW formation results in warming and ageing of the abyssal ocean, consistent with recent measurements. In contrast, projected wind and thermal forcing has little impact on the properties, age and volume of AABW. These results highlight the critical importance of Antarctic meltwater in setting the abyssal ocean overturning, with implications for global ocean biogeochemistry and climate that could last for centuries.


Asunto(s)
Congelación , Calor , Océanos y Mares , Agua de Mar , Movimientos del Agua , Regiones Antárticas , Agua de Mar/análisis , Agua de Mar/química , Aceleración , Incertidumbre , Cambio Climático
2.
Nature ; 620(7972): 104-109, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37532817

RESUMEN

Iron is important in regulating the ocean carbon cycle1. Although several dissolved and particulate species participate in oceanic iron cycling, current understanding emphasizes the importance of complexation by organic ligands in stabilizing oceanic dissolved iron concentrations2-6. However, it is difficult to reconcile this view of ligands as a primary control on dissolved iron cycling with the observed size partitioning of dissolved iron species, inefficient dissolved iron regeneration at depth or the potential importance of authigenic iron phases in particulate iron observational datasets7-12. Here we present a new dissolved iron, ligand and particulate iron seasonal dataset from the Bermuda Atlantic Time-series Study (BATS) region. We find that upper-ocean dissolved iron dynamics were decoupled from those of ligands, which necessitates a process by which dissolved iron escapes ligand stabilization to generate a reservoir of authigenic iron particles that settle to depth. When this 'colloidal shunt' mechanism was implemented in a global-scale biogeochemical model, it reproduced both seasonal iron-cycle dynamics observations and independent global datasets when previous models failed13-15. Overall, we argue that the turnover of authigenic particulate iron phases must be considered alongside biological activity and ligands in controlling ocean-dissolved iron distributions and the coupling between dissolved and particulate iron pools.


Asunto(s)
Hierro , Minerales , Agua de Mar , Hierro/análisis , Hierro/química , Hierro/metabolismo , Ligandos , Minerales/análisis , Minerales/química , Minerales/metabolismo , Ciclo del Carbono , Conjuntos de Datos como Asunto , Océano Atlántico , Agua de Mar/análisis , Agua de Mar/química , Bermudas , Factores de Tiempo , Estaciones del Año , Soluciones/química , Internacionalidad
3.
Nature ; 618(7967): 967-973, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37380694

RESUMEN

Observational evidence shows the ubiquitous presence of ocean-emitted short-lived halogens in the global atmosphere1-3. Natural emissions of these chemical compounds have been anthropogenically amplified since pre-industrial times4-6, while, in addition, anthropogenic short-lived halocarbons are currently being emitted to the atmosphere7,8. Despite their widespread distribution in the atmosphere, the combined impact of these species on Earth's radiative balance remains unknown. Here we show that short-lived halogens exert a substantial indirect cooling effect at present (-0.13 ± 0.03 watts per square metre) that arises from halogen-mediated radiative perturbations of ozone (-0.24 ± 0.02 watts per square metre), compensated by those from methane (+0.09 ± 0.01 watts per square metre), aerosols (+0.03 ± 0.01 watts per square metre) and stratospheric water vapour (+0.011 ± 0.001 watts per square metre). Importantly, this substantial cooling effect has increased since 1750 by -0.05 ± 0.03 watts per square metre (61 per cent), driven by the anthropogenic amplification of natural halogen emissions, and is projected to change further (18-31 per cent by 2100) depending on climate warming projections and socioeconomic development. We conclude that the indirect radiative effect due to short-lived halogens should now be incorporated into climate models to provide a more realistic natural baseline of Earth's climate system.


Asunto(s)
Atmósfera , Cambio Climático , Modelos Climáticos , Clima , Frío , Halógenos , Atmósfera/análisis , Atmósfera/química , Halógenos/análisis , Hidrocarburos Halogenados , Océanos y Mares , Agua de Mar/análisis , Agua de Mar/química , Cambio Climático/estadística & datos numéricos , Actividades Humanas
4.
Nature ; 621(7979): 536-542, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37558870

RESUMEN

Coral reef ecosystems are being fundamentally restructured by local human impacts and climate-driven marine heatwaves that trigger mass coral bleaching and mortality1. Reducing local impacts can increase reef resistance to and recovery from bleaching2. However, resource managers lack clear advice on targeted actions that best support coral reefs under climate change3 and sector-based governance means most land- and sea-based management efforts remain siloed4. Here we combine surveys of reef change with a unique 20-year time series of land-sea human impacts that encompassed an unprecedented marine heatwave in Hawai'i. Reefs with increased herbivorous fish populations and reduced land-based impacts, such as wastewater pollution and urban runoff, had positive coral cover trajectories predisturbance. These reefs also experienced a modest reduction in coral mortality following severe heat stress compared to reefs with reduced fish populations and enhanced land-based impacts. Scenario modelling indicated that simultaneously reducing land-sea human impacts results in a three- to sixfold greater probability of a reef having high reef-builder cover four years postdisturbance than if either occurred in isolation. International efforts to protect 30% of Earth's land and ocean ecosystems by 2030 are underway5. Our results reveal that integrated land-sea management could help achieve coastal ocean conservation goals and provide coral reefs with the best opportunity to persist in our changing climate.


Asunto(s)
Antozoos , Conservación de los Recursos Naturales , Arrecifes de Coral , Calor Extremo , Calentamiento Global , Océanos y Mares , Agua de Mar , Animales , Conservación de los Recursos Naturales/métodos , Calor Extremo/efectos adversos , Peces , Calentamiento Global/estadística & datos numéricos , Objetivos , Hawaii , Actividades Humanas , Cooperación Internacional , Agua de Mar/análisis , Agua de Mar/química , Aguas Residuales/análisis , Factores de Tiempo
5.
Nature ; 615(7954): 858-865, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36949201

RESUMEN

Human society is dependent on nature1,2, but whether our ecological foundations are at risk remains unknown in the absence of systematic monitoring of species' populations3. Knowledge of species fluctuations is particularly inadequate in the marine realm4. Here we assess the population trends of 1,057 common shallow reef species from multiple phyla at 1,636 sites around Australia over the past decade. Most populations decreased over this period, including many tropical fishes, temperate invertebrates (particularly echinoderms) and southwestern Australian macroalgae, whereas coral populations remained relatively stable. Population declines typically followed heatwave years, when local water temperatures were more than 0.5 °C above temperatures in 2008. Following heatwaves5,6, species abundances generally tended to decline near warm range edges, and increase near cool range edges. More than 30% of shallow invertebrate species in cool latitudes exhibited high extinction risk, with rapidly declining populations trapped by deep ocean barriers, preventing poleward retreat as temperatures rise. Greater conservation effort is needed to safeguard temperate marine ecosystems, which are disproportionately threatened and include species with deep evolutionary roots. Fundamental among such efforts, and broader societal needs to efficiently adapt to interacting anthropogenic and natural pressures, is greatly expanded monitoring of species' population trends7,8.


Asunto(s)
Antozoos , Arrecifes de Coral , Calor Extremo , Peces , Calentamiento Global , Invertebrados , Océanos y Mares , Agua de Mar , Algas Marinas , Animales , Australia , Peces/clasificación , Invertebrados/clasificación , Calentamiento Global/estadística & datos numéricos , Algas Marinas/clasificación , Dinámica Poblacional , Densidad de Población , Agua de Mar/análisis , Extinción Biológica , Conservación de los Recursos Naturales/tendencias , Equinodermos/clasificación
6.
Nature ; 615(7951): 265-269, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36813968

RESUMEN

Calcium carbonate formation is the primary pathway by which carbon is returned from the ocean-atmosphere system to the solid Earth1,2. The removal of dissolved inorganic carbon from seawater by precipitation of carbonate minerals-the marine carbonate factory-plays a critical role in shaping marine biogeochemical cycling1,2. A paucity of empirical constraints has led to widely divergent views on how the marine carbonate factory has changed over time3-5. Here we use geochemical insights from stable strontium isotopes to provide a new perspective on the evolution of the marine carbonate factory and carbonate mineral saturation states. Although the production of carbonates in the surface ocean and in shallow seafloor settings have been widely considered the predominant carbonate sinks for most of the history of the Earth6, we propose that alternative processes-such as porewater production of authigenic carbonates-may have represented a major carbonate sink throughout the Precambrian. Our results also suggest that the rise of the skeletal carbonate factory decreased seawater carbonate saturation states.


Asunto(s)
Carbonatos , Sedimentos Geológicos , Agua de Mar , Animales , Organismos Acuáticos/química , Organismos Acuáticos/metabolismo , Carbonato de Calcio/análisis , Carbonato de Calcio/química , Carbonato de Calcio/metabolismo , Carbono/análisis , Carbono/química , Carbono/metabolismo , Secuestro de Carbono , Carbonatos/análisis , Carbonatos/química , Carbonatos/metabolismo , Sedimentos Geológicos/análisis , Sedimentos Geológicos/química , Agua de Mar/análisis , Agua de Mar/química , Isótopos de Estroncio , Historia Antigua
7.
Nature ; 602(7898): 617-622, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35197621

RESUMEN

Warming-induced global water cycle changes pose a significant challenge to global ecosystems and human society. However, quantifying historical water cycle change is difficult owing to a dearth of direct observations, particularly over the ocean, where 77% and 85% of global precipitation and evaporation occur, respectively1-3. Air-sea fluxes of freshwater imprint on ocean salinity such that mean salinity is lowest in the warmest and coldest parts of the ocean, and is highest at intermediate temperatures4. Here we track salinity trends in the warm, salty fraction of the ocean, and quantify the observed net poleward transport of freshwater in the Earth system from 1970 to 2014. Over this period, poleward freshwater transport from warm to cold ocean regions has occurred at a rate of 34-62 milli-sverdrups (mSv = 103 m3 s-1), a rate that is not replicated in the current generation of climate models (the Climate Model Intercomparison Project Phase 6 (CMIP6)). In CMIP6 models, surface freshwater flux intensification in warm ocean regions leads to an approximately equivalent change in ocean freshwater content, with little impact from ocean mixing and circulation. Should this partition of processes hold for the real world, the implication is that the historical surface flux amplification is weaker (0.3-4.6%) in CMIP6 compared with observations (3.0-7.4%). These results establish a historical constraint on poleward freshwater transport that will assist in addressing biases in climate models.


Asunto(s)
Agua Dulce , Océanos y Mares , Agua de Mar , Ciclo Hidrológico , Movimientos del Agua , Modelos Climáticos , Agua Dulce/análisis , Calentamiento Global/estadística & datos numéricos , Salinidad , Agua de Mar/análisis , Agua de Mar/química , Temperatura , Factores de Tiempo
8.
Nature ; 600(7889): 450-455, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34912089

RESUMEN

Early to Middle Miocene sea-level oscillations of approximately 40-60 m estimated from far-field records1-3 are interpreted to reflect the loss of virtually all East Antarctic ice during peak warmth2. This contrasts with ice-sheet model experiments suggesting most terrestrial ice in East Antarctica was retained even during the warmest intervals of the Middle Miocene4,5. Data and model outputs can be reconciled if a large West Antarctic Ice Sheet (WAIS) existed and expanded across most of the outer continental shelf during the Early Miocene, accounting for maximum ice-sheet volumes. Here we provide the earliest geological evidence proving large WAIS expansions occurred during the Early Miocene (~17.72-17.40 Ma). Geochemical and petrographic data show glacimarine sediments recovered at International Ocean Discovery Program (IODP) Site U1521 in the central Ross Sea derive from West Antarctica, requiring the presence of a WAIS covering most of the Ross Sea continental shelf. Seismic, lithological and palynological data reveal the intermittent proximity of grounded ice to Site U1521. The erosion rate calculated from this sediment package greatly exceeds the long-term mean, implying rapid erosion of West Antarctica. This interval therefore captures a key step in the genesis of a marine-based WAIS and a tipping point in Antarctic ice-sheet evolution.


Asunto(s)
Cubierta de Hielo , Elevación del Nivel del Mar/historia , Agua de Mar/análisis , Regiones Antárticas , Modelos Climáticos , Historia Antigua
9.
Nature ; 595(7868): 537-541, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34290424

RESUMEN

Since its discovery1,2, the deep-sea glass sponge Euplectella aspergillum has attracted interest in its mechanical properties and beauty. Its skeletal system is composed of amorphous hydrated silica and is arranged in a highly regular and hierarchical cylindrical lattice that begets exceptional flexibility and resilience to damage3-6. Structural analyses dominate the literature, but hydrodynamic fields that surround and penetrate the sponge have remained largely unexplored. Here we address an unanswered question: whether, besides improving its mechanical properties, the skeletal motifs of E. aspergillum underlie the optimization of the flow physics within and beyond its body cavity. We use extreme flow simulations based on the 'lattice Boltzmann' method7, featuring over fifty billion grid points and spanning four spatial decades. These in silico experiments reproduce the hydrodynamic conditions on the deep-sea floor where E. aspergillum lives8-10. Our results indicate that the skeletal motifs reduce the overall hydrodynamic stress and support coherent internal recirculation patterns at low flow velocity. These patterns are arguably beneficial to the organism for selective filter feeding and sexual reproduction11,12. The present study reveals mechanisms of extraordinary adaptation to live in the abyss, paving the way towards further studies of this type at the intersection between fluid mechanics, organism biology and functional ecology.


Asunto(s)
Poríferos/anatomía & histología , Poríferos/fisiología , Agua de Mar/análisis , Animales , Conducta Alimentaria , Hidrodinámica , Reproducción , Reología
10.
Nature ; 599(7884): 239-244, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34759364

RESUMEN

Climate changes across the past 24,000 years provide key insights into Earth system responses to external forcing. Climate model simulations1,2 and proxy data3-8 have independently allowed for study of this crucial interval; however, they have at times yielded disparate conclusions. Here, we leverage both types of information using paleoclimate data assimilation9,10 to produce the first proxy-constrained, full-field reanalysis of surface temperature change spanning the Last Glacial Maximum to present at 200-year resolution. We demonstrate that temperature variability across the past 24 thousand years was linked to two primary climatic mechanisms: radiative forcing from ice sheets and greenhouse gases; and a superposition of changes in the ocean overturning circulation and seasonal insolation. In contrast with previous proxy-based reconstructions6,7 our results show that global mean temperature has slightly but steadily warmed, by ~0.5 °C, since the early Holocene (around 9 thousand years ago). When compared with recent temperature changes11, our reanalysis indicates that both the rate and magnitude of modern warming are unusual relative to the changes of the past 24 thousand years.


Asunto(s)
Modelos Climáticos , Mapeo Geográfico , Calentamiento Global/historia , Gases de Efecto Invernadero/historia , Cubierta de Hielo , Agua de Mar/análisis , Temperatura , Historia Antigua , Reproducibilidad de los Resultados , Estaciones del Año , Movimientos del Agua
11.
Nature ; 591(7851): 592-598, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33762764

RESUMEN

The surface mixed layer of the world ocean regulates global climate by controlling heat and carbon exchange between the atmosphere and the oceanic interior1-3. The mixed layer also shapes marine ecosystems by hosting most of the ocean's primary production4 and providing the conduit for oxygenation of deep oceanic layers. Despite these important climatic and life-supporting roles, possible changes in the mixed layer during an era of global climate change remain uncertain. Here we use oceanographic observations to show that from 1970 to 2018 the density contrast across the base of the mixed layer increased and that the mixed layer itself became deeper. Using a physically based definition of upper-ocean stability that follows different dynamical regimes across the global ocean, we find that the summertime density contrast increased by 8.9 ± 2.7 per cent per decade (10-6-10-5 per second squared per decade, depending on region), more than six times greater than previous estimates. Whereas prior work has suggested that a thinner mixed layer should accompany a more stratified upper ocean5-7, we find instead that the summertime mixed layer deepened by 2.9 ± 0.5 per cent per decade, or several metres per decade (typically 5-10 metres per decade, depending on region). A detailed mechanistic interpretation is challenging, but the concurrent stratification and deepening of the mixed layer are related to an increase in stability associated with surface warming and high-latitude surface freshening8,9, accompanied by a wind-driven intensification of upper-ocean turbulence10,11. Our findings are based on a complex dataset with incomplete coverage of a vast area. Although our results are robust within a wide range of sensitivity analyses, important uncertainties remain, such as those related to sparse coverage in the early years of the 1970-2018 period. Nonetheless, our work calls for reconsideration of the drivers of ongoing shifts in marine primary production, and reveals stark changes in the world's upper ocean over the past five decades.


Asunto(s)
Salinidad , Estaciones del Año , Agua de Mar/análisis , Agua de Mar/química , Temperatura , Animales , Organismos Acuáticos , Clima , Ecosistema , Océanos y Mares , Factores de Tiempo
12.
Nature ; 589(7843): 548-553, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33505038

RESUMEN

Proxy reconstructions from marine sediment cores indicate peak temperatures in the first half of the last and current interglacial periods (the thermal maxima of the Holocene epoch, 10,000 to 6,000 years ago, and the last interglacial period, 128,000 to 123,000 years ago) that arguably exceed modern warmth1-3. By contrast, climate models simulate monotonic warming throughout both periods4-7. This substantial model-data discrepancy undermines confidence in both proxy reconstructions and climate models, and inhibits a mechanistic understanding of recent climate change. Here we show that previous global reconstructions of temperature in the Holocene1-3 and the last interglacial period8 reflect the evolution of seasonal, rather than annual, temperatures and we develop a method of transforming them to mean annual temperatures. We further demonstrate that global mean annual sea surface temperatures have been steadily increasing since the start of the Holocene (about 12,000 years ago), first in response to retreating ice sheets (12 to 6.5 thousand years ago), and then as a result of rising greenhouse gas concentrations (0.25 ± 0.21 degrees Celsius over the past 6,500 years or so). However, mean annual temperatures during the last interglacial period were stable and warmer than estimates of temperatures during the Holocene, and we attribute this to the near-constant greenhouse gas levels and the reduced extent of ice sheets. We therefore argue that the climate of the Holocene differed from that of the last interglacial period in two ways: first, larger remnant glacial ice sheets acted to cool the early Holocene, and second, rising greenhouse gas levels in the late Holocene warmed the planet. Furthermore, our reconstructions demonstrate that the modern global temperature has exceeded annual levels over the past 12,000 years and probably approaches the warmth of the last interglacial period (128,000 to 115,000 years ago).


Asunto(s)
Calentamiento Global/historia , Calor , Cubierta de Hielo , Estaciones del Año , Calcio/análisis , Foraminíferos/química , Efecto Invernadero/historia , Historia Antigua , Magnesio/análisis , Océano Pacífico , Plancton/química , Reproducibilidad de los Resultados , Agua de Mar/análisis , Agua de Mar/química
13.
Nature ; 584(7820): 227-233, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32788734

RESUMEN

Anthropogenic global surface warming is proportional to cumulative carbon emissions1-3; this relationship is partly determined by the uptake and storage of heat and carbon by the ocean4. The rates and patterns of ocean heat and carbon storage are influenced by ocean transport, such as mixing and large-scale circulation5-10. However, existing climate models do not accurately capture the observed patterns of ocean warming, with a large spread in their projections of ocean circulation and ocean heat uptake8,11. Additionally, assessing the influence of ocean circulation changes (specifically, the redistribution of heat by resolved advection) on patterns of observed and simulated ocean warming remains a challenge. Here we establish a linear relationship between the heat and carbon uptake of the ocean in response to anthropogenic emissions. This relationship is determined mainly by intrinsic parameters of the Earth system-namely, the ocean carbon buffer capacity, the radiative forcing of carbon dioxide and the carbon inventory of the ocean. We use this relationship to reveal the effect of changes in ocean circulation from carbon dioxide forcing on patterns of ocean warming in both observations and global Earth system models from the Fifth Coupled Model Intercomparison Project (CMIP5). We show that historical patterns of ocean warming are shaped by ocean heat redistribution, which CMIP5 models simulate poorly. However, we find that projected patterns of heat storage are primarily dictated by the pre-industrial ocean circulation (and small changes in unresolved ocean processes)-that is, by the patterns of added heat owing to ocean uptake of excess atmospheric heat rather than ocean warming by circulation changes. Climate models show more skill in simulating ocean heat storage by the pre-industrial circulation compared to heat redistribution, indicating that warming patterns of the ocean may become more predictable as the climate warms.


Asunto(s)
Dióxido de Carbono/análisis , Calentamiento Global , Calor , Océanos y Mares , Agua de Mar/análisis , Agua de Mar/química , Movimientos del Agua , Atmósfera/química , Actividades Humanas
14.
Nature ; 584(7821): 393-397, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32814886

RESUMEN

The rate of global-mean sea-level rise since 1900 has varied over time, but the contributing factors are still poorly understood1. Previous assessments found that the summed contributions of ice-mass loss, terrestrial water storage and thermal expansion of the ocean could not be reconciled with observed changes in global-mean sea level, implying that changes in sea level or some contributions to those changes were poorly constrained2,3. Recent improvements to observational data, our understanding of the main contributing processes to sea-level change and methods for estimating the individual contributions, mean another attempt at reconciliation is warranted. Here we present a probabilistic framework to reconstruct sea level since 1900 using independent observations and their inherent uncertainties. The sum of the contributions to sea-level change from thermal expansion of the ocean, ice-mass loss and changes in terrestrial water storage is consistent with the trends and multidecadal variability in observed sea level on both global and basin scales, which we reconstruct from tide-gauge records. Ice-mass loss-predominantly from glaciers-has caused twice as much sea-level rise since 1900 as has thermal expansion. Mass loss from glaciers and the Greenland Ice Sheet explains the high rates of global sea-level rise during the 1940s, while a sharp increase in water impoundment by artificial reservoirs is the main cause of the lower-than-average rates during the 1970s. The acceleration in sea-level rise since the 1970s is caused by the combination of thermal expansion of the ocean and increased ice-mass loss from Greenland. Our results reconcile the magnitude of observed global-mean sea-level rise since 1900 with estimates based on the underlying processes, implying that no additional processes are required to explain the observed changes in sea level since 1900.


Asunto(s)
Calor , Cubierta de Hielo/química , Agua de Mar/análisis , Agua de Mar/química , Monitoreo del Ambiente , Calentamiento Global/estadística & datos numéricos , Groenlandia , Historia del Siglo XX , Historia del Siglo XXI , Probabilidad , Incertidumbre
15.
Nature ; 584(7819): 82-86, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32760046

RESUMEN

Marine heatwaves (MHWs)-discrete but prolonged periods of anomalously warm ocean temperatures-can drastically alter ocean ecosystems, with profound ecological and socioeconomic impacts1-8. Considerable effort has been directed at understanding the patterns, drivers and trends of MHWs globally9-11. Typically, MHWs are characterized on the basis of their intensity and persistence at a given location-an approach that is particularly relevant for corals and other sessile organisms that must endure increased temperatures. However, many ecologically and commercially important marine species respond to environmental disruptions by relocating to favourable habitats, and dramatic range shifts of mobile marine species are among the conspicuous impacts of MHWs1,4,12,13. Whereas spatial temperature shifts have been studied extensively in the context of long-term warming trends14-18, they are unaccounted for in existing global MHW analyses. Here we introduce thermal displacement as a metric that characterizes MHWs by the spatial shifts of surface temperature contours, instead of by local temperature anomalies, and use an observation-based global sea surface temperature dataset to calculate thermal displacements for all MHWs from 1982 to 2019. We show that thermal displacements during MHWs vary from tens to thousands of kilometres across the world's oceans and do not correlate spatially with MHW intensity. Furthermore, short-term thermal displacements during MHWs are of comparable magnitude to century-scale shifts inferred from warming trends18, although their global spatial patterns are very different. These results expand our understanding of MHWs and their potential impacts on marine species, revealing which regions are most susceptible to thermal displacement, and how such shifts may change under projected ocean warming. The findings also highlight the need for marine resource management to account for MHW-driven spatial shifts, which are of comparable scale to those associated with long-term climate change and are already happening.


Asunto(s)
Migración Animal , Organismos Acuáticos , Ecosistema , Calor Extremo , Calentamiento Global , Agua de Mar/análisis , Animales , Calor Extremo/efectos adversos , Calentamiento Global/estadística & datos numéricos , Historia del Siglo XX , Historia del Siglo XXI , Modelos Teóricos , Océanos y Mares
16.
Nature ; 577(7792): 660-664, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31996820

RESUMEN

Sea-level histories during the two most recent deglacial-interglacial intervals show substantial differences1-3 despite both periods undergoing similar changes in global mean temperature4,5 and forcing from greenhouse gases6. Although the last interglaciation (LIG) experienced stronger boreal summer insolation forcing than the present interglaciation7, understanding why LIG global mean sea level may have been six to nine metres higher than today has proven particularly challenging2. Extensive areas of polar ice sheets were grounded below sea level during both glacial and interglacial periods, with grounding lines and fringing ice shelves extending onto continental shelves8. This suggests that oceanic forcing by subsurface warming may also have contributed to ice-sheet loss9-12 analogous to ongoing changes in the Antarctic13,14 and Greenland15 ice sheets. Such forcing would have been especially effective during glacial periods, when the Atlantic Meridional Overturning Circulation (AMOC) experienced large variations on millennial timescales16, with a reduction of the AMOC causing subsurface warming throughout much of the Atlantic basin9,12,17. Here we show that greater subsurface warming induced by the longer period of reduced AMOC during the penultimate deglaciation can explain the more-rapid sea-level rise compared with the last deglaciation. This greater forcing also contributed to excess loss from the Greenland and Antarctic ice sheets during the LIG, causing global mean sea level to rise at least four metres above modern levels. When accounting for the combined influences of penultimate and LIG deglaciation on glacial isostatic adjustment, this excess loss of polar ice during the LIG can explain much of the relative sea level recorded by fossil coral reefs and speleothems at intermediate- and far-field sites.


Asunto(s)
Cubierta de Hielo , Elevación del Nivel del Mar/historia , Agua de Mar/análisis , Animales , Regiones Antárticas , Antozoos , Arrecifes de Coral , Foraminíferos , Fósiles , Groenlandia , Historia Antigua , Cubierta de Hielo/química , Modelos Teóricos , Temperatura
18.
Nature ; 574(7777): 237-241, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31578526

RESUMEN

Earth is heading towards a climate that last existed more than three million years ago (Ma) during the 'mid-Pliocene warm period'1, when atmospheric carbon dioxide concentrations were about 400 parts per million, global sea level oscillated in response to orbital forcing2,3 and peak global-mean sea level (GMSL) may have reached about 20 metres above the present-day value4,5. For sea-level rise of this magnitude, extensive retreat or collapse of the Greenland, West Antarctic and marine-based sectors of the East Antarctic ice sheets is required. Yet the relative amplitude of sea-level variations within glacial-interglacial cycles remains poorly constrained. To address this, we calibrate a theoretical relationship between modern sediment transport by waves and water depth, and then apply the technique to grain size in a continuous 800-metre-thick Pliocene sequence of shallow-marine sediments from Whanganui Basin, New Zealand. Water-depth variations obtained in this way, after corrections for tectonic subsidence, yield cyclic relative sea-level (RSL) variations. Here we show that sea level varied on average by 13 ± 5 metres over glacial-interglacial cycles during the middle-to-late Pliocene (about 3.3-2.5 Ma). The resulting record is independent of the global ice volume proxy3 (as derived from the deep-ocean oxygen isotope record) and sea-level cycles are in phase with 20-thousand-year (kyr) periodic changes in insolation over Antarctica, paced by eccentricity-modulated orbital precession6 between 3.3 and 2.7 Ma. Thereafter, sea-level fluctuations are paced by the 41-kyr period of cycles in Earth's axial tilt as ice sheets stabilize on Antarctica and intensify in the Northern Hemisphere3,6. Strictly, we provide the amplitude of RSL change, rather than absolute GMSL change. However, simulations of RSL change based on glacio-isostatic adjustment show that our record approximates eustatic sea level, defined here as GMSL unregistered to the centre of the Earth. Nonetheless, under conservative assumptions, our estimates limit maximum Pliocene sea-level rise to less than 25 metres and provide new constraints on polar ice-volume variability under the climate conditions predicted for this century.


Asunto(s)
Agua de Mar/análisis , Dióxido de Carbono/análisis , Foraminíferos/química , Sedimentos Geológicos/química , Historia Antigua , Cubierta de Hielo/química , Nueva Zelanda , Océanos y Mares , Isótopos de Oxígeno/análisis , Presión Parcial
19.
Nature ; 571(7765): 393-397, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31316195

RESUMEN

Existing estimates of sea surface temperatures (SSTs) indicate that, during the early twentieth century, the North Atlantic and northeast Pacific oceans warmed by twice the global average, whereas the northwest Pacific Ocean cooled by an amount equal to the global average1-4. Such a heterogeneous pattern suggests first-order contributions from regional variations in forcing or in ocean-atmosphere heat fluxes5,6. These older SST estimates are, however, derived from measurements of water temperatures in ship-board buckets, and must be corrected for substantial biases7-9. Here we show that correcting for offsets among groups of bucket measurements leads to SST variations that correlate better with nearby land temperatures and are more homogeneous in their pattern of warming. Offsets are identified by systematically comparing nearby SST observations among different groups10. Correcting for offsets in German measurements decreases warming rates in the North Atlantic, whereas correcting for Japanese measurement offsets leads to increased and more uniform warming in the North Pacific. Japanese measurement offsets in the 1930s primarily result from records having been truncated to whole degrees Celsius when the records were digitized in the 1960s. These findings underscore the fact that historical SST records reflect both physical and social dimensions in data collection, and suggest that further opportunities exist for improving the accuracy of historical SST records9,11.


Asunto(s)
Conjuntos de Datos como Asunto/normas , Calentamiento Global/estadística & datos numéricos , Agua de Mar/análisis , Temperatura , Aire/análisis , Océano Atlántico , Conjuntos de Datos como Asunto/historia , Mapeo Geográfico , Alemania , Calentamiento Global/historia , Historia del Siglo XX , Japón , Océano Pacífico , Reproducibilidad de los Resultados
20.
Nature ; 567(7746): 91-95, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30842636

RESUMEN

Coastal wetlands (mangrove, tidal marsh and seagrass) sustain the highest rates of carbon sequestration per unit area of all natural systems1,2, primarily because of their comparatively high productivity and preservation of organic carbon within sedimentary substrates3. Climate change and associated relative sea-level rise (RSLR) have been proposed to increase the rate of organic-carbon burial in coastal wetlands in the first half of the twenty-first century4, but these carbon-climate feedback effects have been modelled to diminish over time as wetlands are increasingly submerged and carbon stores become compromised by erosion4,5. Here we show that tidal marshes on coastlines that experienced rapid RSLR over the past few millennia (in the late Holocene, from about 4,200 years ago to the present) have on average 1.7 to 3.7 times higher soil carbon concentrations within 20 centimetres of the surface than those subject to a long period of sea-level stability. This disparity increases with depth, with soil carbon concentrations reduced by a factor of 4.9 to 9.1 at depths of 50 to 100 centimetres. We analyse the response of a wetland exposed to recent rapid RSLR following subsidence associated with pillar collapse in an underlying mine and demonstrate that the gain in carbon accumulation and elevation is proportional to the accommodation space (that is, the space available for mineral and organic material accumulation) created by RSLR. Our results suggest that coastal wetlands characteristic of tectonically stable coastlines have lower carbon storage owing to a lack of accommodation space and that carbon sequestration increases according to the vertical and lateral accommodation space6 created by RSLR. Such wetlands will provide long-term mitigating feedback effects that are relevant to global climate-carbon modelling.


Asunto(s)
Secuestro de Carbono , Carbono/metabolismo , Agua de Mar/análisis , Humedales , Carbono/análisis , Sedimentos Geológicos/química , Historia Antigua , Océanos y Mares
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA