Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
J Biol Chem ; 293(36): 13897-13909, 2018 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-29997255

RESUMEN

PHR (PAM/Highwire/RPM-1) proteins are conserved RING E3 ubiquitin ligases that function in developmental processes, such as axon termination and synapse formation, as well as axon degeneration. At present, our understanding of how PHR proteins form ubiquitin ligase complexes remains incomplete. Although genetic studies indicate NMNAT2 is an important mediator of PHR protein function in axon degeneration, it remains unknown how PHR proteins inhibit NMNAT2. Here, we decipher the biochemical basis for how the human PHR protein PAM, also called MYCBP2, forms a noncanonical Skp/Cullin/F-box (SCF) complex that contains the F-box protein FBXO45 and SKP1 but lacks CUL1. We show FBXO45 does not simply function in substrate recognition but is important for assembly of the PAM/FBXO45/SKP1 complex. Interestingly, we demonstrate a novel role for SKP1 as an auxiliary component of the target recognition module that enhances binding of FBXO45 to NMNAT2. Finally, we provide biochemical evidence that PAM polyubiquitinates NMNAT2 and regulates NMNAT2 protein stability and degradation by the proteasome.


Asunto(s)
Amidina-Liasas/química , Oxigenasas de Función Mixta/química , Nicotinamida-Nucleótido Adenililtransferasa/química , Proteínas Ligasas SKP Cullina F-box/química , Ubiquitinación , Proteínas Adaptadoras Transductoras de Señales , Animales , Caenorhabditis elegans , Proteínas F-Box/metabolismo , Humanos , Complejos Multiproteicos/química , Complejos Multiproteicos/fisiología , Nicotinamida-Nucleótido Adenililtransferasa/metabolismo , Unión Proteica , Proteínas Quinasas Asociadas a Fase-S , Proteínas Ligasas SKP Cullina F-box/fisiología , Ubiquitina-Proteína Ligasas
2.
J Biol Chem ; 293(16): 6052-6063, 2018 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-29487130

RESUMEN

Neuropeptides constitute a vast and functionally diverse family of neurochemical signaling molecules and are widely involved in the regulation of various physiological processes. The nematode Caenorhabditis elegans is well-suited for the study of neuropeptide biochemistry and function, as neuropeptide biosynthesis enzymes are not essential for C. elegans viability. This permits the study of neuropeptide biosynthesis in mutants lacking certain neuropeptide-processing enzymes. Mass spectrometry has been used to study the effects of proprotein convertase and carboxypeptidase mutations on proteolytic processing of neuropeptide precursors and on the peptidome in C. elegans However, the enzymes required for the last step in the production of many bioactive peptides, the carboxyl-terminal amidation reaction, have not been characterized in this manner. Here, we describe three genes that encode homologs of neuropeptide amidation enzymes in C. elegans and used tandem LC-MS to compare neuropeptides in WT animals with those in newly generated mutants for these putative amidation enzymes. We report that mutants lacking both a functional peptidylglycine α-hydroxylating monooxygenase and a peptidylglycine α-amidating monooxygenase had a severely altered neuropeptide profile and also a decreased number of offspring. Interestingly, single mutants of the amidation enzymes still expressed some fully processed amidated neuropeptides, indicating the existence of a redundant amidation mechanism in C. elegans All MS data are available via ProteomeXchange with the identifier PXD008942. In summary, the key steps in neuropeptide processing in C. elegans seem to be executed by redundant enzymes, and loss of these enzymes severely affects brood size, supporting the need of amidated peptides for C. elegans reproduction.


Asunto(s)
Amidina-Liasas/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Oxigenasas de Función Mixta/metabolismo , Complejos Multienzimáticos/metabolismo , Neuropéptidos/metabolismo , Amidina-Liasas/química , Amidina-Liasas/genética , Secuencia de Aminoácidos , Animales , Vías Biosintéticas , Caenorhabditis elegans/química , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Cobre/metabolismo , Eliminación de Gen , Humanos , Oxigenasas de Función Mixta/química , Oxigenasas de Función Mixta/genética , Complejos Multienzimáticos/química , Complejos Multienzimáticos/genética , Mutación , Neuropéptidos/genética , Alineación de Secuencia , Espectrometría de Masas en Tándem
3.
Protein Expr Purif ; 119: 102-9, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26614892

RESUMEN

The availability of catalytically active peptidylglycine α-amidating monooxygenase (PAM) should provide the means to examine its potential use for the chemienzymatic synthesis of bioactive peptides for the purpose of pharmacological studies. Hypoglycemic activity is one of the most important features of insulin derivatives. Insulin glargine amide was found to show a time/effect profile which is distinctly more flat and thus more advantageous than insulin glargine itself. The aim of the study was to obtain recombinant PAM and use it for insulin analogue amidation. We stably expressed a recombinant PAM in CHO dhfr-cells in culture. Recombinant PAM was partially purified by fractional ammonium sulphate precipitation and ion-exchange chromatography. The enzyme was used to modify glycine-extended A22(G)-B31(K)-B32(R) human insulin analogue (GKR). Alpha-amidated insulin was analyzed by HPLC and mass spectrometry. Hypoglycemic activity of amidated and non-amidated insulin was compared. The pharmacodynamic effect was based on glucose concentration measurement in Wistar rats with hyperglycemia induced by streptozotocin. The overall glycemic profile up to 36 h was evaluated after subcutaneous single dosing at a range of 2.5-7.5 U/kg b.w. The experiment on rats confirmed with a statistical significance (P < 0.05) hypoglycemic activity of GKR-NH2 in comparison to a control group receiving 0.9% NaCl. Characteristics for GKR-NH2 profile was a rather fast beginning of action (0.5-2.0 h) and quite prolonged return to initial values. GKR-NH2 is a candidate for a hypoglycemic drug product in diabetes care. In addition, this work also provides a valuable alternative method for preparing any other recombinant bioactive peptides with C-terminal amidation.


Asunto(s)
Amidina-Liasas/biosíntesis , Hipoglucemiantes/química , Insulina/análogos & derivados , Insulina/química , Oxigenasas de Función Mixta/biosíntesis , Proteínas Recombinantes/biosíntesis , Amidina-Liasas/química , Amidina-Liasas/aislamiento & purificación , Animales , Glucemia , Células CHO , Cromatografía en Gel , Cromatografía Líquida de Alta Presión , Cricetinae , Cricetulus , Diabetes Mellitus Experimental/tratamiento farmacológico , Evaluación Preclínica de Medicamentos , Femenino , Hipoglucemiantes/farmacología , Insulina/farmacología , Masculino , Oxigenasas de Función Mixta/química , Oxigenasas de Función Mixta/aislamiento & purificación , Ratas Wistar , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación
4.
Mol Biol Evol ; 29(10): 3095-109, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22496439

RESUMEN

Secreted peptides, produced by enzymatic processing of larger precursor molecules, are found throughout the animal kingdom and play important regulatory roles as neurotransmitters and hormones. Many require a carboxy-terminal modification, involving the conversion of a glycine residue into an α-amide, for their biological activity. Two sequential enzymatic activities catalyze this conversion: a monooxygenase (peptidylglycine α-hydroxylating monooxygenase or PHM) and an amidating lyase (peptidyl-α-hydroxyglycine α-amidating lyase or PAL). In vertebrates, these activities reside in a single polypeptide known as peptidylglycine α-amidating monooxygenase (PAM), which has been extensively studied in the context of neuropeptide modification. Bifunctional PAMs have been reported from some invertebrates, but the phylogenetic distribution of PAMs and their evolutionary relationship to PALs and PHMs is unclear. Here, we report sequence and expression data for two PAMs from the coral Acropora millepora (Anthozoa, Cnidaria), as well as providing a comprehensive survey of the available sequence data from other organisms. These analyses indicate that bifunctional PAMs predate the origins of the nervous and endocrine systems, consistent with the idea that within the Metazoa their ancestral function may have been to amidate epitheliopeptides. More surprisingly, the phylogenomic survey also revealed the presence of PAMs in green algae (but not in higher plants or fungi), implying that the bifunctional enzyme either predates the plant/animal divergence and has subsequently been lost in a number of lineages or perhaps that convergent evolution or lateral gene transfer has occurred. This finding is consistent with recent discoveries that other molecules once thought of as "neural" predate nervous systems.


Asunto(s)
Antozoos/enzimología , Chlorophyta/enzimología , Oxigenasas de Función Mixta/genética , Complejos Multienzimáticos/genética , Neuronas/enzimología , Empalme Alternativo/genética , Amidina-Liasas/química , Amidina-Liasas/metabolismo , Secuencia de Aminoácidos , Animales , Antozoos/genética , Biocatálisis , Evolución Molecular , Regulación Enzimológica de la Expresión Génica , Oxigenasas de Función Mixta/química , Oxigenasas de Función Mixta/metabolismo , Datos de Secuencia Molecular , Complejos Multienzimáticos/química , Complejos Multienzimáticos/metabolismo , Filogenia , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido , Factores de Tiempo
5.
Nat Chem Biol ; 6(1): 19-21, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19935661

RESUMEN

The availability of whole genome sequences boosts the identification of biochemical pathways conserved across species using tools of comparative genomics. A cross-organism protein association analysis allowed us to identify two enzymes, ureidoglycine aminohydrolase and ureidoglycolate amidohydrolase, that catalyze the final reactions of purine degradation in the model plant Arabidopsis thaliana. A similar pathway was found in Escherichia coli, while an alternative metabolic route via ureidoglycine transaminase can be predicted for other organisms.


Asunto(s)
Amidina-Liasas/química , Aminohidrolasas/química , Proteínas de Arabidopsis/química , Arabidopsis/metabolismo , Escherichia coli/metabolismo , Liasas/química , Alantoína/química , Catálisis , Bases de Datos de Proteínas , Genómica , Espectroscopía de Resonancia Magnética , Modelos Biológicos , Nitrógeno/química , Proteómica/métodos , Programas Informáticos , Especificidad de la Especie
6.
Metallomics ; 8(8): 729-33, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27242196

RESUMEN

Cuproproteins such as PHM and DBM mature in late endosomal vesicles of the mammalian secretory pathway where changes in vesicle pH are employed for sorting and post-translational processing. Colocation with the P1B-type ATPase ATP7A suggests that the latter is the source of copper and supports a mechanism where selectivity in metal transfer is achieved by spatial colocation of partner proteins in their specific organelles or vesicles. In previous work we have suggested that a lumenal loop sequence located between trans-membrane helices TM1 and TM2 of the ATPase, and containing five histidines and four methionines, acts as an organelle-specific chaperone for metallation of the cuproproteins. The hypothesis posits that the pH of the vesicle regulates copper ligation and loop conformation via a mechanism which involves His to Met ligand switching induced by histidine protonation. Here we report the effect of pH on the HM loop copper coordination using X-ray absorption spectroscopy (XAS), and show via selenium substitution of the Met residues that the HM loop undergoes similar conformational switching to that found earlier for its partner PHM. We hypothesize that in the absence of specific chaperones, HM motifs provide a template for building a flexible, pH-sensitive transfer site whose structure and function can be regulated to accommodate the different active site structural elements and pH environments of its partner proteins.


Asunto(s)
Amidina-Liasas/metabolismo , Proteínas de Transporte de Catión/metabolismo , ATPasas Transportadoras de Cobre/metabolismo , Cobre/metabolismo , Oxigenasas de Función Mixta/metabolismo , Amidina-Liasas/química , Secuencia de Aminoácidos , Dominio Catalítico , Proteínas de Transporte de Catión/química , Cobre/química , ATPasas Transportadoras de Cobre/química , Humanos , Concentración de Iones de Hidrógeno , Ligandos , Oxigenasas de Función Mixta/química , Modelos Moleculares , Chaperonas Moleculares , Unión Proteica , Estructura Secundaria de Proteína , Homología de Secuencia , Espectroscopía de Absorción de Rayos X
7.
J Mol Endocrinol ; 56(4): T63-76, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26667899

RESUMEN

A critical role for peptide C-terminal amidation was apparent when the first bioactive peptides were identified. The conversion of POMC into adrenocorticotropic hormone and then into α-melanocyte-stimulating hormone, an amidated peptide, provided a model system for identifying the amidating enzyme. Peptidylglycine α-amidating monooxygenase (PAM), the only enzyme that catalyzes this modification, is essential; mice lacking PAM survive only until mid-gestation. Purification and cloning led to the discovery that the amidation of peptidylglycine substrates proceeds in two steps: peptidylglycine α-hydroxylating monooxygenase catalyzes the copper- and ascorbate-dependent α-hydroxylation of the peptidylglycine substrate; peptidyl-α-hydroxyglycine α-amidating lyase cleaves the N-C bond, producing amidated product and glyoxylate. Both enzymes are contained in the luminal domain of PAM, a type 1 integral membrane protein. The structures of both catalytic cores have been determined, revealing how they interact with metals, molecular oxygen, and substrate to catalyze both reactions. Although not essential for activity, the intrinsically disordered cytosolic domain is essential for PAM trafficking. A phylogenetic survey led to the identification of bifunctional membrane PAM in Chlamydomonas, a unicellular eukaryote. Accumulating evidence points to a role for PAM in copper homeostasis and in retrograde signaling from the lumen of the secretory pathway to the nucleus. The discovery of PAM in cilia, cellular antennae that sense and respond to environmental stimuli, suggests that much remains to be learned about this ancient protein.


Asunto(s)
Amidina-Liasas/metabolismo , Ácido Ascórbico/metabolismo , Cobre/metabolismo , Oxígeno/metabolismo , Proopiomelanocortina/metabolismo , alfa-MSH/metabolismo , Empalme Alternativo , Amidina-Liasas/química , Amidina-Liasas/genética , Animales , Cilios/metabolismo , Evolución Molecular , Técnicas de Inactivación de Genes , Genotipo , Humanos , Oxigenasas de Función Mixta/química , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/metabolismo , Complejos Multienzimáticos/química , Complejos Multienzimáticos/genética , Complejos Multienzimáticos/metabolismo , Obesidad/etiología , Obesidad/metabolismo , Proopiomelanocortina/química , Dominios y Motivos de Interacción de Proteínas , Proteolisis , Relación Estructura-Actividad
8.
J Mol Biol ; 426(17): 3028-40, 2014 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-25020232

RESUMEN

In plants, the ureide pathway is a metabolic route that converts the ring nitrogen atoms of purine into ammonia via sequential enzymatic reactions, playing an important role in nitrogen recovery. In the final step of the pathway, (S)-ureidoglycolate amidohydrolase (UAH) catalyzes the conversion of (S)-ureidoglycolate into glyoxylate and releases two molecules of ammonia as by-products. UAH is homologous in structure and sequence with allantoate amidohydrolase (AAH), an upstream enzyme in the pathway with a similar function as that of an amidase but with a different substrate. Both enzymes exhibit strict substrate specificity and catalyze reactions in a concerted manner, resulting in purine degradation. Here, we report three crystal structures of Arabidopsis thaliana UAH (bound with substrate, reaction intermediate, and product) and a structure of Escherichia coli AAH complexed with allantoate. Structural analyses of UAH revealed a distinct binding mode for each ligand in a bimetal reaction center with the active site in a closed conformation. The ligand directly participates in the coordination shell of two metal ions and is stabilized by the surrounding residues. In contrast, AAH, which exhibits a substrate-binding site similar to that of UAH, requires a larger active site due to the additional ureido group in allantoate. Structural analyses and mutagenesis revealed that both enzymes undergo an open-to-closed conformational transition in response to ligand binding and that the active-site size and the interaction environment in UAH and AAH are determinants of the substrate specificities of these two structurally homologous enzymes.


Asunto(s)
Amidina-Liasas/química , Arabidopsis/enzimología , Proteínas de Escherichia coli/química , Escherichia coli/enzimología , Ureohidrolasas/química , Dominio Catalítico , Complejos de Coordinación/química , Cristalografía por Rayos X , Glioxilatos/química , Hidrólisis , Cinética , Modelos Moleculares , Unión Proteica , Homología Estructural de Proteína , Especificidad por Sustrato , Urea/análogos & derivados , Urea/química
10.
Structure ; 17(7): 965-73, 2009 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-19604476

RESUMEN

Many neuropeptides and peptide hormones require amidation of their carboxy terminal for full biological activity. The enzyme peptidyl-alpha-hydroxyglycine alpha-amidating lyase (PAL; EC 4.3.2.5) catalyzes the second and last step of this reaction, N-dealkylation of the peptidyl-alpha-hydroxyglycine to generate the alpha-amidated peptide and glyoxylate. Here we report the X-ray crystal structure of the PAL catalytic core (PALcc) alone and in complex with the nonpeptidic substrate alpha-hydroxyhippuric acid. The structures show that PAL folds as a six-bladed beta-propeller. The active site is formed by a Zn(II) ion coordinated by three histidine residues; the substrate binds to this site with its alpha-hydroxyl group coordinated to the Zn(II) ion. The structures also reveal a tyrosine residue (Tyr(654)) at the active site as the catalytic base for hydroxyl deprotonation, an unusual role for tyrosine. A reaction mechanism is proposed based on this structural data and validated by biochemical analysis of site-directed PALcc mutants.


Asunto(s)
Amidina-Liasas/metabolismo , Liasas/química , Péptidos/química , Alanina/metabolismo , Amidina-Liasas/química , Amidina-Liasas/genética , Amidina-Liasas/aislamiento & purificación , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Arginina/química , Sitios de Unión/genética , Células CHO , Calcio/metabolismo , Cricetinae , Cricetulus , Cristalografía por Rayos X , Glicina/metabolismo , Hipuratos/química , Histidina/química , Interacciones Hidrofóbicas e Hidrofílicas , Cinética , Metionina/química , Modelos Químicos , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Pliegue de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Ratas , Reproducibilidad de los Resultados , Especificidad por Sustrato , Transfección , Triptófano/química , Tirosina/química , Zinc/química
11.
J Biol Chem ; 278(50): 50091-100, 2003 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-14506266

RESUMEN

Ureidoglycolate lyase (UGL, EC 4.3.2.3) catalyzes the breakdown of ureidoglycolate to glyoxylate and urea, which is the final step in the catabolic pathway leading from purines to urea. Although the sequence of enzymatic steps was worked out nearly 40 years ago, the stereochemistry of the uric acid degradation pathway and the catalytic properties of UGL have remained very poorly described. We now report the first direct investigation of the absolute stereochemistry of UGL catalysis. Using chiral chromatographic analyses with substrate enantiomers, we demonstrate that UGL catalysis is stereospecific for substrates with the (S)-hydroxyglycine configuration. The first potent competitive inhibitors for UGL are reported here. These inhibitors are compounds which contain a 2,4-dioxocarboxylate moiety, designed to mimic transient species produced during lyase catalysis. The most potent inhibitor, 2,4-dioxo-4-phenylbutanoic acid, exhibits a KI value of 2.2 nM and is therefore among the most potent competitive inhibitors ever reported for a lyase enzyme. New synthetic alternate substrates for UGL, which are acyl-alpha-hydroxyglycine compounds, are described. Based on these alternate substrates, we introduce the first assay method for monitoring UGL activity directly. Finally, we report the first putative primary nucleotide and derived peptide sequence for UGL. This sequence exhibits a high level of similarity to the fumarylacetoacetate hydrolase family of proteins. Close mechanistic similarities can be visualized between the chemistries of ureidoglycolate lyase and fumarylacetoacetate hydrolase catalysis.


Asunto(s)
Amidina-Liasas/antagonistas & inhibidores , Amidina-Liasas/química , Inhibidores Enzimáticos/química , Secuencia de Aminoácidos , Unión Competitiva , Burkholderia cepacia/enzimología , Catálisis , Cromatografía , Cromatografía Líquida de Alta Presión , Electroforesis en Gel de Poliacrilamida , Glicina/química , Hidrolasas/química , Cinética , Liasas/química , Modelos Químicos , Datos de Secuencia Molecular , Fenilbutiratos/química , Conformación Proteica , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido , Estereoisomerismo , Especificidad por Sustrato , Factores de Tiempo , Rayos Ultravioleta , Urea/química , Ácido Úrico/química
12.
Biochem J ; 350 Pt 2: 521-30, 2000 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-10947967

RESUMEN

C-terminal amidation, a required post-translational modification for the bioactivation of many neuropeptides, entails sequential enzymic action by peptidylglycine alpha-mono-oxygenase (PAM, EC 1.14.17.3) and peptidylamidoglycolate lyase (PGL, EC 4.3.2.5). Here we introduce novel compounds in which an olefinic functionality is incorporated into peptide analogues as the most potent turnover-dependent inactivators of PAM. Kinetic parameters for PAM inactivation by 4-oxo-5-acetamido-6-phenyl-hex-2-enoic acid and 4-oxo-5-acetamido-6-(2-thienyl)-hex-2-enoic acid were obtained by using both the conventional dilution assay method and the more complex progress curve method. The results obtained from the progress curve method establish that these compounds exhibit the kinetic characteristics of pure competitive inactivators (i.e. no ESI complex forms during inactivation). On the basis of k(inact)/K(i) values, 4-oxo-5-acetamido-6-(2-thienyl)-hex-2-enoic acid is almost two orders of magnitude more potent than benzoylacrylate, a chemically analogous olefinic inactivator that lacks the peptide moiety. Stereochemical studies established that PAM inactivation by 4-oxo-5-acetamido-6-(2-thienyl)-hex-2-enoic acid is stereospecific with respect to the moiety at the P(2) position, which is consistent with previous results with substrates and reversible inhibitors. In contrast, 2, 4-dioxo-5-acetamido-6-phenylhexanoic acid, which is a competitive inhibitor with respect to ascorbate, exhibits a low degree of stereospecificity in binding to the ascorbate sites of both PAM and dopamine-beta-hydroxylase.


Asunto(s)
Amidina-Liasas/química , Oxigenasas de Función Mixta/química , Complejos Multienzimáticos , Péptidos/química , Procesamiento Proteico-Postraduccional , Acetamidas/síntesis química , Acetamidas/metabolismo , Acetamidas/farmacología , Animales , Ácido Ascórbico/farmacología , Baculoviridae , Sitios de Unión , Caproatos/síntesis química , Caproatos/metabolismo , Caproatos/farmacología , Cromatografía , Dopamina beta-Hidroxilasa/metabolismo , Cinética , Oxigenasas de Función Mixta/antagonistas & inhibidores , Modelos Químicos , Piruvatos/farmacología , Factores de Tiempo , Xenopus
13.
Cell Mol Life Sci ; 57(8-9): 1236-59, 2000 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-11028916

RESUMEN

Many bioactive peptides must be amidated at their carboxy terminus to exhibit full activity. Surprisingly, the amides are not generated by a transamidation reaction. Instead, the hormones are synthesized from glycine-extended intermediates that are transformed into active amidated hormones by oxidative cleavage of the glycine N-C alpha bond. In higher organisms, this reaction is catalyzed by a single bifunctional enzyme, peptidylglycine alpha-amidating monooxygenase (PAM). The PAM gene encodes one polypeptide with two enzymes that catalyze the two sequential reactions required for amidation. Peptidylglycine alpha-hydroxylating monooxygenase (PHM; EC 1.14.17.3) catalyzes the stereospecific hydroxylation of the glycine alpha-carbon of all the peptidylglycine substrates. The second enzyme, peptidyl-alpha-hydroxyglycine alpha-amidating lyase (PAL; EC 4.3.2.5), generates alpha-amidated peptide product and glyoxylate. PHM contains two redox-active copper atoms that, after reduction by ascorbate, catalyze the reduction of molecular oxygen for the hydroxylation of glycine-extended substrates. The structure of the catalytic core of rat PHM at atomic resolution provides a framework for understanding the broad substrate specificity of PHM, identifying residues critical for PHM activity, and proposing mechanisms for the chemical and electron-transfer steps in catalysis. Since PHM is homologous in sequence and mechanism to dopamine beta-monooxygenase (DBM; EC 1.14.17.1), the enzyme that converts dopamine to norepinephrine during catecholamine biosynthesis, these structural and mechanistic insights are extended to DBM.


Asunto(s)
Amidina-Liasas/metabolismo , Cobre/metabolismo , Dopamina beta-Hidroxilasa/metabolismo , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/metabolismo , Complejos Multienzimáticos , Amidina-Liasas/química , Amidina-Liasas/genética , Secuencia de Aminoácidos , Animales , Dopamina beta-Hidroxilasa/química , Dopamina beta-Hidroxilasa/genética , Humanos , Oxigenasas de Función Mixta/química , Datos de Secuencia Molecular , Conformación Proteica , Ratas , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad por Sustrato
14.
Biochemistry ; 41(41): 12384-94, 2002 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-12369828

RESUMEN

Bioactive peptides frequently terminate with an essential alpha-amide that is generated from a COOH-terminal Gly in a two-step enzymatic process occurring within the lumen of the secretory pathway. The first enzyme, peptidylglycine alpha-hydroxylating monooxygenase, is a member of the copper- and ascorbate-dependent monooxygenase family. The second enzyme, peptidyl-alpha-hydroxyglycine alpha-amidating lyase (PAL, EC 4.3.2.5), has no known homologues. Examination of the catalytic core of PAL (PALcc) using trypsin, BNPS skatole, and COOH-terminally truncated proteins failed to identify stable subdomains. Treatment of PALcc with divalent metal ion chelators inactivated the enzyme and increased its protease and thermal sensitivity, suggesting a structural role for bound metal. Purified PALcc contained 0.7 +/- 0.4 mol of zinc/mol of enzyme. Since the four Cys residues in PALcc form two disulfide bonds, potential Zn ligands include conserved Asp, Glu, and His residues. The secretion and activity of PALcc bearing mutations in each conserved Asp, Glu, and His residue were evaluated. Mutation of three conserved Asp residues and two conserved His residues yielded a protein that could not be secreted, suggesting that these residues play a structural role. Analysis of mutants that were efficiently secreted identified three His residues along with single Asp residue that may play a role in catalysis. These essential residues occur in a pattern unique to PAL.


Asunto(s)
Amidina-Liasas/química , Dominio Catalítico , Amidina-Liasas/antagonistas & inhibidores , Amidina-Liasas/genética , Amidina-Liasas/aislamiento & purificación , Secuencia de Aminoácidos , Animales , Sitios de Unión/genética , Células CHO , Dominio Catalítico/genética , Cobre/química , Cricetinae , Disulfuros/química , Ácido Edético/química , Inhibidores Enzimáticos/química , Exones/genética , Humanos , Hidrólisis , Oxigenasas de Función Mixta/química , Datos de Secuencia Molecular , Complejos Multienzimáticos/química , Mutagénesis Sitio-Dirigida , Desnaturalización Proteica , Pliegue de Proteína , Ratas , Tripsina/química , Zinc/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA