Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 428
Filtrar
Más filtros

Intervalo de año de publicación
1.
Ecotoxicol Environ Saf ; 275: 116285, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38564866

RESUMEN

Mounting evidence has shown that the gut microbiota plays a key role in human health. The homeostasis of the gut microbiota could be affected by many factors, including environmental chemicals. Aldicarb is a carbamate insecticide used to control a variety of insects and nematode pests in agriculture. Aldicarb is highly toxic and its wide existence has become a global public health concern. In our previous study, we have demonstrated that aldicarb disturbed the gut microbial community structure and composition. However, the impacts of aldicarb on gut microbiota-derived metabolites, bile acids, remain elusive. In present study, we performed targeted metabolomics analysis to explore the effects of aldicarb exposure on bile acids, as well as steroid hormones and oxylipins in the serum, feces and liver of C57BL/6 J mice. Our results showed that aldicarb exposure disturbed the level of various bile acids, steroid hormones and oxylipins in the serum and feces of C57BL/6 J mice. In the liver, the level of cortisol was decreased, meanwhile 15,16-dihydroxyoctadeca-9,12-dienoic acid was increased in aldicarb-treated mice. Metagenomic sequencing analysis showed that the relative abundance of a bile salt hydrolase, choloylglycine hydrolase (EC:3.5.1.24) and a sulfatase enzyme involved in steroid hormone metabolism, arylsulfatase, was significantly increased by aldicarb exposure. Furthermore, correlations were found between gut microbiota and various serum metabolites. The results from this study are helpful to improve the understanding of the impact of carbamate insecticides on host and microbial metabolism.


Asunto(s)
Aldicarb , Insecticidas , Humanos , Ratones , Animales , Ácidos y Sales Biliares , Oxilipinas , Ratones Endogámicos C57BL , Hormonas , Homeostasis
2.
J Biol Chem ; 298(1): 101466, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34864060

RESUMEN

Complex biological functions within organisms are frequently orchestrated by systemic communication between tissues. In the model organism Caenorhabditis elegans, the pharyngeal and body wall neuromuscular junctions are two discrete structures that control feeding and locomotion, respectively. Separate, the well-defined neuromuscular circuits control these distinct tissues. Nonetheless, the emergent behaviors, feeding and locomotion, are coordinated to guarantee the efficiency of food intake. Here, we show that pharmacological hyperactivation of cholinergic transmission at the body wall muscle reduces the rate of pumping behavior. This was evidenced by a systematic screening of the effect of the cholinesterase inhibitor aldicarb on the rate of pharyngeal pumping on food in mutant worms. The screening revealed that the key determinants of the inhibitory effect of aldicarb on pharyngeal pumping are located at the body wall neuromuscular junction. In fact, the selective stimulation of the body wall muscle receptors with the agonist levamisole inhibited pumping in a lev-1-dependent fashion. Interestingly, this response was independent of unc-38, an alpha subunit of the nicotinic receptor classically expressed with lev-1 at the body wall muscle. This implies an uncharacterized lev-1-containing receptor underpins this effect. Overall, our results reveal that body wall cholinergic transmission not only controls locomotion but simultaneously inhibits feeding behavior.


Asunto(s)
Proteínas de Caenorhabditis elegans , Inhibidores de la Colinesterasa , Conducta Alimentaria , Unión Neuromuscular , Aldicarb/farmacología , Animales , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Inhibidores de la Colinesterasa/farmacología , Conducta Alimentaria/efectos de los fármacos , Conducta Alimentaria/fisiología , Levamisol/farmacología , Unión Neuromuscular/efectos de los fármacos , Unión Neuromuscular/metabolismo , Transducción de Señal
3.
PLoS Genet ; 16(6): e1008829, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32502151

RESUMEN

Ion channels are present at specific levels within subcellular compartments of excitable cells. The regulation of ion channel trafficking and targeting is an effective way to control cell excitability. The BK channel is a calcium-activated potassium channel that serves as a negative feedback mechanism at presynaptic axon terminals and sites of muscle excitation. The C. elegans BK channel ortholog, SLO-1, requires an endoplasmic reticulum (ER) membrane protein for efficient anterograde transport to these locations. Here, we found that, in the absence of this ER membrane protein, SLO-1 channels that are seemingly normally folded and expressed at physiological levels undergo SEL-11/HRD1-mediated ER-associated degradation (ERAD). This SLO-1 degradation is also indirectly regulated by a SKN-1A/NRF1-mediated transcriptional mechanism that controls proteasome levels. Therefore, our data indicate that SLO-1 channel density is regulated by the competitive balance between the efficiency of ER trafficking machinery and the capacity of ERAD.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiología , Proteínas de Unión al ADN/metabolismo , Degradación Asociada con el Retículo Endoplásmico/genética , Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Terminales Presinápticos/metabolismo , Factores de Transcripción/metabolismo , Aldicarb/farmacología , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Acoplamiento Excitación-Contracción/efectos de los fármacos , Acoplamiento Excitación-Contracción/genética , Retroalimentación Fisiológica/efectos de los fármacos , Proteínas de la Membrana/metabolismo , Músculos/inervación , Terminales Presinápticos/efectos de los fármacos , Complejo de la Endopetidasa Proteasomal , Isoformas de Proteínas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
4.
Plant Dis ; 107(9): 2729-2735, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36774578

RESUMEN

Increased populations of Heterodera avenae in southeastern Idaho are associated with increased planting of susceptible cereal cultivars and lack of crop rotation. Identifying high-yield, resistant spring wheat cultivars with tolerance requires testing new genotypes and susceptibility assessments of marketed cultivars. We conducted two experiments to determine whether cultivars with putative resistance could maintain acceptable yield in the presence of H. avenae. We also evaluated the tolerance response in relation to previously tested cultivars. Seven spring wheat cultivars were planted in two irrigated commercial fields that were naturally infested with high populations of H. avenae. Measures of resistance, tolerance, and grain yield were assessed in aldicarb-treated versus nontreated plots. In aldicarb-treated plots in both years, grain yield of the susceptible cultivars Snow Crest, WestBred 936, WB9411, Patwin-515, and WB9668 was significantly increased. The expected yield increase with aldicarb was limited for the moderately susceptible Expresso due to water stress. 'WB-Rockland', carrying the Cre5 resistance gene, maintained its standard yield, while none of the other cultivars in the experiment showed resistance or tolerance. Our results indicated that aldicarb improves wheat grain yield in irrigated crop production systems, and although removed from the market, it is effective and has utility for research. The results also support the hypothesis that high yield susceptible cultivars can mask the effect of H. avenae on grain yield when managed appropriately.


Asunto(s)
Quistes , Tylenchoidea , Animales , Triticum/genética , Grano Comestible , Aldicarb , Idaho , Tylenchoidea/genética
5.
Chem Res Toxicol ; 35(6): 1110-1116, 2022 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-35559618

RESUMEN

Oxime-type carbamate pesticides having an oxime moiety such as aldicarb, butocarboxim, methomyl, oxamyl, and thiofanox are widely used and have been detected in many fatal cases of accidental exposure or suicide. In forensic toxicology, the accurate determination of blood pesticide concentration is obligatory to prove death by oxime-type carbamate pesticide poisoning. However, the fatal pesticide concentration in blood at autopsy differs from that at the time of death. In this study, we found that oxime-type carbamate pesticides were decomposed by Hb in a temperature-dependent fashion. The mechanism underlying methomyl, aldicarb, oxamyl, and thiofanox decomposition involves the formation of adducts with the amino acids in Hb. With regard to butocarboxim, its decomposition involves the oxidation of the free form and the formation of adducts with the amino acids in Hb. The mass spectra obtained by liquid chromatography quadrupole time-of-flight mass spectrometry revealed that carbamylated amino acid adducts such as Wcar-adduct and Vcar-adduct were formed in Hb solution incubated with methomyl, aldicarb, oxamyl, and thiofanox, whereas alkylated amino acid adducts such as Walkyl-adduct were formed in Hb solution incubated with butocarboxim. These results indicate that aldicarb, butocarboxim, methomyl, oxamyl, and thiofanox are post-mortem changed by Hb.


Asunto(s)
Metomil , Plaguicidas , Aldicarb , Aminoácidos , Autopsia , Carbamatos , Inhibidores de la Colinesterasa , Hemoglobinas/análisis , Humanos , Metomil/química , Oximas , Plaguicidas/análisis
6.
Pestic Biochem Physiol ; 188: 105244, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36464355

RESUMEN

Grammicin (Gra) is derived from the endophytic fungus Xylaria grammica EL000614 and shows nematicidal activity against the devastating root-knot nematode Meloidogyne incognita in-vitro, in planta, and in-field experiments. However, the mechanism of the nematicidal action of Gra remains unclear. In this study, Gra exposure to the model genetic organism Caenorhabditis elegans affected its L1, L2/3, L4, and young adult stages. In addition, Gra treatment increased the intracellular reactive oxygen species (ROS) levels of C. elegans and M. incognita. Molecular docking interaction analysis indicated that Gra could bind and interact with GCS-1, GST-4, and DAF-16a in order of low binding energy, followed by SOD-3, SKN-1, and DAF-16b. This implies that the anthelmintic action of Gra is related to the oxidative stress response. To validate this mechanism, we examined the expression of the genes involved in the oxidative stress responses following treatment with Gra using transgenic C. elegans strains such as the TJ356 strain zIs356 [daf-16p::daf-16a/b::GFP + rol-6 (su1006)], LD1 ldIs7 [skn-1p::skn-1b/c::GFP + rol-6 (su1006)], LD1171 ldIs3 [gcs-1p::GFP + rol-6 (su1006)], CL2166 dvIs19 [(pAF15) gst-4p::GFP::NLS], and CF1553 strain muIs84 [(pAD76) sod-3p::GFP + rol-6 (su1006)]. Gra treatment caused nuclear translocation of DAF-16/FoxO and enhanced gst-4::GFP expression, but it had no change in sod-3::GFP expression. These results indicate that Gra induces oxidative stress response via phase II detoxification without reduced cellular redox machinery. Gra treatment also inhibited the nuclear localization of SKN-1::GFP in the intestine, which may lead to a condition in which oxidative stress tolerance is insufficient to protect C. elegans by the inactivation of SKN-1, thus inducing nematode lethality. Furthermore, Gra caused the mortality of two mutant strains of C. elegans, CB113 and DA1316, which are resistant to aldicarb and ivermectin, respectively. This indicates that the mode of action of Gra is different from the traditional nematicides currently in use, suggesting that it could help develop novel approaches to control plant-parasitic nematodes.


Asunto(s)
Caenorhabditis elegans , Tylenchida , Animales , Simulación del Acoplamiento Molecular , Antinematodos/farmacología , Aldicarb , Superóxido Dismutasa/genética
7.
Plant Dis ; 106(8): 2228-2238, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34978874

RESUMEN

Meta-analysis was used to compare yield protection and nematode suppression provided by two seed-applied and two soil-applied nematicides against Meloidogyne incognita and Rotylenchulus reniformis on cotton across 3 years and several trial locations in the U.S. Cotton Belt. Nematicides consisted of thiodicarb- and fluopyram-treated seed, aldicarb and fluopyram applied in furrow, and combinations of the seed treatments and soil-applied fluopyram. The nematicides had no effect on nematode reproduction or root infection but had a significant impact on seed cotton yield response ([Formula: see text]), with an average increase of 176 and 197 kg/ha relative to the nontreated control in M. incognita and R. reniformis infested fields, respectively. However, because of significant variation in yield protection and nematode suppression by nematicides, five or six moderator variables (cultivar resistance [M. incognita only], nematode infestation level, nematicide treatment, application method, trial location, and growing season) were used depending on nematode species. In M. incognita-infested fields, greater yield protection was observed with nematicides applied in furrow and with seed-applied + in-furrow than with solo seed-applied nematicide applications. Most notable of these in-furrow nematicides were aldicarb and fluopyram (>131 g/ha) with or without a seed-applied nematicide compared with thiodicarb. In R. reniformis-infested fields, moderator variables provided no further explanation of the variation in yield response produced by nematicides. Furthermore, moderator variables provided little explanation of the variation in nematode suppression by nematicides in M. incognita- and R. reniformis-infested fields. The limited explanation by the moderator variables on the field efficacy of nematicides in M. incognita- and R. reniformis-infested fields demonstrates the difficulty of managing these pathogens with nonfumigant nematicides across the U.S. Cotton Belt.


Asunto(s)
Antinematodos , Tylenchoidea , Aldicarb/toxicidad , Animales , Antinematodos/toxicidad , Benzamidas/toxicidad , Gossypium , Piridinas/toxicidad , Semillas , Suelo , Tylenchoidea/efectos de los fármacos , Tylenchoidea/fisiología , Estados Unidos
8.
J Biol Chem ; 294(17): 6843-6856, 2019 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-30858176

RESUMEN

Inhibitory GABAergic transmission is required for proper circuit function in the nervous system. However, our understanding of molecular mechanisms that preferentially influence GABAergic transmission, particularly presynaptic mechanisms, remains limited. We previously reported that the ubiquitin ligase EEL-1 preferentially regulates GABAergic presynaptic transmission. To further explore how EEL-1 functions, here we performed affinity purification proteomics using Caenorhabditis elegans and identified the O-GlcNAc transferase OGT-1 as an EEL-1 binding protein. This observation was intriguing, as we know little about how OGT-1 affects neuron function. Using C. elegans biochemistry, we confirmed that the OGT-1/EEL-1 complex forms in neurons in vivo and showed that the human orthologs, OGT and HUWE1, also bind in cell culture. We observed that, like EEL-1, OGT-1 is expressed in GABAergic motor neurons, localizes to GABAergic presynaptic terminals, and functions cell-autonomously to regulate GABA neuron function. Results with catalytically inactive point mutants indicated that OGT-1 glycosyltransferase activity is dispensable for GABA neuron function. Consistent with OGT-1 and EEL-1 forming a complex, genetic results using automated, behavioral pharmacology assays showed that ogt-1 and eel-1 act in parallel to regulate GABA neuron function. These findings demonstrate that OGT-1 and EEL-1 form a conserved signaling complex and function together to affect GABA neuron function.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiología , Neuronas GABAérgicas/fisiología , N-Acetilglucosaminiltransferasas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Aldicarb/farmacología , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/aislamiento & purificación , Cromatografía de Afinidad , Neuronas GABAérgicas/efectos de los fármacos , Terminales Presinápticos/metabolismo , Unión Proteica , Proteómica , Transducción de Señal , Transmisión Sináptica/efectos de los fármacos , Ubiquitina-Proteína Ligasas/aislamiento & purificación
9.
Pestic Biochem Physiol ; 165: 104541, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32359561

RESUMEN

BACKGROUND: Fluensulfone is a nematicide with a novel mode of action against plant parasitic nematodes. Here, we utilize in vitro hatching assays to investigate fluensufone's ability to inhibit Globodera pallida hatching, relative to the efficacy of other distinct classes of nematicides. RESULTS: Fluensulfone, abamectin, aldicarb and fluopyram inhibit G. pallida hatching from cysts more potently than from isolated eggs. At 1 µM for cysts, the order of potency is fluensulfone> fluopyram> abamectin> aldicarb. At low concentrations of fluensulfone, inhibition of hatching is reversible, however, more than 50% of the juveniles that hatch from cysts pre-treated with fluensulfone have reduced motility. This is observed to a lesser extent with abamectin, fluopyram and aldicarb. When cysts are exposed to higher concentrations of fluensulfone (≥500 µM), abamectin (≥100 µM) and fluopyram (≥50 µM) inhibition of hatching is irreversible. This results from the loss of encysted juvenile structure giving rise to a granulated appearance consistent with necrosis, suggesting a nematicidal effect. Intriguingly, hatching initiated by root diffusate is arrested when egg populations are subsequently exposed to fluensulfone. CONCLUSION: Fluensulfone, abamectin, fluopyram and aldicarb inhibit G. pallida hatching. Fluensulfone is a potent inhibitor of hatching and impacts on the viability of the J2 s emerging from the cysts. This activity, and the previously described impaired motility and metabolism of hatched juveniles, show that fluensulfone's distinct mode of action among existing nematicides intersects at two pivotal steps of the parasitic life cycle.


Asunto(s)
Aldicarb , Tylenchoidea , Animales , Benzamidas , Ivermectina/análogos & derivados , Piridinas , Sulfonas , Tiazoles
10.
J Neurosci ; 38(32): 7072-7087, 2018 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-29950505

RESUMEN

Communications across chemical synapses are primarily mediated by neurotransmitters and their postsynaptic receptors. There are diverse molecular systems to localize and regulate the receptors at the synapse. Here, we identify HPO-30, a member of the claudin superfamily of membrane proteins, as a positive regulator for synaptic localization of levamisole-dependent AChRs (LAChRs) at the Caenorhabditis elegans neuromuscular junction (NMJ). The HPO-30 protein localizes at the NMJ and shows genetic and physical association with the LAChR subunits LEV-8, UNC-29, and UNC-38. Using genetic and electrophysiological assays in the hermaphrodite C. elegans, we demonstrate that HPO-30 functions through Neuroligin at the NMJ to maintain postsynaptic LAChR levels at the synapse. Together, this work suggests a novel function for a tight junction protein in maintaining normal receptor levels at the NMJ.SIGNIFICANCE STATEMENT Claudins are a large superfamily of membrane proteins. Their role in maintaining the functional integrity of tight junctions has been widely explored. Our experiments suggest a critical role for the claudin-like protein, HPO-30, in maintaining synaptic levamisole-dependent AChR (LAChR) levels. LAChRs contribute to <20% of the acetylcholine-mediated conductance in adult Caenorhabditis elegans; however, they play a significant functional role in worm locomotion. This study provides a new perspective in the study of LAChR physiology.


Asunto(s)
Proteínas de Caenorhabditis elegans/fisiología , Caenorhabditis elegans/metabolismo , Proteínas Portadoras/biosíntesis , Proteínas de la Membrana/fisiología , Unión Neuromuscular/metabolismo , Receptores Nicotínicos/biosíntesis , Uniones Estrechas/fisiología , Aldicarb/toxicidad , Animales , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/biosíntesis , Proteínas de Caenorhabditis elegans/genética , Proteínas Portadoras/genética , Moléculas de Adhesión Celular Neuronal/deficiencia , Moléculas de Adhesión Celular Neuronal/fisiología , Resistencia a Medicamentos , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Genes Reporteros , Levamisol/farmacología , Proteínas de la Membrana/biosíntesis , Proteínas de la Membrana/genética , Actividad Motora/efectos de los fármacos , Muscimol/farmacología , Músculos/efectos de los fármacos , Músculos/metabolismo , Dominios PDZ , Mapeo de Interacción de Proteínas , Receptores Nicotínicos/genética
11.
Chem Res Toxicol ; 32(1): 67-79, 2019 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-30406643

RESUMEN

The gut microbiome is highly involved in numerous aspects of host physiology, from energy harvest to stress response, and can confer many benefits to the host. The gut microbiome development could be affected by genetic and environmental factors, including pesticides. The carbamate insecticide aldicarb has been extensively used in agriculture, which raises serious public health concerns. However, the impact of aldicarb on the gut microbiome, host metabolome, and lipidome has not been well studied yet. Herein, we use multiomics approaches, including16S rRNA sequencing, shotgun metagenomics sequencing, metabolomics, and lipidomics, to elucidate aldicarb-induced toxicity in the gut microbiome and the host metabolic homeostasis. We demonstrated that aldicarb perturbed the gut microbiome development trajectory, enhanced gut bacterial pathogenicity, altered complex lipid profile, and induced oxidative stress, protein degradation, and DNA damage. The brain metabolism was also disturbed by the aldicarb exposure. These findings may provide a novel understanding of the toxicity of carbamate insecticides.


Asunto(s)
Aldicarb/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Insecticidas/farmacología , Lípidos , Metaboloma/efectos de los fármacos , Administración Oral , Aldicarb/administración & dosificación , Animales , Daño del ADN , Insecticidas/administración & dosificación , Lipidómica , Masculino , Ratones , Ratones Endogámicos C57BL , Estructura Molecular , Estrés Oxidativo/efectos de los fármacos
12.
Ecotoxicol Environ Saf ; 135: 252-258, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27750092

RESUMEN

The use of fungal bioaugmentation represents a promising way to improve the performance of biomixtures for the elimination of pesticides. The ligninolyitc fungus Trametes versicolor was employed for the removal of three carbamates (aldicarb, ALD; methomyl, MTM; and methiocarb, MTC) in defined liquid medium; in this matrix ALD and MTM showed similar half-lives (14d), nonetheless MTC exhibited a faster removal, with a half-life of 6.5d. Then the fungus was employed in the bioaugmentation of an optimized biomixture to remove the aforementioned carbamates plus carbofuran (CFN). Bioaugmented and non-bioaugmented systems removed over 99% ALD and MTM after 8d of treatment, nonetheless a slight initial delay in the removal was observed in the bioaugmented biomixtures (removal after 3d: ALD 87%/97%; MTM 86%/99%, in bioaugmented/non-bioaugmented systems). The elimination of the other carbamates was slower, but independent of the presence of the fungus: >98% for MTM after 35d and >99.5% for CFN after 22d. Though the bioaugmentation did not improve the removal capacity of the biomixture, it favored a lower production of transformation products at the first stages of the treatment, and in both cases, a marked decrease in the toxicity of the matrix was swiftly achieved along the process (from 435 to 448 TU to values <1TU in 16d).


Asunto(s)
Carbamatos/metabolismo , Insecticidas/metabolismo , Trametes/metabolismo , Aldicarb/metabolismo , Biodegradación Ambiental , Carbofurano/análogos & derivados , Carbofurano/metabolismo , Semivida , Inactivación Metabólica , Lacasa/análisis , Metiocarb/metabolismo , Metomil/metabolismo , Suelo/química , Factores de Tiempo
13.
J Neurosci Res ; 94(9): 850-6, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27319755

RESUMEN

The precise role of huntingtin-associated protein 1 (HAP1) is not known, but studies have shown that it is important for early development and survival. A Caenorhabditis elegans ortholog of HAP1, T27A3.1 (also called trak-1), has been found and is expressed in a subset of neurons. Potential behavioral functions of three knockout lines of T27A3.1 were examined. From its suspected role in mice we hypothesize that T27A3.1 might be involved in egg hatching and early growth, mechanosensation, chemosensation, sensitivity to osmolarity, and synaptic transmission. Our studies show that the knockout worms are significantly different from the wild-type (WT) worms only in the synaptic transmission test, which was measured by adding aldicarb, an acetylcholinesterase inhibitor. The change in function was determined by measuring the number of worms paralyzed. However, when the T27A3.1 worms were tested for egg hatching and early growth, mechanosensation, chemosensation, and sensitivity to osmolarity, there were no significant differences between the knockout and WT worms. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Conducta Animal , Proteínas de Caenorhabditis elegans/genética , Proteínas del Tejido Nervioso/genética , Aldicarb/farmacología , Animales , Caenorhabditis elegans , Quimiotaxis/genética , Inhibidores de la Colinesterasa/farmacología , Técnicas de Inactivación de Genes , Actividad Motora , Concentración Osmolar , Reproducción/efectos de los fármacos , Sensación , Sinapsis , Transmisión Sináptica
14.
PLoS Biol ; 11(4): e1001529, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23565061

RESUMEN

Monoamines provide chemical codes of behavioral states. However, the neural mechanisms of monoaminergic orchestration of behavior are poorly understood. Touch elicits an escape response in Caenorhabditis elegans where the animal moves backward and turns to change its direction of locomotion. We show that the tyramine receptor SER-2 acts through a Gαo pathway to inhibit neurotransmitter release from GABAergic motor neurons that synapse onto ventral body wall muscles. Extrasynaptic activation of SER-2 facilitates ventral body wall muscle contraction, contributing to the tight ventral turn that allows the animal to navigate away from a threatening stimulus. Tyramine temporally coordinates the different phases of the escape response through the synaptic activation of the fast-acting ionotropic receptor, LGC-55, and extrasynaptic activation of the slow-acting metabotropic receptor, SER-2. Our studies show, at the level of single cells, how a sensory input recruits the action of a monoamine to change neural circuit properties and orchestrate a compound motor sequence.


Asunto(s)
Caenorhabditis elegans/fisiología , Reacción de Fuga/fisiología , Neurotransmisores/fisiología , Tiramina/fisiología , Aldicarb/farmacología , Animales , Caenorhabditis elegans/citología , Proteínas de Caenorhabditis elegans/metabolismo , Inhibidores de la Colinesterasa/farmacología , Neuronas GABAérgicas/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/genética , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Neuronas Motoras/metabolismo , Contracción Muscular , Unión Neuromuscular/efectos de los fármacos , Unión Neuromuscular/fisiología , Neurotransmisores/farmacología , Receptores de Amina Biogénica/genética , Receptores de Amina Biogénica/metabolismo , Eliminación de Secuencia , Transmisión Sináptica , Tiramina/farmacología
15.
Int J Legal Med ; 130(4): 981-983, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26914800

RESUMEN

Chumbinho is the popular name given to carbamate aldicarb (Temik), an insecticide commonly used in agriculture and highly toxic (LD50 = 0.9 mg/kg oral in rats) that has been sold clandestinely in several regions of Brazil. Chumbinho is sold illegally as raticide and is available in a formulation of small black granules which are easily mixed with food for criminal purposes, its use often being attributed to accidents and suicides, hence the importance of its inclusion in the toxicology studies of suspicious deaths. With the corpse putrefaction, many pathological and toxicological anatomical parameters are damaged or lost. This study emphasizes the importance of the gastric content observation, which in this case has, despite the advanced putrefaction, recognized the presence of chumbinho and guide its toxicological confirmation.


Asunto(s)
Aldicarb/envenenamiento , Insecticidas/envenenamiento , Cambios Post Mortem , Aldicarb/análisis , Aldicarb/química , Cromatografía de Gases y Espectrometría de Masas , Contenido Digestivo/química , Humanos , Insecticidas/análisis , Insecticidas/química , Masculino , Persona de Mediana Edad , Estructura Molecular
16.
Int J Toxicol ; 35(3): 344-57, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27102179

RESUMEN

PURPOSE: Aldicarb and methomyl are carbamate pesticides commonly implicated in human poisonings. The primary toxic mechanism of action for carbamate poisoning is cholinesterase (ChE) inhibition. As such, it is logical to assume that the currently accepted therapies for organophosphate poisoning (muscarinic antagonist atropine and the oxime acetylcholinesterase reactivator pralidoxime chloride [2-PAM Cl]) could afford therapeutic protection. However, oximes have been shown to be contraindicated for poisoning by some carbamates. METHODS: A protective ratio study was conducted in guinea pigs to evaluate the efficacy of atropine and 2-PAM Cl. The ChE activity was determined in both the blood and the cerebral cortex. RESULTS: Coadministration of atropine free base (0.4 mg/kg) and 2-PAM Cl (25.7 mg/kg) demonstrated protective ratios of 2 and 3 against aldicarb and methomyl, respectively, relative to saline. The data reported here show that this protection was primarily mediated by the action of atropine. The reactivator 2-PAM Cl had neither positive nor negative effects on survival. Both blood acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) activities were significantly reduced at 15 minutes postchallenge but gradually returned to normal within 24 hours. Analysis of cerebral cortex showed that BChE, but not AChE, activity was reduced in animals that succumbed prior to 24 hours after challenge. CONCLUSION: The results suggest that coadministration of atropine and 2-PAM Cl at the currently recommended human equivalent doses for use in the prehospital setting to treat organophosphorus nerve agent and pesticide poisoning would likely also be effective against aldicarb or methomyl poisoning.


Asunto(s)
Antídotos/administración & dosificación , Atropina/administración & dosificación , Reactivadores de la Colinesterasa/administración & dosificación , Antagonistas Muscarínicos/administración & dosificación , Intoxicación por Organofosfatos/tratamiento farmacológico , Compuestos de Pralidoxima/administración & dosificación , Acetilcolinesterasa/sangre , Acetilcolinesterasa/metabolismo , Aldicarb/toxicidad , Animales , Antídotos/uso terapéutico , Atropina/uso terapéutico , Barrera Hematoencefálica/metabolismo , Butirilcolinesterasa/sangre , Butirilcolinesterasa/metabolismo , Inhibidores de la Colinesterasa/toxicidad , Reactivadores de la Colinesterasa/uso terapéutico , Servicios Médicos de Urgencia , Cobayas , Humanos , Insecticidas/toxicidad , Masculino , Metomil/toxicidad , Antagonistas Muscarínicos/uso terapéutico , Compuestos de Pralidoxima/uso terapéutico
17.
J Therm Biol ; 62(Pt A): 37-49, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27839548

RESUMEN

Cholinergic system plays important role in all functions of organisms of free-living soil nematodes C. elegans and C. briggsae. Using pharmacological analysis we showed the existence of two opposite responses of nematodes cholinergic system to moderate and extreme heat stress. Short-term (15min) noxious heat (31-32°C) caused activation of cholinergic synaptic transmission in C. elegans and C. briggsae organisms by sensitization of nicotinic ACh receptors. In contrast, hyperthermia blocked cholinergic synaptic transmission by inhibition of ACh secretion by neurons. The resistance of behavior to extreme high temperature (36-37°C) was significantly higher in C. briggsae than in C. elegans, and thermostability of cholinergic transmission correlated with resistance of behavior to hyperthermia. Activation of cholinergic transmission by moderate heat stress can be the reason of movement speed increase in such adaptive behavior as noxious heat escape. Inhibition of ACh release is one of reasons for behavior failure caused by extreme high temperature since partial inhibition of ACh-esterase by aldicarb protected C. elegans and C. briggsae behavior against hyperthermia. Antagonist of mAChRs atropine almost completely prevented the rise in behavior thermotolerance caused by aldicarb. Pilocarpine, agonist of mAChRs, protected nematodes behavior against hyperthermia similarly with aldicarb. Therefore it is evident that it is the deficiency of mAChRs activity that is the reason for nematodes' behavior failure by hyperthermia.


Asunto(s)
Conducta Animal/efectos de los fármacos , Caenorhabditis/fisiología , Fiebre/fisiopatología , Respuesta al Choque Térmico , Receptores Nicotínicos/fisiología , Acetilcolina/metabolismo , Aldicarb/administración & dosificación , Animales , Caenorhabditis elegans/fisiología , Inhibidores de la Colinesterasa/administración & dosificación , Levamisol/administración & dosificación , Nicotina/administración & dosificación , Agonistas Nicotínicos/administración & dosificación , Natación , Transmisión Sináptica/efectos de los fármacos
18.
J Neurosci ; 34(29): 9562-73, 2014 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-25031399

RESUMEN

Alcohol directly modulates the BK potassium channel to alter behaviors in species ranging from invertebrates to humans. In the nematode Caenorhabditis elegans, mutations that eliminate the BK channel, SLO-1, convey dramatic resistance to intoxication by ethanol. We hypothesized that certain conserved amino acids are critical for ethanol modulation, but not for basal channel function. To identify such residues, we screened C. elegans strains with different missense mutations in the SLO-1 channel. A strain with the SLO-1 missense mutation T381I in the RCK1 domain was highly resistant to intoxication. This mutation did not interfere with other BK channel-dependent behaviors, suggesting that the mutant channel retained normal in vivo function. Knock-in of wild-type versions of the worm or human BK channel rescued intoxication and other BK channel-dependent behaviors in a slo-1-null mutant background. In contrast, knock-in of the worm T381I or equivalent human T352I mutant BK channel selectively rescued BK channel-dependent behaviors while conveying resistance to intoxication. Single-channel patch-clamp recordings confirmed that the human BK channel engineered with the T352I missense mutation was insensitive to activation by ethanol, but otherwise had normal conductance, potassium selectivity, and only subtle differences in voltage dependence. Together, our behavioral and electrophysiological results demonstrate that the T352I mutation selectively disrupts ethanol modulation of the BK channel. The T352I mutation may alter a binding site for ethanol and/or interfere with ethanol-induced conformational changes that are critical for behavioral responses to ethanol.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Depresores del Sistema Nervioso Central/farmacología , Etanol/farmacología , Canales de Potasio de Gran Conductancia Activados por el Calcio/genética , Locomoción/efectos de los fármacos , Mutación Missense/genética , Aldicarb/farmacología , Animales , Animales Modificados Genéticamente , Células del Asta Anterior/fisiología , Caenorhabditis elegans , Moléculas de Adhesión Celular Neuronal/genética , Inhibidores de la Colinesterasa/farmacología , Células HEK293 , Humanos , Inmunoglobulinas/genética , Locomoción/genética , Proteínas Luminiscentes/genética , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/genética , Mutagénesis Sitio-Dirigida , Estructura Terciaria de Proteína/genética
19.
J Appl Toxicol ; 35(7): 831-41, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25424538

RESUMEN

Previously, we identified 25 classifier genes that were able to assess immunotoxicity using human Jurkat T cells. The present study aimed to validate these classifiers. For that purpose, Jurkat cells were exposed for 6 h to subcytotoxic doses of nine immunotoxicants, five non-immunotoxicants and four compounds for which human immunotoxicity has not yet been fully established. RNA was isolated and subjected to Fluidigm quantitative real time (qRT)-PCR analysis. The sensitivity, specificity and accuracy of the screening assay as based on the nine immunotoxicants and five non-immunotoxicants used in this study were 100%, 80% and 93%, respectively, which is better than the performance in our previous study. Only one compound was classified as false positive (benzo-e-pyrene). Of the four potential (non-)immunotoxicants, chlorantraniliprole and Hidrasec were classified immunotoxic and Sunset yellow and imidacloprid as non-immunotoxic. ToxPi analysis of the PCR data provided insight in the molecular pathways that were affected by the compounds. The immunotoxicants 2,3-dichloro-propanol and cypermethrin, although structurally different, affected protein metabolism and cholesterol biosynthesis and transport. In addition, four compounds, i.e. chlorpyrifos, aldicarb, benzo-e-pyrene and anti-CD3, affected genes in cholesterol metabolism and transport, protein metabolism and transcription regulation. qRT-PCR on eight additional genes coding for similar processes as defined in ToxPi analyzes, supported these results. In conclusion, the 25 immunotoxic classifiers performed very well in a screening with new non-immunotoxic and immunotoxic compounds. Therefore, the Jurkat screening assay has great promise to be applied within a tiered approach for animal free testing of human immunotoxicity.


Asunto(s)
Marcadores Genéticos/efectos de los fármacos , Inmunotoxinas/farmacología , Células Jurkat/efectos de los fármacos , Aldicarb/farmacología , Aldicarb/toxicidad , Compuestos Azo/farmacología , Compuestos Azo/toxicidad , Benzopirenos/farmacología , Benzopirenos/toxicidad , Biomarcadores Farmacológicos , Clorhidrinas/farmacología , Clorhidrinas/toxicidad , Cloropirifos/farmacología , Cloropirifos/toxicidad , Humanos , Imidazoles/farmacología , Imidazoles/toxicidad , Técnicas In Vitro , Neonicotinoides , Nitrocompuestos/farmacología , Nitrocompuestos/toxicidad , Piretrinas/farmacología , Piretrinas/toxicidad , Reacción en Cadena en Tiempo Real de la Polimerasa , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Pruebas de Toxicidad , ortoaminobenzoatos/farmacología , ortoaminobenzoatos/toxicidad
20.
PLoS Genet ; 8(1): e1002464, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22275875

RESUMEN

Secretion of neurotransmitters and neuropeptides is mediated by exocytosis of distinct secretory organelles, synaptic vesicles (SVs) and dense core vesicles (DCVs) respectively. Relatively little is known about factors that differentially regulate SV and DCV secretion. Here we identify a novel protein RIC-7 that is required for neuropeptide secretion in Caenorhabditis elegans. The RIC-7 protein is expressed in all neurons and is localized to presynaptic terminals. Imaging, electrophysiology, and behavioral analysis of ric-7 mutants indicates that acetylcholine release occurs normally, while neuropeptide release is significantly decreased. These results suggest that RIC-7 promotes DCV-mediated secretion.


Asunto(s)
Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Neuronas/metabolismo , Neuropéptidos/genética , Neuropéptidos/metabolismo , Terminales Presinápticos/metabolismo , Acetilcolina/metabolismo , Aldicarb , Animales , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Diacilglicerol Quinasa/genética , Diacilglicerol Quinasa/metabolismo , Hipersensibilidad a las Drogas/genética , Exocitosis , Músculo Esquelético/efectos de los fármacos , Mutación , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/citología , Vesículas Secretoras/genética , Vesículas Secretoras/metabolismo , Vesículas Sinápticas/genética , Vesículas Sinápticas/metabolismo , Ácido gamma-Aminobutírico/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA